1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_alias.c

2742 lines
69 KiB
C

//a note about dedicated servers:
//In the server-side gamecode, a couple of q1 extensions require knowing something about models.
//So we load models serverside, if required.
//things we need:
//tag/bone names and indexes so we can have reasonable modding with tags. :)
//tag/bone positions so we can shoot from the actual gun or other funky stuff
//vertex positions so we can trace against the mesh rather than the bbox.
//we use the gl renderer's model code because it supports more sorts of models than the sw renderer. Sad but true.
#include "quakedef.h"
#ifdef RGLQUAKE
#include "glquake.h"
#endif
#if defined(RGLQUAKE) || defined(SERVERONLY)
#include "shader.h"
#include "hash.h"
#if defined(ZYMOTICMODELS) || defined(MD5MODELS)
#define SKELETALMODELS
#include "malloc.h"
#endif
#define MAX_BONES 256
static model_t *loadmodel;
//FIXME
typedef struct
{
float scale[3]; // multiply qbyte verts by this
float translate[3]; // then add this
char name[16]; // frame name from grabbing
dtrivertx_t verts[1]; // variable sized
} dmd2aliasframe_t;
// entity_state_t->renderfx flags
#define Q2RF_MINLIGHT 1 // always have some light (viewmodel)
#define Q2RF_VIEWERMODEL 2 // don't draw through eyes, only mirrors
#define Q2RF_WEAPONMODEL 4 // only draw through eyes
#define Q2RF_FULLBRIGHT 8 // always draw full intensity
#define Q2RF_DEPTHHACK 16 // for view weapon Z crunching
#define Q2RF_TRANSLUCENT 32
#define Q2RF_FRAMELERP 64
#define Q2RF_BEAM 128
#define Q2RF_CUSTOMSKIN 256 // skin is an index in image_precache
#define Q2RF_GLOW 512 // pulse lighting for bonus items
#define Q2RF_SHELL_RED 1024
#define Q2RF_SHELL_GREEN 2048
#define Q2RF_SHELL_BLUE 4096
//ROGUE
#define Q2RF_IR_VISIBLE 0x00008000 // 32768
#define Q2RF_SHELL_DOUBLE 0x00010000 // 65536
#define Q2RF_SHELL_HALF_DAM 0x00020000
#define Q2RF_USE_DISGUISE 0x00040000
//ROGUE
extern cvar_t gl_part_flame, r_fullbrightSkins, r_fb_models;
extern cvar_t r_noaliasshadows;
void R_TorchEffect (vec3_t pos, int type);
void GLMod_FloodFillSkin( qbyte *skin, int skinwidth, int skinheight );
extern char loadname[32]; // for hunk tags
int numTempColours;
byte_vec4_t *tempColours;
int numTempVertexCoords;
vec3_t *tempVertexCoords;
int numTempNormals;
vec3_t *tempNormals;
extern cvar_t gl_ati_truform;
extern cvar_t r_vertexdlights;
extern cvar_t mod_md3flags;
typedef struct {
int ofs_indexes;
int numindexes;
int ofs_trineighbours;
int numskins;
#ifndef SERVERONLY
int ofsskins;
#endif
qboolean sharesverts; //used with models with two shaders using the same vertex - use last mesh's verts
qboolean sharesbones; //use last mesh's bones (please, never set this on the first mesh!)
int numverts;
#ifndef SERVERONLY
int ofs_st_array;
#endif
int groups;
int groupofs;
int nextsurf;
#ifdef SKELETALMODELS
int numbones;
int ofsbones;
int numtransforms;
int ofstransforms;
#endif
//these exist only in the root mesh.
int numtagframes;
int numtags;
int ofstags;
} galiasinfo_t;
//frame is an index into this
typedef struct {
#ifdef SKELETALMODELS
qboolean isheirachical; //for models with transforms, states that bones need to be transformed from thier parent.
//this is actually bad, and can result in bones shortening as they interpolate.
#endif
qboolean loop;
int numposes;
float rate;
int poseofs;
char name[64];
} galiasgroup_t;
typedef struct {
int ofsverts;
#ifndef SERVERONLY
int ofsnormals;
#endif
vec3_t scale;
vec3_t scale_origin;
} galiaspose_t;
#ifdef SKELETALMODELS
typedef struct {
char name[32];
int parent;
} galiasbone_t;
typedef struct {
//skeletal poses refer to this.
int vertexindex;
int boneindex;
vec4_t org;
} galisskeletaltransforms_t;
#endif
//we can't be bothered with animating skins.
//We'll load up to four of them but after that you're on your own
#ifndef SERVERONLY
typedef struct {
int skinwidth;
int skinheight;
int ofstexels; //this is 8bit for frame 0 only. only valid in q1 models without replacement textures, used for colourising player skins.
float skinspeed;
int texnums;
int ofstexnums;
char name [MAX_QPATH];
} galiasskin_t;
typedef struct {
int base;
int bump;
int fullbright;
#ifdef Q3SHADERS
shader_t *shader;
#endif
} galiastexnum_t;
typedef struct {
char name[MAX_QPATH];
galiastexnum_t texnum;
int colour;
int skinnum;
bucket_t bucket;
} galiascolourmapped_t;
#endif
#ifdef SKELETALMODELS
static void R_LerpBones(float *plerp, float **pose, int poses, galiasbone_t *bones, int bonecount, float bonepose[MAX_BONES][12]);
static void R_TransformVerticies(float bonepose[MAX_BONES][12], galisskeletaltransforms_t *weights, int numweights, float *xyzout);
#endif
void Mod_DoCRC(model_t *mod, char *buffer, int buffersize)
{
#ifndef SERVERONLY
//we've got to have this bit
if (loadmodel->engineflags & MDLF_DOCRC)
{
unsigned short crc;
qbyte *p;
int len;
char st[40];
QCRC_Init(&crc);
for (len = buffersize, p = buffer; len; len--, p++)
QCRC_ProcessByte(&crc, *p);
sprintf(st, "%d", (int) crc);
Info_SetValueForKey (cls.userinfo,
(loadmodel->engineflags & MDLF_PLAYER) ? pmodel_name : emodel_name,
st, MAX_INFO_STRING);
if (cls.state >= ca_connected)
{
CL_SendClientCommand(true, "setinfo %s %d",
(loadmodel->engineflags & MDLF_PLAYER) ? pmodel_name : emodel_name,
(int)crc);
}
}
#endif
}
qboolean GLMod_Trace(model_t *model, int forcehullnum, int frame, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, trace_t *trace)
{
galiasinfo_t *mod = Mod_Extradata(model);
galiasgroup_t *group;
galiaspose_t *pose;
int i;
float *p1, *p2, *p3;
vec3_t edge1, edge2, edge3;
vec3_t normal;
vec3_t edgenormal;
float planedist;
float diststart, distend;
float frac;
// float temp;
vec3_t impactpoint;
float *posedata;
int *indexes;
while(mod)
{
indexes = (int*)((char*)mod + mod->ofs_indexes);
group = (galiasgroup_t*)((char*)mod + mod->groupofs);
pose = (galiaspose_t*)((char*)&group[0] + group[0].poseofs);
posedata = (float*)((char*)pose + pose->ofsverts);
#ifdef SKELETALMODELS
if (mod->numbones && !mod->sharesverts)
{
float bonepose[MAX_BONES][12];
posedata = alloca(mod->numverts*sizeof(vec3_t));
frac = 1;
if (group->isheirachical)
{
if (!mod->sharesbones)
R_LerpBones(&frac, (float**)posedata, 1, (galiasbone_t*)((char*)mod + mod->ofsbones), mod->numbones, bonepose);
R_TransformVerticies(bonepose, (galisskeletaltransforms_t*)((char*)mod + mod->ofstransforms), mod->numtransforms, posedata);
}
else
R_TransformVerticies((void*)posedata, (galisskeletaltransforms_t*)((char*)mod + mod->ofstransforms), mod->numtransforms, posedata);
}
#endif
for (i = 0; i < mod->numindexes; i+=3)
{
p1 = posedata + 3*indexes[i+0];
p2 = posedata + 3*indexes[i+1];
p3 = posedata + 3*indexes[i+2];
VectorSubtract(p1, p2, edge1);
VectorSubtract(p3, p2, edge2);
CrossProduct(edge1, edge2, normal);
planedist = DotProduct(p1, normal);
diststart = DotProduct(start, normal);
if (diststart <= planedist)
continue; //start on back side.
distend = DotProduct(end, normal);
if (distend >= planedist)
continue; //end on front side (as must start - doesn't cross).
frac = (diststart - planedist) / (diststart-distend);
if (frac >= trace->fraction) //already found one closer.
continue;
impactpoint[0] = start[0] + frac*(end[0] - start[0]);
impactpoint[1] = start[1] + frac*(end[1] - start[1]);
impactpoint[2] = start[2] + frac*(end[2] - start[2]);
// temp = DotProduct(impactpoint, normal)-planedist;
CrossProduct(edge1, normal, edgenormal);
// temp = DotProduct(impactpoint, edgenormal)-DotProduct(p2, edgenormal);
if (DotProduct(impactpoint, edgenormal) > DotProduct(p2, edgenormal))
continue;
CrossProduct(normal, edge2, edgenormal);
if (DotProduct(impactpoint, edgenormal) > DotProduct(p3, edgenormal))
continue;
VectorSubtract(p1, p3, edge3);
CrossProduct(normal, edge3, edgenormal);
if (DotProduct(impactpoint, edgenormal) > DotProduct(p1, edgenormal))
continue;
trace->fraction = frac;
VectorCopy(impactpoint, trace->endpos);
VectorCopy(normal, trace->plane.normal);
}
if (mod->nextsurf)
mod = (galiasinfo_t*)((char*)mod + mod->nextsurf);
else
mod = NULL;
}
trace->allsolid = false;
return trace->fraction != 1;
}
#ifndef SERVERONLY
static hashtable_t skincolourmapped;
static vec3_t shadevector;
static vec3_t shadelight, ambientlight;
static void R_LerpFrames(mesh_t *mesh, galiaspose_t *p1, galiaspose_t *p2, float lerp, qbyte alpha, float expand, qboolean nolightdir)
{
extern cvar_t r_nolerp, r_nolightdir;
float blerp = 1-lerp;
int i;
float l;
int temp;
vec3_t *p1v, *p2v;
vec3_t *p1n, *p2n;
p1v = (vec3_t *)((char *)p1 + p1->ofsverts);
p2v = (vec3_t *)((char *)p2 + p2->ofsverts);
p1n = (vec3_t *)((char *)p1 + p1->ofsnormals);
p2n = (vec3_t *)((char *)p2 + p2->ofsnormals);
if (p1v == p2v || r_nolerp.value)
{
mesh->normals_array = (vec3_t*)((char *)p1 + p1->ofsnormals);
mesh->xyz_array = p1v;
if (r_nolightdir.value || nolightdir)
{
mesh->colors_array = NULL;
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
l = DotProduct(mesh->normals_array[i], shadevector);
temp = l*ambientlight[0]+shadelight[0];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][0] = temp;
temp = l*ambientlight[1]+shadelight[1];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][1] = temp;
temp = l*ambientlight[2]+shadelight[2];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][2] = temp;
mesh->colors_array[i][3] = alpha;
}
}
}
else
{
if (r_nolightdir.value || nolightdir)
{
mesh->colors_array = NULL;
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->normals_array[i][0] = p1n[i][0]*lerp + p2n[i][0]*blerp;
mesh->normals_array[i][1] = p1n[i][1]*lerp + p2n[i][1]*blerp;
mesh->normals_array[i][2] = p1n[i][2]*lerp + p2n[i][2]*blerp;
mesh->xyz_array[i][0] = p1v[i][0]*lerp + p2v[i][0]*blerp;
mesh->xyz_array[i][1] = p1v[i][1]*lerp + p2v[i][1]*blerp;
mesh->xyz_array[i][2] = p1v[i][2]*lerp + p2v[i][2]*blerp;
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->normals_array[i][0] = p1n[i][0]*lerp + p2n[i][0]*blerp;
mesh->normals_array[i][1] = p1n[i][1]*lerp + p2n[i][1]*blerp;
mesh->normals_array[i][2] = p1n[i][2]*lerp + p2n[i][2]*blerp;
mesh->xyz_array[i][0] = p1v[i][0]*lerp + p2v[i][0]*blerp;
mesh->xyz_array[i][1] = p1v[i][1]*lerp + p2v[i][1]*blerp;
mesh->xyz_array[i][2] = p1v[i][2]*lerp + p2v[i][2]*blerp;
l = DotProduct(mesh->normals_array[i], shadevector);
temp = l*ambientlight[0]+shadelight[0];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][0] = temp;
temp = l*ambientlight[1]+shadelight[1];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][1] = temp;
temp = l*ambientlight[2]+shadelight[2];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
mesh->colors_array[i][2] = temp;
mesh->colors_array[i][3] = alpha;
}
}
}
if (expand)
{
if (mesh->xyz_array == p1v)
{
mesh->xyz_array = tempVertexCoords;
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->xyz_array[i][0] = p1v[i][0] + mesh->normals_array[i][0]*expand;
mesh->xyz_array[i][1] = p1v[i][1] + mesh->normals_array[i][1]*expand;
mesh->xyz_array[i][2] = p1v[i][2] + mesh->normals_array[i][2]*expand;
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->xyz_array[i][0] += mesh->normals_array[i][0]*expand;
mesh->xyz_array[i][1] += mesh->normals_array[i][1]*expand;
mesh->xyz_array[i][2] += mesh->normals_array[i][2]*expand;
}
}
}
}
#endif
#ifdef SKELETALMODELS
static void R_LerpBones(float *plerp, float **pose, int poses, galiasbone_t *bones, int bonecount, float bonepose[MAX_BONES][12])
{
int i, k, b;
float *matrix, m[12];
if (poses == 1)
{
// vertex weighted skeletal
// interpolate matrices and concatenate them to their parents
for (i = 0;i < bonecount;i++)
{
matrix = pose[0] + i*12;
if (bones[i].parent >= 0)
R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)matrix, (void*)bonepose[i]);
else
for (k = 0;k < 12;k++) //parentless
bonepose[i][k] = matrix[k];
}
}
else
{
// vertex weighted skeletal
// interpolate matrices and concatenate them to their parents
for (i = 0;i < bonecount;i++)
{
for (k = 0;k < 12;k++)
m[k] = 0;
for (b = 0;b < poses;b++)
{
matrix = pose[b] + i*12;
for (k = 0;k < 12;k++)
m[k] += matrix[k] * plerp[b];
}
if (bones[i].parent >= 0)
R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)m, (void*)bonepose[i]);
else
for (k = 0;k < 12;k++) //parentless
bonepose[i][k] = m[k];
}
}
}
static void R_TransformVerticies(float bonepose[MAX_BONES][12], galisskeletaltransforms_t *weights, int numweights, float *xyzout)
{
int i;
float *out, *matrix;
galisskeletaltransforms_t *v = weights;
for (i = 0;i < numweights;i++, v++)
{
out = xyzout + v->vertexindex * 3;
matrix = bonepose[v->boneindex];
// FIXME: this can very easily be optimized with SSE or 3DNow
out[0] += v->org[0] * matrix[0] + v->org[1] * matrix[1] + v->org[2] * matrix[ 2] + v->org[3] * matrix[ 3];
out[1] += v->org[0] * matrix[4] + v->org[1] * matrix[5] + v->org[2] * matrix[ 6] + v->org[3] * matrix[ 7];
out[2] += v->org[0] * matrix[8] + v->org[1] * matrix[9] + v->org[2] * matrix[10] + v->org[3] * matrix[11];
}
}
#ifndef SERVERONLY
static void R_BuildSkeletalMesh(mesh_t *mesh, float *plerp, float **pose, int poses, galiasbone_t *bones, int bonecount, galisskeletaltransforms_t *weights, int numweights, qboolean usehierarchy)
{
float bonepose[MAX_BONES][12];
int i, k, l;
if (usehierarchy)
R_LerpBones(plerp, pose, poses, bones, bonecount, bonepose);
else
{
if (poses == 1)
memcpy(bonepose, pose[0], sizeof(float)*12*bonecount);
else if (poses == 2)
{
for (i = 0; i < bonecount*12; i++)
{
((float*)bonepose)[i] = pose[0][i]*plerp[0] + pose[1][i]*plerp[1];
}
}
else
{
for (i = 0; i < bonecount; i++)
{
for (l = 0; l < 12; l++)
bonepose[i][l] = 0;
for (k = 0; k < poses; k++)
{
for (l = 0; l < 12; l++)
bonepose[i][l] += pose[k][i*12+l] * plerp[k];
}
}
}
}
// blend the vertex bone weights
// memset(outhead, 0, mesh->numvertexes * sizeof(mesh->xyz_array[0]));
for (i = 0; i < mesh->numvertexes; i++)
{
mesh->normals_array[i][0] = 0;
mesh->normals_array[i][1] = 0;
mesh->normals_array[i][2] = 1;
/*
mesh->colors_array[i][0] = ambientlight[0];
mesh->colors_array[i][1] = ambientlight[1];
mesh->colors_array[i][2] = ambientlight[2];
mesh->colors_array[i][3] = 255;//alpha;
*/
/*
mesh->xyz_array[i][0] = 0;
mesh->xyz_array[i][1] = 0;
mesh->xyz_array[i][2] = 0;
mesh->xyz_array[i][3] = 1;
*/
}
mesh->colors_array = NULL;
memset(mesh->xyz_array, 0, mesh->numvertexes*sizeof(vec3_t));
R_TransformVerticies(bonepose, weights, numweights, (float*)mesh->xyz_array);
#if 0 //draws the bones
qglColor3f(1, 0, 0);
{
int i;
int p;
vec3_t org, dest;
qglBegin(GL_LINES);
for (i = 0; i < bonecount; i++)
{
p = bones[i].parent;
if (p < 0)
p = 0;
qglVertex3f(bonepose[i][3], bonepose[i][7], bonepose[i][11]);
qglVertex3f(bonepose[p][3], bonepose[p][7], bonepose[p][11]);
}
qglEnd();
qglBegin(GL_LINES);
for (i = 0; i < bonecount; i++)
{
p = bones[i].parent;
if (p < 0)
p = 0;
org[0] = bonepose[i][3]; org[1] = bonepose[i][7]; org[2] = bonepose[i][11];
qglVertex3fv(org);
qglVertex3f(bonepose[p][3], bonepose[p][7], bonepose[p][11]);
dest[0] = org[0]+bonepose[i][0];dest[1] = org[1]+bonepose[i][1];dest[2] = org[2]+bonepose[i][2];
qglVertex3fv(org);
qglVertex3fv(dest);
qglVertex3fv(dest);
qglVertex3f(bonepose[p][3], bonepose[p][7], bonepose[p][11]);
dest[0] = org[0]+bonepose[i][4];dest[1] = org[1]+bonepose[i][5];dest[2] = org[2]+bonepose[i][6];
qglVertex3fv(org);
qglVertex3fv(dest);
qglVertex3fv(dest);
qglVertex3f(bonepose[p][3], bonepose[p][7], bonepose[p][11]);
dest[0] = org[0]+bonepose[i][8];dest[1] = org[1]+bonepose[i][9];dest[2] = org[2]+bonepose[i][10];
qglVertex3fv(org);
qglVertex3fv(dest);
qglVertex3fv(dest);
qglVertex3f(bonepose[p][3], bonepose[p][7], bonepose[p][11]);
}
qglEnd();
// mesh->numindexes = 0; //don't draw this mesh, as that would obscure the bones. :(
}
#endif
}
#endif
#endif
#ifndef SERVERONLY
void R_LightArrays(byte_vec4_t *colours, int vertcount, vec3_t *normals)
{
int i;
float l;
int temp;
for (i = vertcount-1; i >= 0; i--)
{
l = DotProduct(normals[i], shadevector);
temp = l*ambientlight[0]+shadelight[0];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
colours[i][0] = temp;
temp = l*ambientlight[1]+shadelight[1];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
colours[i][1] = temp;
temp = l*ambientlight[2]+shadelight[2];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
colours[i][2] = temp;
}
}
//changes vertex lighting values
static void R_GAliasApplyLighting(mesh_t *mesh, vec3_t org, vec3_t angles, float *colormod)
{
int l, v;
vec3_t rel;
vec3_t dir;
float dot, d, a, f;
if (mesh->colors_array)
{
float l;
int temp;
int i;
byte_vec4_t *colours = mesh->colors_array;
vec3_t *normals = mesh->normals_array;
vec3_t ambient, shade;
qbyte alphab = bound(0, colormod[3]*255, 255);
if (!mesh->normals_array)
{
mesh->colors_array = NULL;
return;
}
VectorCopy(ambientlight, ambient);
VectorCopy(shadelight, shade);
for (i = 0; i < 3; i++)
{
ambient[i] *= colormod[i];
shade[i] *= colormod[i];
}
for (i = mesh->numvertexes-1; i >= 0; i--)
{
l = DotProduct(normals[i], shadevector);
temp = l*ambient[0]+shade[0];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
colours[i][0] = temp;
temp = l*ambient[1]+shade[1];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
colours[i][1] = temp;
temp = l*ambient[2]+shade[2];
if (temp < 0) temp = 0;
else if (temp > 255) temp = 255;
colours[i][2] = temp;
colours[i][3] = alphab;
}
}
if (r_vertexdlights.value && mesh->colors_array)
{
for (l=0 ; l<dlights_running ; l++)
{
if (cl_dlights[l].radius)
{
VectorSubtract (cl_dlights[l].origin,
org,
dir);
if (Length(dir)>cl_dlights[l].radius+mesh->radius) //far out man!
continue;
rel[0] = -DotProduct(dir, currententity->axis[0]);
rel[1] = -DotProduct(dir, currententity->axis[1]); //quake's crazy.
rel[2] = -DotProduct(dir, currententity->axis[2]);
/*
glBegin(GL_LINES);
glVertex3f(0,0,0);
glVertex3f(rel[0],rel[1],rel[2]);
glEnd();
*/
for (v = 0; v < mesh->numvertexes; v++)
{
VectorSubtract(mesh->xyz_array[v], rel, dir);
dot = DotProduct(dir, mesh->normals_array[v]);
if (dot>0)
{
d = DotProduct(dir, dir);
a = 1/d;
if (a>0)
{
a *= 10000000*dot/sqrt(d);
f = mesh->colors_array[v][0] + a*cl_dlights[l].color[0];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
mesh->colors_array[v][0] = f;
f = mesh->colors_array[v][1] + a*cl_dlights[l].color[1];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
mesh->colors_array[v][1] = f;
f = mesh->colors_array[v][2] + a*cl_dlights[l].color[2];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
mesh->colors_array[v][2] = f;
}
// else
// mesh->colors_array[v][1] =255;
}
// else
// mesh->colors_array[v][2] =255;
}
}
}
}
}
static qboolean R_GAliasBuildMesh(mesh_t *mesh, galiasinfo_t *inf, int frame1, int frame2, float lerp, float alpha, float fg1time, float fg2time, qboolean nolightdir)
{
galiasgroup_t *g1, *g2;
if (!inf->groups)
{
Con_DPrintf("Model with no frames (%s)\n", currententity->model->name);
return false;
}
if (frame1 < 0)
{
Con_DPrintf("Negative frame (%s)\n", currententity->model->name);
frame1 = 0;
}
if (frame2 < 0)
{
Con_DPrintf("Negative frame (%s)\n", currententity->model->name);
frame2 = frame1;
}
if (frame1 >= inf->groups)
{
Con_DPrintf("Too high frame %i (%s)\n", frame1, currententity->model->name);
frame1 %= inf->groups;
}
if (frame2 >= inf->groups)
{
Con_DPrintf("Too high frame %i (%s)\n", frame2, currententity->model->name);
frame2 = frame1;
}
if (lerp <= 0)
frame2 = frame1;
else if (lerp >= 1)
frame1 = frame2;
if (numTempColours < inf->numverts)
{
if (tempColours)
BZ_Free(tempColours);
tempColours = BZ_Malloc(sizeof(*tempColours)*inf->numverts);
numTempColours = inf->numverts;
}
if (numTempNormals < inf->numverts)
{
if (tempNormals)
BZ_Free(tempNormals);
tempNormals = BZ_Malloc(sizeof(*tempNormals)*inf->numverts);
numTempNormals = inf->numverts;
}
if (numTempVertexCoords < inf->numverts)
{
if (tempVertexCoords)
BZ_Free(tempVertexCoords);
tempVertexCoords = BZ_Malloc(sizeof(*tempVertexCoords)*inf->numverts);
numTempVertexCoords = inf->numverts;
}
mesh->numvertexes = inf->numverts;
mesh->indexes = (index_t*)((char *)inf + inf->ofs_indexes);
mesh->numindexes = inf->numindexes;
if (inf->sharesverts)
return false; //don't generate the new vertex positions. We still have them all.
#ifndef SERVERONLY
mesh->st_array = (vec2_t*)((char *)inf + inf->ofs_st_array);
mesh->lmst_array = NULL;
mesh->colors_array = tempColours;
mesh->trneighbors = (int *)((char *)inf + inf->ofs_trineighbours);
mesh->normals_array = tempNormals;
#endif
mesh->xyz_array = tempVertexCoords;
g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1);
g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2);
//we don't support meshes with one pose skeletal and annother not.
//we don't support meshes with one group skeletal and annother not.
#ifdef SKELETALMODELS
if (inf->numbones)
{
int l=0;
float plerp[4];
float *pose[4];
float mlerp; //minor lerp, poses within a group.
qboolean hirachy;
if (g1->isheirachical != g2->isheirachical || lerp < 0)
lerp = 0;
hirachy = g1->isheirachical;
mlerp = (fg1time)*g1->rate;
frame1=mlerp;
frame2=frame1+1;
mlerp-=frame1;
if (g1->loop)
{
frame1=frame1%g1->numposes;
frame2=frame2%g1->numposes;
}
else
{
frame1=(frame1>g1->numposes-1)?g1->numposes-1:frame1;
frame2=(frame2>g1->numposes-1)?g1->numposes-1:frame2;
}
plerp[l] = (1-mlerp)*(1-lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame1);
plerp[l] = (mlerp)*(1-lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame2);
if (lerp)
{
mlerp = (fg2time)*g2->rate;
frame1=mlerp;
frame2=frame1+1;
mlerp-=frame1;
if (g2->loop)
{
frame1=frame1%g2->numposes;
frame2=frame2%g2->numposes;
}
else
{
frame1=(frame1>g2->numposes-1)?g2->numposes-1:frame1;
frame2=(frame2>g2->numposes-1)?g2->numposes-1:frame2;
}
plerp[l] = (1-mlerp)*(lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame1);
plerp[l] = (mlerp)*(lerp);
if (plerp[l]>0)
pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame2);
}
/*
pose[0] = (float *)((char *)g1 + g1->poseofs);
plerp[0] = 1;
plerp[1] = 0;
plerp[3] = 0;
plerp[4] = 0;
l = 1;
*/
R_BuildSkeletalMesh(mesh, plerp, pose, l, (galiasbone_t *)((char*)inf+inf->ofsbones), inf->numbones, (galisskeletaltransforms_t *)((char*)inf+inf->ofstransforms), inf->numtransforms, hirachy);
return false;
}
#endif
if (g1 == g2) //lerping within group is only done if not changing group
{
lerp = fg1time*g1->rate;
if (lerp < 0) lerp = 0; //hrm
frame1=lerp;
frame2=frame1+1;
lerp-=frame1;
if (g1->loop)
{
frame1=frame1%g1->numposes;
frame2=frame2%g1->numposes;
}
else
{
frame1=(frame1>g1->numposes-1)?g1->numposes-1:frame1;
frame2=(frame2>g1->numposes-1)?g1->numposes-1:frame2;
}
}
else //don't bother with a four way lerp. Yeah, this will produce jerkyness with models with just framegroups.
{
frame1=0;
frame2=0;
}
R_LerpFrames(mesh, (galiaspose_t *)((char *)g1 + g1->poseofs + sizeof(galiaspose_t)*frame1),
(galiaspose_t *)((char *)g2 + g2->poseofs + sizeof(galiaspose_t)*frame2),
1-lerp, (qbyte)(alpha*255), currententity->fatness, nolightdir);
return true; //to allow the mesh to be dlighted.
}
void GL_GAliasFlushSkinCache(void)
{
int i;
bucket_t *b;
for (i = 0; i < skincolourmapped.numbuckets; i++)
{
while((b = skincolourmapped.bucket[i]))
{
skincolourmapped.bucket[i] = b->next;
BZ_Free(b->data);
}
}
if (skincolourmapped.bucket)
BZ_Free(skincolourmapped.bucket);
skincolourmapped.bucket = NULL;
skincolourmapped.numbuckets = 0;
}
static galiastexnum_t *GL_ChooseSkin(galiasinfo_t *inf, char *modelname, int surfnum, entity_t *e)
{
galiasskin_t *skins;
galiastexnum_t *texnums;
int frame;
int tc, bc;
if (!gl_nocolors.value)
{
if (e->scoreboard)
{
if (!e->scoreboard->skin)
Skin_Find(e->scoreboard);
tc = e->scoreboard->ttopcolor;
bc = e->scoreboard->tbottomcolor;
}
else
{
tc = 1;
bc = 1;
}
if (tc != 1 || bc != 1 || (e->scoreboard && e->scoreboard->skin))
{
int inwidth, inheight;
int tinwidth, tinheight;
char *skinname;
qbyte *original;
int cc;
galiascolourmapped_t *cm;
char hashname[512];
cc = (tc<<4)|bc;
if (e->scoreboard && e->scoreboard->skin && !gl_nocolors.value)
{
snprintf(hashname, sizeof(hashname), "%s$%s$%i", modelname, e->scoreboard->skin->name, surfnum);
skinname = hashname;
}
else if (surfnum)
{
snprintf(hashname, sizeof(hashname), "%s$%i", modelname, surfnum);
skinname = hashname;
}
else
skinname = modelname;
if (!skincolourmapped.numbuckets)
Hash_InitTable(&skincolourmapped, 256, BZ_Malloc(Hash_BytesForBuckets(256)));
for (cm = Hash_Get(&skincolourmapped, skinname); cm; cm = Hash_GetNext(&skincolourmapped, skinname, cm))
{
if (cm->colour == cc && cm->skinnum == e->skinnum)
{
return &cm->texnum;
}
}
if (!inf->numskins)
{
skins = NULL;
texnums = NULL;
}
else
{
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (!skins->texnums)
return NULL;
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
texnums = (galiastexnum_t*)((char *)skins + skins->ofstexnums);
}
//colourmap isn't present yet.
cm = BZ_Malloc(sizeof(*cm));
Q_strncpyz(cm->name, skinname, sizeof(cm->name));
Hash_Add(&skincolourmapped, cm->name, cm, &cm->bucket);
cm->colour = cc;
cm->skinnum = e->skinnum;
cm->texnum.fullbright = 0;
cm->texnum.base = 0;
if (!texnums)
{ //load just the skin
if (e->scoreboard && e->scoreboard->skin)
{
if (cls.protocol == CP_QUAKE2)
{
original = Skin_Cache32(e->scoreboard->skin);
if (original)
{
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
cm->texnum.base = cm->texnum.fullbright = GL_LoadTexture32(e->scoreboard->skin->name, inwidth, inheight, (unsigned int*)original, true, false);
return &cm->texnum;
}
}
else
{
original = Skin_Cache8(e->scoreboard->skin);
if (original)
{
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
cm->texnum.base = cm->texnum.fullbright = GL_LoadTexture(e->scoreboard->skin->name, inwidth, inheight, original, true, false);
return &cm->texnum;
}
}
cm->texnum.base = Mod_LoadHiResTexture(e->scoreboard->skin->name, "skins", true, false, true);
return &cm->texnum;
}
return NULL;
}
cm->texnum.bump = texnums[cm->skinnum].bump; //can't colour bumpmapping
if (cls.protocol != CP_QUAKE2 && ((!texnums || !strcmp(modelname, "progs/player.mdl")) && e->scoreboard && e->scoreboard->skin))
{
original = Skin_Cache8(e->scoreboard->skin);
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
}
else
{
original = NULL;
inwidth = 0;
inheight = 0;
}
if (!original)
{
if (skins->ofstexels)
{
original = (qbyte *)skins + skins->ofstexels;
inwidth = skins->skinwidth;
inheight = skins->skinheight;
}
else
{
original = NULL;
inwidth = 0;
inheight = 0;
}
}
tinwidth = skins->skinwidth;
tinheight = skins->skinheight;
if (original)
{
int i, j;
qbyte translate[256];
unsigned translate32[256];
static unsigned pixels[512*512];
unsigned *out;
unsigned frac, fracstep;
unsigned scaled_width, scaled_height;
qbyte *inrow;
texnums = &cm->texnum;
texnums->base = 0;
texnums->fullbright = 0;
scaled_width = gl_max_size.value < 512 ? gl_max_size.value : 512;
scaled_height = gl_max_size.value < 512 ? gl_max_size.value : 512;
for (i=0 ; i<256 ; i++)
translate[i] = i;
tc<<=4;
bc<<=4;
for (i=0 ; i<16 ; i++)
{
if (tc < 128) // the artists made some backwards ranges. sigh.
translate[TOP_RANGE+i] = tc+i;
else
translate[TOP_RANGE+i] = tc+15-i;
if (bc < 128)
translate[BOTTOM_RANGE+i] = bc+i;
else
translate[BOTTOM_RANGE+i] = bc+15-i;
}
for (i=0 ; i<256 ; i++)
translate32[i] = d_8to24rgbtable[translate[i]];
out = pixels;
fracstep = tinwidth*0x10000/scaled_width;
for (i=0 ; i<scaled_height ; i++, out += scaled_width)
{
inrow = original + inwidth*(i*inheight/scaled_height);
frac = fracstep >> 1;
for (j=0 ; j<scaled_width ; j+=4)
{
out[j] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+1] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+2] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+3] = translate32[inrow[frac>>16]];
frac += fracstep;
}
}
texnums->base = texture_extension_number++;
GL_Bind(texnums->base);
qglTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//now do the fullbrights.
out = pixels;
fracstep = tinwidth*0x10000/scaled_width;
for (i=0 ; i<scaled_height ; i++, out += scaled_width)
{
inrow = original + inwidth*(i*inheight/scaled_height);
frac = fracstep >> 1;
for (j=0 ; j<scaled_width ; j+=1)
{
if (inrow[frac>>16] < 255-vid.fullbright)
((char *) (&out[j]))[3] = 0; //alpha 0
frac += fracstep;
}
}
texnums->fullbright = texture_extension_number++;
GL_Bind(texnums->fullbright);
qglTexImage2D (GL_TEXTURE_2D, 0, gl_alpha_format, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
else
{
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
if (!inf->numskins || !skins->texnums)
return NULL;
frame = cl.time*skins->skinspeed;
frame = frame%skins->texnums;
texnums = (galiastexnum_t*)((char *)skins + skins->ofstexnums + frame*sizeof(galiastexnum_t));
memcpy(&cm->texnum, texnums, sizeof(cm->texnum));
}
return &cm->texnum;
}
}
if (!inf->numskins)
return NULL;
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
else
{
Con_DPrintf("Skin number out of range\n");
if (!inf->numskins)
return NULL;
}
if (!skins->texnums)
return NULL;
frame = cl.time*skins->skinspeed;
frame = frame%skins->texnums;
texnums = (galiastexnum_t*)((char *)skins + skins->ofstexnums + frame*sizeof(galiastexnum_t));
return texnums;
}
static int numFacing;
static qbyte *triangleFacing;
static void R_CalcFacing(mesh_t *mesh, vec3_t lightpos)
{
float *v1, *v2, *v3;
vec3_t d1, d2, norm;
int i;
index_t *indexes = mesh->indexes;
int numtris = mesh->numindexes/3;
if (numFacing < numtris)
{
if (triangleFacing)
BZ_Free(triangleFacing);
triangleFacing = BZ_Malloc(sizeof(*triangleFacing)*numtris);
numFacing = numtris;
}
for (i = 0; i < numtris; i++, indexes+=3)
{
v1 = (float *)(mesh->xyz_array + indexes[0]);
v2 = (float *)(mesh->xyz_array + indexes[1]);
v3 = (float *)(mesh->xyz_array + indexes[2]);
VectorSubtract(v1, v2, d1);
VectorSubtract(v3, v2, d2);
CrossProduct(d1, d2, norm);
triangleFacing[i] = (( lightpos[0] - v1[0] ) * norm[0] + ( lightpos[1] - v1[1] ) * norm[1] + ( lightpos[2] - v1[2] ) * norm[2]) > 0;
}
}
#define PROJECTION_DISTANCE 30000
static int numProjectedShadowVerts;
static vec3_t *ProjectedShadowVerts;
static void R_ProjectShadowVolume(mesh_t *mesh, vec3_t lightpos)
{
int numverts = mesh->numvertexes;
int i;
vec3_t *input = mesh->xyz_array;
vec3_t *projected;
if (numProjectedShadowVerts < numverts)
{
if (ProjectedShadowVerts)
BZ_Free(ProjectedShadowVerts);
ProjectedShadowVerts = BZ_Malloc(sizeof(*ProjectedShadowVerts)*numverts);
numProjectedShadowVerts = numverts;
}
projected = ProjectedShadowVerts;
for (i = 0; i < numverts; i++)
{
projected[i][0] = input[i][0] + (input[i][0]-lightpos[0])*PROJECTION_DISTANCE;
projected[i][1] = input[i][1] + (input[i][1]-lightpos[1])*PROJECTION_DISTANCE;
projected[i][2] = input[i][2] + (input[i][2]-lightpos[2])*PROJECTION_DISTANCE;
}
}
static void R_DrawShadowVolume(mesh_t *mesh)
{
int t;
vec3_t *proj = ProjectedShadowVerts;
vec3_t *verts = mesh->xyz_array;
index_t *indexes = mesh->indexes;
int *neighbours = mesh->trneighbors;
int numtris = mesh->numindexes/3;
qglBegin(GL_TRIANGLES);
for (t = 0; t < numtris; t++)
{
if (triangleFacing[t])
{
//draw front
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(verts[indexes[t*3+2]]);
//draw back
qglVertex3fv(proj[indexes[t*3+1]]);
qglVertex3fv(proj[indexes[t*3+0]]);
qglVertex3fv(proj[indexes[t*3+2]]);
//draw side caps
if (neighbours[t*3+0] < 0 || !triangleFacing[neighbours[t*3+0]])
{
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(proj [indexes[t*3+0]]);
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(proj [indexes[t*3+0]]);
qglVertex3fv(proj [indexes[t*3+1]]);
}
if (neighbours[t*3+1] < 0 || !triangleFacing[neighbours[t*3+1]])
{
qglVertex3fv(verts[indexes[t*3+2]]);
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(proj [indexes[t*3+1]]);
qglVertex3fv(verts[indexes[t*3+2]]);
qglVertex3fv(proj [indexes[t*3+1]]);
qglVertex3fv(proj [indexes[t*3+2]]);
}
if (neighbours[t*3+2] < 0 || !triangleFacing[neighbours[t*3+2]])
{
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(verts[indexes[t*3+2]]);
qglVertex3fv(proj [indexes[t*3+2]]);
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(proj [indexes[t*3+2]]);
qglVertex3fv(proj [indexes[t*3+0]]);
}
}
}
qglEnd();
}
void GL_DrawAliasMesh_Sketch (mesh_t *mesh)
{
int i;
extern int gldepthfunc;
#ifdef Q3SHADERS
R_UnlockArrays();
#endif
qglDepthFunc(gldepthfunc);
qglDepthMask(1);
if (gldepthmin == 0.5)
qglCullFace ( GL_BACK );
else
qglCullFace ( GL_FRONT );
GL_TexEnv(GL_MODULATE);
qglDisable(GL_TEXTURE_2D);
qglVertexPointer(3, GL_FLOAT, 0, mesh->xyz_array);
qglEnableClientState( GL_VERTEX_ARRAY );
if (mesh->normals_array && qglNormalPointer) //d3d wrapper doesn't support normals, and this is only really needed for truform
{
qglNormalPointer(GL_FLOAT, 0, mesh->normals_array);
qglEnableClientState( GL_NORMAL_ARRAY );
}
qglColor3f(1,1,1);
/* if (mesh->colors_array)
{
qglColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh->colors_array);
qglEnableClientState( GL_COLOR_ARRAY );
}
else
*/ qglDisableClientState( GL_COLOR_ARRAY );
qglDrawElements(GL_TRIANGLES, mesh->numindexes, GL_INDEX_TYPE, mesh->indexes);
qglDisableClientState( GL_VERTEX_ARRAY );
qglDisableClientState( GL_COLOR_ARRAY );
qglDisableClientState( GL_NORMAL_ARRAY );
if (mesh->colors_array)
qglColor4ub(0, 0, 0, mesh->colors_array[0][3]);
else
qglColor3f(0, 0, 0);
qglBegin(GL_LINES);
for (i = 0; i < mesh->numindexes; i+=3)
{
float *v1, *v2, *v3;
int n;
v1 = mesh->xyz_array[mesh->indexes[i+0]];
v2 = mesh->xyz_array[mesh->indexes[i+1]];
v3 = mesh->xyz_array[mesh->indexes[i+2]];
for (n = 0; n < 3; n++) //rember we do this triangle AND the neighbours
{
qglVertex3f(v1[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[2]+0.5*(rand()/(float)RAND_MAX-0.5));
qglVertex3f(v2[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[2]+0.5*(rand()/(float)RAND_MAX-0.5));
qglVertex3f(v2[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v2[2]+0.5*(rand()/(float)RAND_MAX-0.5));
qglVertex3f(v3[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[2]+0.5*(rand()/(float)RAND_MAX-0.5));
qglVertex3f(v3[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v3[2]+0.5*(rand()/(float)RAND_MAX-0.5));
qglVertex3f(v1[0]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[1]+0.5*(rand()/(float)RAND_MAX-0.5),
v1[2]+0.5*(rand()/(float)RAND_MAX-0.5));
}
}
qglEnd();
#ifdef Q3SHADERS
R_IBrokeTheArrays();
#endif
}
//called from sprite code.
/*
void GL_KnownState(void)
{
extern int gldepthfunc;
qglDepthFunc(gldepthfunc);
qglDepthMask(1);
if (gldepthmin == 0.5)
qglCullFace ( GL_BACK );
else
qglCullFace ( GL_FRONT );
GL_TexEnv(GL_MODULATE);
qglEnable (GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
*/
void GL_DrawAliasMesh (mesh_t *mesh, int texnum)
{
extern int gldepthfunc;
#ifdef Q3SHADERS
R_UnlockArrays();
#endif
qglDepthFunc(gldepthfunc);
qglDepthMask(1);
GL_Bind(texnum);
if (gldepthmin == 0.5)
qglCullFace ( GL_BACK );
else
qglCullFace ( GL_FRONT );
GL_TexEnv(GL_MODULATE);
qglVertexPointer(3, GL_FLOAT, 0, mesh->xyz_array);
qglEnableClientState( GL_VERTEX_ARRAY );
if (mesh->normals_array && qglNormalPointer) //d3d wrapper doesn't support normals, and this is only really needed for truform
{
qglNormalPointer(GL_FLOAT, 0, mesh->normals_array);
qglEnableClientState( GL_NORMAL_ARRAY );
}
if (mesh->colors_array)
{
qglColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh->colors_array);
qglEnableClientState( GL_COLOR_ARRAY );
}
else
qglDisableClientState( GL_COLOR_ARRAY );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer(2, GL_FLOAT, 0, mesh->st_array);
qglDrawRangeElements(GL_TRIANGLES, 0, mesh->numvertexes, mesh->numindexes, GL_INDEX_TYPE, mesh->indexes);
qglDisableClientState( GL_VERTEX_ARRAY );
qglDisableClientState( GL_COLOR_ARRAY );
qglDisableClientState( GL_NORMAL_ARRAY );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
#ifdef Q3SHADERS
R_IBrokeTheArrays();
#endif
}
#ifdef Q3SHADERS
mfog_t *CM_FogForOrigin(vec3_t org);
#endif
void R_DrawGAliasModel (entity_t *e)
{
extern cvar_t r_drawflat;
model_t *clmodel;
vec3_t dist;
vec_t add;
int i;
galiasinfo_t *inf;
mesh_t mesh;
galiastexnum_t *skin;
float entScale;
vec3_t lightdir;
vec3_t saveorg;
#ifdef Q3SHADERS
mfog_t *fog;
#endif
int surfnum;
float tmatrix[3][4];
qboolean needrecolour;
qboolean nolightdir;
currententity = e;
// if (e->flags & Q2RF_VIEWERMODEL && e->keynum == cl.playernum[r_refdef.currentplayernum]+1)
// return;
if (r_secondaryview && e->flags & Q2RF_WEAPONMODEL)
return;
{
extern int cl_playerindex;
if (e->scoreboard && e->model == cl.model_precache[cl_playerindex])
{
clmodel = e->scoreboard->model;
if (!clmodel || clmodel->type != mod_alias)
clmodel = e->model;
}
else
clmodel = e->model;
}
if (!(e->flags & Q2RF_WEAPONMODEL))
if (R_CullEntityBox (e, clmodel->mins, clmodel->maxs))
return;
if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL))
{
if (e->flags & Q2RF_WEAPONMODEL)
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, r_refdef.vieworg, shadelight, ambientlight, lightdir);
else
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, e->origin, shadelight, ambientlight, lightdir);
}
else
{
ambientlight[0] = ambientlight[1] = ambientlight[2] = shadelight[0] = shadelight[1] = shadelight[2] = 255;
lightdir[0] = 0;
lightdir[1] = 1;
lightdir[2] = 1;
}
if (!r_vertexdlights.value)
{
for (i=0 ; i<dlights_running ; i++)
{
if (cl_dlights[i].radius)
{
VectorSubtract (e->origin,
cl_dlights[i].origin,
dist);
add = cl_dlights[i].radius - Length(dist);
if (add > 0) {
add*=5;
ambientlight[0] += add * cl_dlights[i].color[0];
ambientlight[1] += add * cl_dlights[i].color[1];
ambientlight[2] += add * cl_dlights[i].color[2];
//ZOID models should be affected by dlights as well
shadelight[0] += add * cl_dlights[i].color[0];
shadelight[1] += add * cl_dlights[i].color[1];
shadelight[2] += add * cl_dlights[i].color[2];
}
}
}
}
else
{
}
for (i = 0; i < 3; i++) //clamp light so it doesn't get vulgar.
{
if (ambientlight[i] > 128)
ambientlight[i] = 128;
if (ambientlight[i] + shadelight[i] > 192)
shadelight[i] = 192 - ambientlight[i];
}
if (e->flags & Q2RF_WEAPONMODEL)
{
for (i = 0; i < 3; i++)
{
if (ambientlight[i] < 24)
ambientlight[i] = shadelight[i] = 24;
}
}
//MORE HUGE HACKS! WHEN WILL THEY CEASE!
// clamp lighting so it doesn't overbright as much
// ZOID: never allow players to go totally black
nolightdir = false;
if (clmodel->engineflags & MDLF_PLAYER)
{
float fb = r_fullbrightSkins.value;
if (fb > cls.allow_fbskins)
fb = cls.allow_fbskins;
if (fb < 0)
fb = 0;
if (fb)
{
extern cvar_t r_fb_models;
if (fb >= 1 && r_fb_models.value)
{
ambientlight[0] = ambientlight[1] = ambientlight[2] = 4096;
shadelight[0] = shadelight[1] = shadelight[2] = 4096;
nolightdir = true;
}
else
{
for (i = 0; i < 3; i++)
{
ambientlight[i] = max(ambientlight[i], 8 + fb * 120);
shadelight[i] = max(shadelight[i], 8 + fb * 120);
}
}
}
for (i = 0; i < 3; i++)
{
if (ambientlight[i] < 8)
ambientlight[i] = shadelight[i] = 8;
}
}
if (clmodel->engineflags & MDLF_FLAME)
{
shadelight[0] = shadelight[1] = shadelight[2] = 4096;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 4096;
nolightdir = true;
}
else
{
for (i = 0; i < 3; i++)
{
if (ambientlight[i] > 128)
ambientlight[i] = 128;
shadelight[i] /= 200.0/255;
ambientlight[i] /= 200.0/255;
}
}
if ((e->drawflags & MLS_MASKIN) == MLS_ABSLIGHT)
{
shadelight[0] = shadelight[1] = shadelight[2] = e->abslight;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 0;
}
if ((e->drawflags & MLS_MASKIN) == MLS_FULLBRIGHT || (e->flags & Q2RF_FULLBRIGHT))
{
shadelight[0] = shadelight[1] = shadelight[2] = 255;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 0;
nolightdir = true;
}
//#define SHOWLIGHTDIR
{ //lightdir is absolute, shadevector is relative
shadevector[0] = DotProduct(lightdir, e->axis[0]);
shadevector[1] = DotProduct(lightdir, e->axis[1]);
shadevector[2] = DotProduct(lightdir, e->axis[2]);
if (e->flags & Q2RF_WEAPONMODEL)
{
vec3_t temp;
temp[0] = DotProduct(shadevector, vpn);
temp[1] = DotProduct(shadevector, vright);
temp[2] = DotProduct(shadevector, vup);
VectorCopy(temp, shadevector);
}
VectorNormalize(shadevector);
VectorCopy(shadevector, mesh.lightaxis[2]);
VectorVectors(mesh.lightaxis[2], mesh.lightaxis[1], mesh.lightaxis[0]);
VectorInverse(mesh.lightaxis[1]);
}
if (e->flags & Q2RF_GLOW)
{
shadelight[0] += sin(cl.time)*0.25;
shadelight[1] += sin(cl.time)*0.25;
shadelight[2] += sin(cl.time)*0.25;
}
/*
VectorClear(ambientlight);
VectorClear(shadelight);
*/
/*
an = e->angles[1]/180*M_PI;
shadevector[0] = cos(-an);
shadevector[1] = sin(-an);
shadevector[2] = 1;
VectorNormalize (shadevector);
*/
GL_DisableMultitexture();
GL_TexEnv(GL_MODULATE);
if (gl_smoothmodels.value)
qglShadeModel (GL_SMOOTH);
if (gl_affinemodels.value)
qglHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
qglDisable (GL_ALPHA_TEST);
if (e->flags & Q2RF_DEPTHHACK)
qglDepthRange (gldepthmin, gldepthmin + 0.3*(gldepthmax-gldepthmin));
// glColor3f( 1,1,1);
if (e->flags & Q2RF_ADDATIVE)
{
qglEnable (GL_BLEND);
qglBlendFunc(GL_ONE, GL_ONE);
}
else if ((e->model->flags & EF_SPECIAL_TRANS)) //hexen2 flags.
{
qglEnable (GL_BLEND);
qglBlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);
// glColor3f( 1,1,1);
qglDisable( GL_CULL_FACE );
}
else if (e->drawflags & DRF_TRANSLUCENT)
{
qglEnable (GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
e->shaderRGBAf[3] = r_wateralpha.value;
}
else if ((e->model->flags & EF_TRANSPARENT))
{
qglEnable (GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else if ((e->model->flags & EF_HOLEY))
{
qglEnable (GL_ALPHA_TEST);
// qglEnable (GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else if (e->shaderRGBAf[3] < 1)
{
qglEnable(GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else
{
qglDisable(GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
// qglEnable (GL_ALPHA_TEST);
qglPushMatrix();
R_RotateForEntity(e);
if (e->scale != 1 && e->scale != 0) //hexen 2 stuff
{
vec3_t scale;
vec3_t scale_origin;
float xyfact, zfact;
scale[0] = (clmodel->maxs[0]-clmodel->mins[0])/255;
scale[1] = (clmodel->maxs[1]-clmodel->mins[1])/255;
scale[2] = (clmodel->maxs[2]-clmodel->mins[2])/255;
scale_origin[0] = clmodel->mins[0];
scale_origin[1] = clmodel->mins[1];
scale_origin[2] = clmodel->mins[2];
/* qglScalef( 1/scale[0],
1/scale[1],
1/scale[2]);
qglTranslatef ( -scale_origin[0],
-scale_origin[1],
-scale_origin[2]);
*/
if(e->scale != 0 && e->scale != 1)
{
entScale = (float)e->scale;
switch(e->drawflags&SCALE_TYPE_MASKIN)
{
default:
case SCALE_TYPE_UNIFORM:
tmatrix[0][0] = scale[0]*entScale;
tmatrix[1][1] = scale[1]*entScale;
tmatrix[2][2] = scale[2]*entScale;
xyfact = zfact = (entScale-1.0)*127.95;
break;
case SCALE_TYPE_XYONLY:
tmatrix[0][0] = scale[0]*entScale;
tmatrix[1][1] = scale[1]*entScale;
tmatrix[2][2] = scale[2];
xyfact = (entScale-1.0)*127.95;
zfact = 1.0;
break;
case SCALE_TYPE_ZONLY:
tmatrix[0][0] = scale[0];
tmatrix[1][1] = scale[1];
tmatrix[2][2] = scale[2]*entScale;
xyfact = 1.0;
zfact = (entScale-1.0)*127.95;
break;
}
switch(currententity->drawflags&SCALE_ORIGIN_MASKIN)
{
default:
case SCALE_ORIGIN_CENTER:
tmatrix[0][3] = scale_origin[0]-scale[0]*xyfact;
tmatrix[1][3] = scale_origin[1]-scale[1]*xyfact;
tmatrix[2][3] = scale_origin[2]-scale[2]*zfact;
break;
case SCALE_ORIGIN_BOTTOM:
tmatrix[0][3] = scale_origin[0]-scale[0]*xyfact;
tmatrix[1][3] = scale_origin[1]-scale[1]*xyfact;
tmatrix[2][3] = scale_origin[2];
break;
case SCALE_ORIGIN_TOP:
tmatrix[0][3] = scale_origin[0]-scale[0]*xyfact;
tmatrix[1][3] = scale_origin[1]-scale[1]*xyfact;
tmatrix[2][3] = scale_origin[2]-scale[2]*zfact*2.0;
break;
}
}
else
{
tmatrix[0][0] = scale[0];
tmatrix[1][1] = scale[1];
tmatrix[2][2] = scale[2];
tmatrix[0][3] = scale_origin[0];
tmatrix[1][3] = scale_origin[1];
tmatrix[2][3] = scale_origin[2];
}
/* if(clmodel->flags&EF_ROTATE)
{ // Floating motion
tmatrix[2][3] += sin(currententity->origin[0]
+currententity->origin[1]+(cl.time*3))*5.5;
}*/
qglTranslatef (tmatrix[0][3],tmatrix[1][3],tmatrix[2][3]);
qglScalef (tmatrix[0][0],tmatrix[1][1],tmatrix[2][2]);
qglScalef( 1/scale[0],
1/scale[1],
1/scale[2]);
qglTranslatef ( -scale_origin[0],
-scale_origin[1],
-scale_origin[2]);
}
inf = GLMod_Extradata (clmodel);
if (qglPNTrianglesfATI && gl_ati_truform.value)
qglEnable(GL_PN_TRIANGLES_ATI);
if (e->flags & Q2RF_WEAPONMODEL)
{
VectorCopy(currententity->origin, saveorg);
VectorCopy(r_refdef.vieworg, currententity->origin);
}
#if defined(Q3SHADERS) && defined(Q2BSPS)
fog = CM_FogForOrigin(currententity->origin);
#endif
qglColor4f(shadelight[0]/255, shadelight[1]/255, shadelight[2]/255, e->shaderRGBAf[3]);
memset(&mesh, 0, sizeof(mesh));
for(surfnum=0; inf; ((inf->nextsurf)?(inf = (galiasinfo_t*)((char *)inf + inf->nextsurf)):(inf=NULL)), surfnum++)
{
needrecolour = R_GAliasBuildMesh(&mesh, inf, e->frame, e->oldframe, e->lerpfrac, e->shaderRGBAf[3], e->frame1time, e->frame2time, nolightdir);
c_alias_polys += mesh.numindexes/3;
if (r_drawflat.value == 2)
{
if (needrecolour)
R_GAliasApplyLighting(&mesh, e->origin, e->angles, e->shaderRGBAf);
GL_DrawAliasMesh_Sketch(&mesh);
continue;
}
#ifdef Q3SHADERS
else if (currententity->forcedshader)
{
meshbuffer_t mb;
R_IBrokeTheArrays();
mb.entity = &r_worldentity;
mb.shader = currententity->forcedshader;
mb.fog = fog;
mb.mesh = &mesh;
mb.infokey = -1;//currententity->keynum;
mb.dlightbits = 0;
R_PushMesh(&mesh, mb.shader->features | MF_NONBATCHED | MF_COLORS);
R_RenderMeshBuffer ( &mb, false );
continue;
}
#endif
skin = GL_ChooseSkin(inf, clmodel->name, surfnum, e);
if (!skin || ((void*)skin->base == NULL
#ifdef Q3SHADERS
&& skin->shader == NULL
#endif
))
{
if (needrecolour)
R_GAliasApplyLighting(&mesh, e->origin, e->angles, e->shaderRGBAf);
GL_DrawAliasMesh_Sketch(&mesh);
}
#ifdef Q3SHADERS
else if (skin->shader)
{
meshbuffer_t mb;
int olddst = skin->shader->numpasses?skin->shader->passes[0].blenddst:0;
if (e->flags & Q2RF_ADDATIVE && skin->shader->numpasses)
{ //hack the shader into submition.
skin->shader->passes[0].blenddst = GL_ONE;
skin->shader->passes[0].flags &= ~SHADER_PASS_DEPTHWRITE;
}
mb.entity = &r_worldentity;
mb.shader = skin->shader;
mb.fog = fog;
mb.mesh = &mesh;
mb.infokey = -1;//currententity->keynum;
mb.dlightbits = 0;
R_IBrokeTheArrays();
R_PushMesh(&mesh, skin->shader->features | MF_NONBATCHED | MF_COLORS);
R_RenderMeshBuffer ( &mb, false );
if (e->flags & Q2RF_ADDATIVE && skin->shader->numpasses)
{ //hack the shader into submition.
skin->shader->passes[0].blenddst = olddst;
}
}
#endif
else
{
if (needrecolour)
R_GAliasApplyLighting(&mesh, e->origin, e->angles, e->shaderRGBAf);
qglEnable(GL_TEXTURE_2D);
// if (skin->bump)
// GL_DrawMeshBump(&mesh, skin->base, 0, skin->bump, 0);
// else
GL_DrawAliasMesh(&mesh, skin->base);
if (skin->fullbright && r_fb_models.value && cls.allow_luma)
{
mesh.colors_array = NULL;
qglEnable(GL_BLEND);
qglColor4f(e->shaderRGBAf[0], e->shaderRGBAf[1], e->shaderRGBAf[2], e->shaderRGBAf[3]*r_fb_models.value);
c_alias_polys += mesh.numindexes/3;
qglBlendFunc (GL_SRC_ALPHA, GL_ONE);
GL_DrawAliasMesh(&mesh, skin->fullbright);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
#ifdef Q3BSPS
if (fog)
{
meshbuffer_t mb;
shader_t dummyshader = {0};
R_IBrokeTheArrays();
mb.entity = currententity;
mb.shader = &dummyshader;
mb.fog = fog;
mb.mesh = &mesh;
mb.infokey = -1;//currententity->keynum;
mb.dlightbits = 0;
R_PushMesh(&mesh, mb.shader->features | MF_NONBATCHED | MF_COLORS);
R_RenderMeshBuffer ( &mb, false );
R_ClearArrays();
}
#endif
}
}
if (e->flags & Q2RF_WEAPONMODEL)
VectorCopy(saveorg, currententity->origin);
if (qglPNTrianglesfATI && gl_ati_truform.value)
qglDisable(GL_PN_TRIANGLES_ATI);
#ifdef SHOWLIGHTDIR //testing
qglDisable(GL_TEXTURE_2D);
qglBegin(GL_LINES);
qglColor3f(1,0,0);
qglVertex3f( 0,
0,
0);
qglVertex3f( 100*mesh.lightaxis[0][0],
100*mesh.lightaxis[0][1],
100*mesh.lightaxis[0][2]);
qglColor3f(0,1,0);
qglVertex3f( 0,
0,
0);
qglVertex3f( 100*mesh.lightaxis[1][0],
100*mesh.lightaxis[1][1],
100*mesh.lightaxis[1][2]);
qglColor3f(0,0,1);
qglVertex3f( 0,
0,
0);
qglVertex3f( 100*mesh.lightaxis[2][0],
100*mesh.lightaxis[2][1],
100*mesh.lightaxis[2][2]);
qglEnd();
qglEnable(GL_TEXTURE_2D);
#endif
qglPopMatrix();
qglDisable(GL_BLEND);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
GL_TexEnv(GL_REPLACE);
qglEnable(GL_TEXTURE_2D);
qglShadeModel (GL_FLAT);
if (gl_affinemodels.value)
qglHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
if (e->flags & Q2RF_DEPTHHACK)
qglDepthRange (gldepthmin, gldepthmax);
if ((currententity->model->flags & EF_SPECIAL_TRANS) && gl_cull.value)
qglEnable( GL_CULL_FACE );
if ((currententity->model->flags & EF_HOLEY))
qglDisable( GL_ALPHA_TEST );
#ifdef SHOWLIGHTDIR //testing
qglDisable(GL_TEXTURE_2D);
qglColor3f(1,1,1);
qglBegin(GL_LINES);
qglVertex3f( currententity->origin[0],
currententity->origin[1],
currententity->origin[2]);
qglVertex3f( currententity->origin[0]+100*lightdir[0],
currententity->origin[1]+100*lightdir[1],
currententity->origin[2]+100*lightdir[2]);
qglEnd();
qglEnable(GL_TEXTURE_2D);
#endif
}
//returns result in the form of the result vector
void RotateLightVector(vec3_t *axis, vec3_t origin, vec3_t lightpoint, vec3_t result)
{
vec3_t offs;
offs[0] = lightpoint[0] - origin[0];
offs[1] = lightpoint[1] - origin[1];
offs[2] = lightpoint[2] - origin[2];
result[0] = DotProduct (offs, axis[0]);
result[1] = DotProduct (offs, axis[1]);
result[2] = DotProduct (offs, axis[2]);
}
void GL_LightMesh (mesh_t *mesh, vec3_t lightpos, vec3_t colours, float radius)
{
vec3_t dir;
int i;
float dot, d, f, a;
vec3_t bcolours;
vec3_t *xyz = mesh->xyz_array;
vec3_t *normals = mesh->normals_array;
byte_vec4_t *out = mesh->colors_array;
bcolours[0] = colours[0]*255;
bcolours[1] = colours[1]*255;
bcolours[2] = colours[2]*255;
if (!out)
return; //urm..
if (normals)
{
for (i = 0; i < mesh->numvertexes; i++)
{
VectorSubtract(lightpos, xyz[i], dir);
dot = DotProduct(dir, normals[i]);
if (dot > 0)
{
d = DotProduct(dir, dir)/radius;
a = 1/d;
if (a>0)
{
a *= dot/sqrt(d);
f = a*bcolours[0];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
out[i][0] = f;
f = a*bcolours[1];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
out[i][1] = f;
f = a*bcolours[2];
if (f > 255)
f = 255;
else if (f < 0)
f = 0;
out[i][2] = f;
}
else
{
out[i][0] = 0;
out[i][1] = 0;
out[i][2] = 0;
}
}
else
{
out[i][0] = 0;
out[i][1] = 0;
out[i][2] = 0;
}
out[i][3] = 255;
}
}
else
{
if (bcolours[0] > 255)
bcolours[0] = 255;
if (bcolours[1] > 255)
bcolours[1] = 255;
if (bcolours[2] > 255)
bcolours[2] = 255;
for (i = 0; i < mesh->numvertexes; i++)
{
VectorSubtract(lightpos, xyz[i], dir);
out[i][0] = bcolours[0];
out[i][1] = bcolours[1];
out[i][2] = bcolours[2];
out[i][3] = 255;
}
}
}
//courtesy of DP
void R_BuildBumpVectors(const float *v0, const float *v1, const float *v2, const float *tc0, const float *tc1, const float *tc2, float *svector3f, float *tvector3f, float *normal3f)
{
float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2];
// 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles
// 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates
// 6 multiply, 9 subtract
VectorSubtract(v1, v0, v10);
VectorSubtract(v2, v0, v20);
normal3f[0] = v10[1] * v20[2] - v10[2] * v20[1];
normal3f[1] = v10[2] * v20[0] - v10[0] * v20[2];
normal3f[2] = v10[0] * v20[1] - v10[1] * v20[0];
// 12 multiply, 10 subtract
tc10[1] = tc1[1] - tc0[1];
tc20[1] = tc2[1] - tc0[1];
svector3f[0] = tc10[1] * v20[0] - tc20[1] * v10[0];
svector3f[1] = tc10[1] * v20[1] - tc20[1] * v10[1];
svector3f[2] = tc10[1] * v20[2] - tc20[1] * v10[2];
tc10[0] = tc1[0] - tc0[0];
tc20[0] = tc2[0] - tc0[0];
tvector3f[0] = tc10[0] * v20[0] - tc20[0] * v10[0];
tvector3f[1] = tc10[0] * v20[1] - tc20[0] * v10[1];
tvector3f[2] = tc10[0] * v20[2] - tc20[0] * v10[2];
// 12 multiply, 4 add, 6 subtract
f = DotProduct(svector3f, normal3f);
svector3f[0] -= f * normal3f[0];
svector3f[1] -= f * normal3f[1];
svector3f[2] -= f * normal3f[2];
f = DotProduct(tvector3f, normal3f);
tvector3f[0] -= f * normal3f[0];
tvector3f[1] -= f * normal3f[1];
tvector3f[2] -= f * normal3f[2];
// if texture is mapped the wrong way (counterclockwise), the tangents
// have to be flipped, this is detected by calculating a normal from the
// two tangents, and seeing if it is opposite the surface normal
// 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates
CrossProduct(tvector3f, svector3f, tangentcross);
if (DotProduct(tangentcross, normal3f) < 0)
{
VectorNegate(svector3f, svector3f);
VectorNegate(tvector3f, tvector3f);
}
}
//courtesy of DP
void R_AliasGenerateTextureVectors(mesh_t *mesh, float *normal3f, float *svector3f, float *tvector3f)
{
int i;
float sdir[3], tdir[3], normal[3], *v;
index_t *e;
float *vertex3f = (float*)mesh->xyz_array;
float *texcoord2f = (float*)mesh->st_array;
// clear the vectors
// if (svector3f)
memset(svector3f, 0, mesh->numvertexes * sizeof(float[3]));
// if (tvector3f)
memset(tvector3f, 0, mesh->numvertexes * sizeof(float[3]));
// if (normal3f)
memset(normal3f, 0, mesh->numvertexes * sizeof(float[3]));
// process each vertex of each triangle and accumulate the results
for (e = mesh->indexes; e < mesh->indexes+mesh->numindexes; e += 3)
{
R_BuildBumpVectors(vertex3f + e[0] * 3, vertex3f + e[1] * 3, vertex3f + e[2] * 3, texcoord2f + e[0] * 2, texcoord2f + e[1] * 2, texcoord2f + e[2] * 2, sdir, tdir, normal);
// if (!areaweighting)
// {
// VectorNormalize(sdir);
// VectorNormalize(tdir);
// VectorNormalize(normal);
// }
// if (svector3f)
for (i = 0;i < 3;i++)
VectorAdd(svector3f + e[i]*3, sdir, svector3f + e[i]*3);
// if (tvector3f)
for (i = 0;i < 3;i++)
VectorAdd(tvector3f + e[i]*3, tdir, tvector3f + e[i]*3);
// if (normal3f)
for (i = 0;i < 3;i++)
VectorAdd(normal3f + e[i]*3, normal, normal3f + e[i]*3);
}
// now we could divide the vectors by the number of averaged values on
// each vertex... but instead normalize them
// 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies
if (svector3f)
for (i = 0, v = svector3f;i < mesh->numvertexes;i++, v += 3)
VectorNormalize(v);
// 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies
if (tvector3f)
for (i = 0, v = tvector3f;i < mesh->numvertexes;i++, v += 3)
VectorNormalize(v);
// 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies
if (normal3f)
for (i = 0, v = normal3f;i < mesh->numvertexes;i++, v += 3)
VectorNormalize(v);
}
void R_AliasGenerateVertexLightDirs(mesh_t *mesh, vec3_t lightdir, vec3_t *results, vec3_t *normal3f, vec3_t *svector3f, vec3_t *tvector3f)
{
int i;
R_AliasGenerateTextureVectors(mesh, (float*)normal3f, (float*)svector3f, (float*)tvector3f);
for (i = 0; i < mesh->numvertexes; i++)
{
results[i][0] = -DotProduct(lightdir, tvector3f[i]);
results[i][1] = -DotProduct(lightdir, svector3f[i]);
results[i][2] = -DotProduct(lightdir, normal3f[i]);
}
}
void R_DrawMeshBumpmap(mesh_t *mesh, galiastexnum_t *skin, vec3_t lightdir)
{
extern int gldepthfunc;
static vec3_t *lightdirs;
static int maxlightdirs;
extern int normalisationCubeMap;
#ifdef Q3SHADERS
R_UnlockArrays();
#endif
//(bumpmap dot cubemap)*texture
//why no luma?
//that's thrown on last.
//why a cubemap?
//we need to pass colours as a normal somehow
//we could use the fragment colour for it, however, we then wouldn't be able to colour the light.
//so we use a cubemap, which has the added advantage of normalizing the light dir for us.
//the bumpmap we use is tangent-space (so I'm told)
qglDepthFunc(gldepthfunc);
qglDepthMask(0);
if (gldepthmin == 0.5)
qglCullFace ( GL_BACK );
else
qglCullFace ( GL_FRONT );
qglEnable(GL_BLEND);
qglVertexPointer(3, GL_FLOAT, 0, mesh->xyz_array);
qglEnableClientState( GL_VERTEX_ARRAY );
if (mesh->normals_array && qglNormalPointer) //d3d wrapper doesn't support normals, and this is only really needed for truform
{
qglNormalPointer(GL_FLOAT, 0, mesh->normals_array);
qglEnableClientState( GL_NORMAL_ARRAY );
}
if (mesh->colors_array)
{
qglColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh->colors_array);
qglEnableClientState( GL_COLOR_ARRAY );
}
else
qglDisableClientState( GL_COLOR_ARRAY );
if (maxlightdirs < mesh->numvertexes)
{
maxlightdirs = mesh->numvertexes;
lightdirs = BZ_Malloc(sizeof(vec3_t)*maxlightdirs*4);
}
R_AliasGenerateVertexLightDirs(mesh, lightdir,
lightdirs + maxlightdirs*0,
lightdirs + maxlightdirs*1,
lightdirs + maxlightdirs*2,
lightdirs + maxlightdirs*3);
GL_MBind(mtexid0, skin->bump);
GL_TexEnv(GL_REPLACE);
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
qglTexCoordPointer(2, GL_FLOAT, 0, mesh->st_array);
qglEnable(GL_TEXTURE_2D);
GL_SelectTexture(mtexid1);
GL_BindType(GL_TEXTURE_CUBE_MAP_ARB, normalisationCubeMap);
qglEnable(GL_TEXTURE_CUBE_MAP_ARB);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
GL_TexEnv(GL_COMBINE_ARB);
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
qglTexCoordPointer(3, GL_FLOAT, 0, lightdirs);
if (gl_mtexarbable>=3)
{
GL_MBind(mtexid0+2, skin->base);
qglEnable(GL_TEXTURE_2D);
}
else
{ //we don't support 3tmus, so draw the bumps, and multiply the rest over the top
qglDrawElements(GL_TRIANGLES, mesh->numindexes, GL_INDEX_TYPE, mesh->indexes);
qglDisable(GL_TEXTURE_CUBE_MAP_ARB);
GL_MBind(mtexid0, skin->base);
}
GL_TexEnv(GL_MODULATE);
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
qglTexCoordPointer(2, GL_FLOAT, 0, mesh->st_array);
qglDrawElements(GL_TRIANGLES, mesh->numindexes, GL_INDEX_TYPE, mesh->indexes);
// GL_SelectTexture(mtexid2);
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglDisable(GL_TEXTURE_2D);
GL_SelectTexture(mtexid1);
qglDisable(GL_TEXTURE_CUBE_MAP_ARB);
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
GL_TexEnv(GL_MODULATE);
GL_SelectTexture(mtexid0);
qglEnable(GL_TEXTURE_2D);
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglDisableClientState( GL_VERTEX_ARRAY );
qglDisableClientState( GL_COLOR_ARRAY );
qglDisableClientState( GL_NORMAL_ARRAY );
#ifdef Q3SHADERS
R_IBrokeTheArrays();
#endif
}
void R_DrawGAliasModelLighting (entity_t *e, vec3_t lightpos, vec3_t colours, float radius)
{
#if 0 //glitches, no attenuation... :(
model_t *clmodel = e->model;
vec3_t mins, maxs;
vec3_t lightdir;
galiasinfo_t *inf;
galiastexnum_t *tex;
mesh_t mesh;
int surfnum;
extern cvar_t r_nolightdir;
if (e->flags & Q2RF_VIEWERMODEL)
return;
if (r_nolightdir.value) //are you crazy?
return;
//Total insanity with r_shadows 2...
// if (!strcmp (clmodel->name, "progs/flame2.mdl"))
// CL_NewDlight (e, e->origin[0]-1, e->origin[1]+1, e->origin[2]+24, 200 + (rand()&31), host_frametime*2, 3);
// if (!strcmp (clmodel->name, "progs/armor.mdl"))
// CL_NewDlight (e->keynum, e->origin[0]-1, e->origin[1]+1, e->origin[2]+25, 200 + (rand()&31), host_frametime*2, 3);
VectorAdd (e->origin, clmodel->mins, mins);
VectorAdd (e->origin, clmodel->maxs, maxs);
// if (!(e->flags & Q2RF_WEAPONMODEL))
// if (R_CullBox (mins, maxs))
// return;
RotateLightVector(e->axis, e->origin, lightpos, lightdir);
GL_DisableMultitexture();
GL_TexEnv(GL_MODULATE);
if (gl_smoothmodels.value)
qglShadeModel (GL_SMOOTH);
if (gl_affinemodels.value)
qglHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
if (e->flags & Q2RF_DEPTHHACK)
qglDepthRange (gldepthmin, gldepthmin + 0.3*(gldepthmax-gldepthmin));
qglColor3f(colours[0], colours[1], colours[2]);
qglColor4f(1, 1, 1, 1);
qglPushMatrix();
R_RotateForEntity(e);
inf = GLMod_Extradata (clmodel);
if (gl_ati_truform.value)
qglEnable(GL_PN_TRIANGLES_ATI);
qglEnable(GL_TEXTURE_2D);
qglEnable(GL_POLYGON_OFFSET_FILL);
GL_TexEnv(GL_REPLACE);
// qglDisable(GL_STENCIL_TEST);
qglEnable(GL_BLEND);
qglDisable(GL_ALPHA_TEST); //if you used an alpha channel where you shouldn't have, more fool you.
qglBlendFunc(GL_ONE, GL_ONE);
// qglDepthFunc(GL_ALWAYS);
for(surfnum=0;inf;surfnum++)
{
R_GAliasBuildMesh(&mesh, inf, e->frame, e->oldframe, e->lerpfrac, e->alpha, e->frame1time, e->frame2time, false);
mesh.colors_array = tempColours;
tex = GL_ChooseSkin(inf, clmodel->name, surfnum, e);
if (tex->bump && e->alpha==1)
{
R_DrawMeshBumpmap(&mesh, tex, lightdir);
}
else
{
GL_LightMesh(&mesh, lightdir, colours, radius);
GL_DrawAliasMesh(&mesh, tex->base);
}
if (inf->nextsurf)
inf = (galiasinfo_t*)((char *)inf + inf->nextsurf);
else
inf = NULL;
}
currententity->fatness=0;
qglPopMatrix();
if (gl_ati_truform.value)
qglDisable(GL_PN_TRIANGLES_ATI);
GL_TexEnv(GL_REPLACE);
qglShadeModel (GL_FLAT);
if (gl_affinemodels.value)
qglHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
qglDisable(GL_POLYGON_OFFSET_FILL);
if (e->flags & Q2RF_DEPTHHACK)
qglDepthRange (gldepthmin, gldepthmax);
qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
qglDisable(GL_BLEND);
qglDisable(GL_TEXTURE_2D);
R_IBrokeTheArrays();
#endif
}
//FIXME: Be less agressive.
//This function will have to be called twice (for geforce cards), with the same data, so do the building once and rendering twice.
void R_DrawGAliasShadowVolume(entity_t *e, vec3_t lightpos, float radius)
{
model_t *clmodel = e->model;
galiasinfo_t *inf;
mesh_t mesh;
vec3_t lightorg;
if (clmodel->engineflags & (MDLF_FLAME | MDLF_BOLT))
return;
if (r_noaliasshadows.value)
return;
if (e->shaderRGBAf[3] < 0.5)
return;
RotateLightVector(e->axis, e->origin, lightpos, lightorg);
if (Length(lightorg) > radius + clmodel->radius)
return;
qglPushMatrix();
R_RotateForEntity(e);
inf = GLMod_Extradata (clmodel);
while(inf)
{
if (inf->ofs_trineighbours)
{
R_GAliasBuildMesh(&mesh, inf, e->frame, e->oldframe, e->lerpfrac, 1, e->frame1time, e->frame2time, true);
R_CalcFacing(&mesh, lightorg);
R_ProjectShadowVolume(&mesh, lightorg);
R_DrawShadowVolume(&mesh);
}
if (inf->nextsurf)
inf = (galiasinfo_t*)((char *)inf + inf->nextsurf);
else
inf = NULL;
}
qglPopMatrix();
}
#if 0
static int R_FindTriangleWithEdge ( index_t *indexes, int numtris, index_t start, index_t end, int ignore)
{
int i;
int match, count;
count = 0;
match = -1;
for (i = 0; i < numtris; i++, indexes += 3)
{
if ( (indexes[0] == start && indexes[1] == end)
|| (indexes[1] == start && indexes[2] == end)
|| (indexes[2] == start && indexes[0] == end) ) {
if (i != ignore)
match = i;
count++;
} else if ( (indexes[1] == start && indexes[0] == end)
|| (indexes[2] == start && indexes[1] == end)
|| (indexes[0] == start && indexes[2] == end) ) {
count++;
}
}
// detect edges shared by three triangles and make them seams
if (count > 2)
match = -1;
return match;
}
#endif
#if 0
static void R_BuildTriangleNeighbours ( int *neighbours, index_t *indexes, int numtris )
{
int i, *n;
index_t *index;
for (i = 0, index = indexes, n = neighbours; i < numtris; i++, index += 3, n += 3)
{
n[0] = R_FindTriangleWithEdge (indexes, numtris, index[1], index[0], i);
n[1] = R_FindTriangleWithEdge (indexes, numtris, index[2], index[1], i);
n[2] = R_FindTriangleWithEdge (indexes, numtris, index[0], index[2], i);
}
}
#endif
void GL_GenerateNormals(float *orgs, float *normals, int *indicies, int numtris, int numverts)
{
vec3_t d1, d2;
vec3_t norm;
int t, i, v1, v2, v3;
int tricounts[MD2MAX_VERTS];
vec3_t combined[MD2MAX_VERTS];
int triremap[MD2MAX_VERTS];
if (numverts > MD2MAX_VERTS)
return; //not an issue, you just loose the normals.
memset(triremap, 0, numverts*sizeof(triremap[0]));
v2=0;
for (i = 0; i < numverts; i++) //weld points
{
for (v1 = 0; v1 < v2; v1++)
{
if (orgs[i*3+0] == combined[v1][0] &&
orgs[i*3+1] == combined[v1][1] &&
orgs[i*3+2] == combined[v1][2])
{
triremap[i] = v1;
break;
}
}
if (v1 == v2)
{
combined[v1][0] = orgs[i*3+0];
combined[v1][1] = orgs[i*3+1];
combined[v1][2] = orgs[i*3+2];
v2++;
triremap[i] = v1;
}
}
memset(tricounts, 0, v2*sizeof(tricounts[0]));
memset(combined, 0, v2*sizeof(*combined));
for (t = 0; t < numtris; t++)
{
v1 = triremap[indicies[t*3]];
v2 = triremap[indicies[t*3+1]];
v3 = triremap[indicies[t*3+2]];
VectorSubtract((orgs+v2*3), (orgs+v1*3), d1);
VectorSubtract((orgs+v3*3), (orgs+v1*3), d2);
CrossProduct(d1, d2, norm);
VectorNormalize(norm);
VectorAdd(norm, combined[v1], combined[v1]);
VectorAdd(norm, combined[v2], combined[v2]);
VectorAdd(norm, combined[v3], combined[v3]);
tricounts[v1]++;
tricounts[v2]++;
tricounts[v3]++;
}
for (i = 0; i < numverts; i++)
{
if (tricounts[triremap[i]])
{
VectorScale(combined[triremap[i]], 1.0f/tricounts[triremap[i]], normals+i*3);
}
}
}
#endif
#endif // defined(RGLQUAKE) || defined(SERVERONLY)