1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_rlight.c
Spoike 09ec3bf6ea added explicit 'blend rtsmoke' particles that are intended to lit by rtlights without needing to override shaders.
addtrisoup_simple now supports line lists too.
fix a memory leak in the sound code.
fix chunked http download corruption in certain cases.
reworked the networking associated with entity editing. now carries ids instead of indexes (qc isn't aware of them).
'map blarg.map' will now auto-create a dummy map if it does not already exist. this should make it easier to get started with map editing.
fix some issues with banning yourself - loopback can now mute etc themselves, but not ban themselves.
downloads/updates menu now handles plugin detection. user-installed plugins will result in a prompt allowing the user to enable/disable/delete them. This makes using plugins more explicit.
revamped help menu to remove m_state
fix silly ode copypasta bug, added preliminary bullet code in case anyone is interested.

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5090 fc73d0e0-1445-4013-8a0c-d673dee63da5
2017-04-18 11:12:17 +00:00

1842 lines
46 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_light.c
#include "quakedef.h"
#ifndef SERVERONLY
#include "glquake.h"
#include "shader.h"
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
extern cvar_t r_hdr_irisadaptation, r_hdr_irisadaptation_multiplier, r_hdr_irisadaptation_minvalue, r_hdr_irisadaptation_maxvalue, r_hdr_irisadaptation_fade_down, r_hdr_irisadaptation_fade_up;
int r_dlightframecount;
int d_lightstylevalue[256]; // 8.8 fraction of base light value
void R_UpdateLightStyle(unsigned int style, const char *stylestring, float r, float g, float b)
{
if (style >= MAX_LIGHTSTYLES)
return;
if (!stylestring)
stylestring = "";
Q_strncpyz (cl_lightstyle[style].map, stylestring, sizeof(cl_lightstyle[style].map));
cl_lightstyle[style].length = Q_strlen(cl_lightstyle[style].map);
if (!cl_lightstyle[style].length)
{
d_lightstylevalue[style] = 256;
VectorSet(cl_lightstyle[style].colours, 1,1,1);
}
else
VectorSet(cl_lightstyle[style].colours, r,g,b);
cl_lightstyle[style].colourkey = (int)(cl_lightstyle[style].colours[0]*0x400) ^ (int)(cl_lightstyle[style].colours[1]*0x100000) ^ (int)(cl_lightstyle[style].colours[2]*0x40000000);
}
void Sh_CalcPointLight(vec3_t point, vec3_t light);
void R_UpdateHDR(vec3_t org)
{
if (r_hdr_irisadaptation.ival && cl.worldmodel && !(r_refdef.flags & RDF_NOWORLDMODEL))
{
//fake and lame, but whatever.
vec3_t ambient, diffuse, dir;
float lev = 0;
#ifdef RTLIGHTS
Sh_CalcPointLight(org, ambient);
lev += VectorLength(ambient);
if (!r_shadow_realtime_world.ival || r_shadow_realtime_world_lightmaps.value)
#endif
{
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, org, ambient, diffuse, dir);
lev += (VectorLength(ambient) + VectorLength(diffuse))/256;
}
lev += 0.001; //no division by 0!
lev = r_hdr_irisadaptation_multiplier.value / lev;
lev = bound(r_hdr_irisadaptation_minvalue.value, lev, r_hdr_irisadaptation_maxvalue.value);
if (lev > r_refdef.playerview->hdr_last + r_hdr_irisadaptation_fade_up.value*host_frametime)
lev = r_refdef.playerview->hdr_last + r_hdr_irisadaptation_fade_up.value*host_frametime;
else if (lev < r_refdef.playerview->hdr_last - r_hdr_irisadaptation_fade_down.value*host_frametime)
lev = r_refdef.playerview->hdr_last - r_hdr_irisadaptation_fade_down.value*host_frametime;
lev = bound(r_hdr_irisadaptation_minvalue.value, lev, r_hdr_irisadaptation_maxvalue.value);
r_refdef.playerview->hdr_last = lev;
r_refdef.hdr_value = lev;
}
else
r_refdef.hdr_value = 1;
}
/*
==================
R_AnimateLight
==================
*/
void R_AnimateLight (void)
{
int i,j;
float f;
//if (r_lightstylescale.value > 2)
//r_lightstylescale.value = 2;
//
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
f = (cl.time*r_lightstylespeed.value);
if (f < 0)
f = 0;
i = (int)f;
f -= i; //this can require updates at 1000 times a second.. Depends on your framerate of course
for (j=0 ; j<MAX_LIGHTSTYLES ; j++)
{
int v1, v2, vd;
if (!cl_lightstyle[j].length)
{
d_lightstylevalue[j] = ('m'-'a')*22 * r_lightstylescale.value;
continue;
}
if (cl_lightstyle[j].map[0] == '=')
{
d_lightstylevalue[j] = atof(cl_lightstyle[j].map+1)*256*r_lightstylescale.value;
continue;
}
v1 = i % cl_lightstyle[j].length;
v1 = cl_lightstyle[j].map[v1] - 'a';
v2 = (i+1) % cl_lightstyle[j].length;
v2 = cl_lightstyle[j].map[v2] - 'a';
vd = v1 - v2;
if (!r_lightstylesmooth.ival || vd < -r_lightstylesmooth_limit.ival || vd > r_lightstylesmooth_limit.ival)
d_lightstylevalue[j] = v1*22*r_lightstylescale.value;
else
d_lightstylevalue[j] = (v1*(1-f) + v2*(f))*22*r_lightstylescale.value;
}
}
/*
=============================================================================
DYNAMIC LIGHTS BLEND RENDERING
=============================================================================
*/
void AddLightBlend (float r, float g, float b, float a2)
{
float a;
float *sw_blend = r_refdef.playerview->screentint;
r = bound(0, r, 1);
g = bound(0, g, 1);
b = bound(0, b, 1);
sw_blend[3] = a = sw_blend[3] + a2*(1-sw_blend[3]);
a2 = a2/a;
sw_blend[0] = sw_blend[0]*(1-a2) + r*a2;
sw_blend[1] = sw_blend[1]*(1-a2) + g*a2;
sw_blend[2] = sw_blend[2]*(1-a2) + b*a2;
//Con_Printf("AddLightBlend(): %4.2f %4.2f %4.2f %4.6f\n", v_blend[0], v_blend[1], v_blend[2], v_blend[3]);
}
#define FLASHBLEND_VERTS 16
static float bubble_sintable[FLASHBLEND_VERTS+1], bubble_costable[FLASHBLEND_VERTS+1];
static void R_InitBubble(void)
{
float a;
int i;
float *bub_sin, *bub_cos;
bub_sin = bubble_sintable;
bub_cos = bubble_costable;
for (i=FLASHBLEND_VERTS ; i>=0 ; i--)
{
a = i/(float)FLASHBLEND_VERTS * M_PI*2;
*bub_sin++ = sin(a);
*bub_cos++ = cos(a);
}
}
avec4_t flashblend_colours[FLASHBLEND_VERTS+1];
vecV_t flashblend_vcoords[FLASHBLEND_VERTS+1];
vec2_t flashblend_tccoords[FLASHBLEND_VERTS+1];
index_t flashblend_indexes[FLASHBLEND_VERTS*3];
index_t flashblend_fsindexes[6] = {0, 1, 2, 0, 2, 3};
mesh_t flashblend_mesh;
mesh_t flashblend_fsmesh;
shader_t *occluded_shader;
shader_t *flashblend_shader;
shader_t *lpplight_shader[LSHADER_MODES];
void R_GenerateFlashblendTexture(void)
{
float dx, dy;
int x, y, a;
unsigned char pixels[32][32][4];
for (y = 0;y < 32;y++)
{
dy = (y - 15.5f) * (1.0f / 16.0f);
for (x = 0;x < 32;x++)
{
dx = (x - 15.5f) * (1.0f / 16.0f);
a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
a = bound(0, a, 255);
pixels[y][x][0] = a;
pixels[y][x][1] = a;
pixels[y][x][2] = a;
pixels[y][x][3] = 255;
}
}
R_LoadReplacementTexture("***flashblend***", NULL, 0, pixels, 32, 32, TF_RGBA32);
}
void R_InitFlashblends(void)
{
int i;
R_InitBubble();
for (i = 0; i < FLASHBLEND_VERTS; i++)
{
flashblend_indexes[i*3+0] = 0;
if (i+1 == FLASHBLEND_VERTS)
flashblend_indexes[i*3+1] = 1;
else
flashblend_indexes[i*3+1] = i+2;
flashblend_indexes[i*3+2] = i+1;
flashblend_tccoords[i+1][0] = 0.5 + bubble_sintable[i]*0.5;
flashblend_tccoords[i+1][1] = 0.5 + bubble_costable[i]*0.5;
}
flashblend_tccoords[0][0] = 0.5;
flashblend_tccoords[0][1] = 0.5;
flashblend_mesh.numvertexes = FLASHBLEND_VERTS+1;
flashblend_mesh.xyz_array = flashblend_vcoords;
flashblend_mesh.st_array = flashblend_tccoords;
flashblend_mesh.colors4f_array[0] = flashblend_colours;
flashblend_mesh.indexes = flashblend_indexes;
flashblend_mesh.numindexes = FLASHBLEND_VERTS*3;
flashblend_mesh.istrifan = true;
flashblend_fsmesh.numvertexes = 4;
flashblend_fsmesh.xyz_array = flashblend_vcoords;
flashblend_fsmesh.st_array = flashblend_tccoords;
flashblend_fsmesh.colors4f_array[0] = flashblend_colours;
flashblend_fsmesh.indexes = flashblend_fsindexes;
flashblend_fsmesh.numindexes = 6;
flashblend_fsmesh.istrifan = true;
R_GenerateFlashblendTexture();
flashblend_shader = R_RegisterShader("flashblend", SUF_NONE,
"{\n"
"program defaultadditivesprite\n"
"{\n"
"map ***flashblend***\n"
"blendfunc gl_one gl_one\n"
"rgbgen vertex\n"
"alphagen vertex\n"
"nodepth\n"
"}\n"
"}\n"
);
occluded_shader = R_RegisterShader("flashblend_occlusiontest", SUF_NONE,
"{\n"
"program defaultadditivesprite\n"
"{\n"
"maskcolor\n"
"maskalpha\n"
"}\n"
"}\n"
);
memset(lpplight_shader, 0, sizeof(lpplight_shader));
}
static qboolean R_BuildDlightMesh(dlight_t *light, float colscale, float radscale, int dtype)
{
int i, j;
// float a;
vec3_t v;
float rad;
float *bub_sin, *bub_cos;
vec3_t colour;
bub_sin = bubble_sintable;
bub_cos = bubble_costable;
rad = light->radius * radscale;
VectorCopy(light->color, colour);
if (light->fov)
{
float a = -DotProduct(light->axis[0], vpn);
colour[0] *= a;
colour[1] *= a;
colour[2] *= a;
rad *= a;
rad *= 0.33;
}
if (light->style)
{
colscale *= d_lightstylevalue[light->style-1]/255.0f;
}
VectorSubtract (light->origin, r_origin, v);
if (dtype != 1 && Length (v) < rad + r_refdef.mindist*2)
{ // view is inside the dlight
return false;
}
flashblend_colours[0][0] = colour[0]*colscale;
flashblend_colours[0][1] = colour[1]*colscale;
flashblend_colours[0][2] = colour[2]*colscale;
flashblend_colours[0][3] = 1;
VectorCopy(light->origin, flashblend_vcoords[0]);
for (i=FLASHBLEND_VERTS ; i>0 ; i--)
{
for (j=0 ; j<3 ; j++)
flashblend_vcoords[i][j] = light->origin[j] + (vright[j]*(*bub_cos) +
+ vup[j]*(*bub_sin)) * rad;
bub_sin++;
bub_cos++;
}
if (dtype == 0)
{
//flashblend 3d-ish
VectorMA(flashblend_vcoords[0], -rad/1.5, vpn, flashblend_vcoords[0]);
}
else if (dtype != 1)
{
//prepass lights needs to be fully infront of the light. the glsl is a fullscreen-style effect, but we can benefit from early-z and scissoring
vec3_t diff;
VectorSubtract(r_origin, light->origin, diff);
VectorNormalize(diff);
for (i=0 ; i<=FLASHBLEND_VERTS ; i++)
VectorMA(flashblend_vcoords[i], rad, diff, flashblend_vcoords[i]);
}
return true;
}
/*
=============
R_RenderDlights
=============
*/
void R_RenderDlights (void)
{
int i;
dlight_t *l;
vec3_t waste1, waste2;
unsigned int beflags = 0;
float intensity, cscale;
qboolean coronastyle;
qboolean flashstyle;
float dist;
if (!r_coronas.value && !r_flashblend.value)
return;
// r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
l = cl_dlights+rtlights_first;
for (i=rtlights_first; i<rtlights_max; i++, l++)
{
if (!l->radius)
continue;
if (l->corona <= 0)
continue;
//dlights emitting from the local player are not visible as flashblends
if (l->key == r_refdef.playerview->viewentity)
continue; //was a glow
if (l->key == -(r_refdef.playerview->viewentity))
continue; //was a muzzleflash
coronastyle = (l->flags & (LFLAG_NORMALMODE|LFLAG_REALTIMEMODE)) && r_coronas.value;
flashstyle = ((l->flags & LFLAG_FLASHBLEND) && r_flashblend.value);
if (!coronastyle && !flashstyle)
continue;
if (coronastyle && flashstyle)
flashstyle = false;
cscale = l->coronascale;
intensity = l->corona;// * 0.25;
if (coronastyle)
intensity *= r_coronas.value;
else
intensity *= r_flashblend.value;
if (intensity <= 0 || cscale <= 0)
continue;
//prevent the corona from intersecting with the near clip plane by just fading it away if its too close
VectorSubtract(l->origin, r_refdef.vieworg, waste1);
dist = VectorLength(waste1);
if (dist < r_coronas_mindist.value+r_coronas_fadedist.value)
{
if (dist <= r_coronas_mindist.value)
continue;
intensity *= (dist-r_coronas_mindist.value) / r_coronas_fadedist.value;
}
/*coronas use depth testing to compute visibility*/
if (coronastyle)
{
int method;
if (!*r_coronas_occlusion.string)
method = 4; //default to using hardware queries where possible.
else
method = r_coronas_occlusion.ival;
switch(method)
{
case 2:
if (TraceLineR(r_refdef.vieworg, l->origin, waste1, waste2))
continue;
break;
case 0:
break;
case 3:
#ifdef GLQUAKE
if (qrenderer == QR_OPENGL)
{
float depth;
vec3_t out;
float v[4], tempv[4];
float mvp[16];
v[0] = l->origin[0];
v[1] = l->origin[1];
v[2] = l->origin[2];
v[3] = 1;
Matrix4_Multiply(r_refdef.m_projection, r_refdef.m_view, mvp);
Matrix4x4_CM_Transform4(mvp, v, tempv);
tempv[0] /= tempv[3];
tempv[1] /= tempv[3];
tempv[2] /= tempv[3];
out[0] = (1+tempv[0])/2;
out[1] = (1+tempv[1])/2;
out[2] = (1+tempv[2])/2;
out[0] = out[0]*r_refdef.pxrect.width + r_refdef.pxrect.x;
out[1] = out[1]*r_refdef.pxrect.height + r_refdef.pxrect.y;
if (tempv[3] < 0)
out[2] *= -1;
if (out[2] < 0)
continue;
//FIXME: in terms of performance, mixing reads+draws is BAD BAD BAD. SERIOUSLY BAD
//it would be an improvement to calculate all of these at once.
qglReadPixels(out[0], out[1], 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth);
if (depth < out[2])
continue;
break;
}
#endif
//other renderers fall through
case 4:
#ifdef GLQUAKE
if (qrenderer == QR_OPENGL && qglGenQueriesARB)
{
GLuint res;
qboolean requery = true;
if (r_refdef.recurse)
requery = false;
else if (l->coronaocclusionquery)
{
qglGetQueryObjectuivARB(l->coronaocclusionquery, GL_QUERY_RESULT_AVAILABLE_ARB, &res);
if (res)
qglGetQueryObjectuivARB(l->coronaocclusionquery, GL_QUERY_RESULT_ARB, &l->coronaocclusionresult);
else if (!l->coronaocclusionresult)
continue; //query still running, nor currently visible.
else
requery = false;
}
else
{
qglGenQueriesARB(1, &l->coronaocclusionquery);
}
if (requery)
{
qglBeginQueryARB(GL_SAMPLES_PASSED_ARB, l->coronaocclusionquery);
R_BuildDlightMesh (l, intensity*10, cscale*.1, coronastyle);
BE_DrawMesh_Single(occluded_shader, &flashblend_mesh, NULL, beflags);
qglEndQueryARB(GL_SAMPLES_PASSED_ARB);
}
if (!l->coronaocclusionresult)
continue;
break;
}
#endif
//other renderers fall through
default:
case 1:
if (CL_TraceLine(r_refdef.vieworg, l->origin, waste1, NULL, NULL) < 1)
continue;
break;
}
}
if (!R_BuildDlightMesh (l, intensity, cscale, coronastyle) && !coronastyle)
AddLightBlend (l->color[0], l->color[1], l->color[2], l->radius * 0.0003);
else
BE_DrawMesh_Single(flashblend_shader, &flashblend_mesh, NULL, (coronastyle?BEF_FORCENODEPTH|BEF_FORCEADDITIVE:0)|beflags);
}
}
qboolean Sh_GenerateShadowMap(dlight_t *l);
void R_GenDlightMesh(struct batch_s *batch)
{
static mesh_t *meshptr;
dlight_t *l = cl_dlights + batch->surf_first;
int lightflags = batch->surf_count;
BE_SelectDLight(l, l->color, l->axis, lightflags);
#ifdef RTLIGHTS
if (lightflags & LSHADER_SMAP)
{
if (!Sh_GenerateShadowMap(l))
{
batch->meshes = 0;
return;
}
BE_SelectEntity(&r_worldentity);
BE_SelectMode(BEM_STANDARD);
}
#endif
if (!R_BuildDlightMesh (l, 2, 1, 2))
{
int i;
static vec2_t s[4] = {{1, -1}, {-1, -1}, {-1, 1}, {1, 1}};
for (i = 0; i < 4; i++)
{
VectorMA(r_origin, 32, vpn, flashblend_vcoords[i]);
VectorMA(flashblend_vcoords[i], s[i][0]*320, vright, flashblend_vcoords[i]);
VectorMA(flashblend_vcoords[i], s[i][1]*320, vup, flashblend_vcoords[i]);
}
meshptr = &flashblend_fsmesh;
}
else
{
meshptr = &flashblend_mesh;
}
batch->mesh = &meshptr;
}
void R_GenDlightBatches(batch_t *batches[])
{
int i, j, sort;
dlight_t *l;
batch_t *b;
int lmode;
if (!r_lightprepass)
return;
if (!lpplight_shader[0])
{
lpplight_shader[0] = R_RegisterShader("lpp_light", SUF_NONE,
"{\n"
"program lpp_light\n"
"{\n"
"map $sourcecolour\n"
"blendfunc gl_one gl_one\n"
"nodepthtest\n"
"}\n"
"surfaceparm nodlight\n"
"lpp_light\n"
"}\n"
);
#ifdef RTLIGHTS
lpplight_shader[LSHADER_SMAP] = R_RegisterShader("lpp_light#PCF", SUF_NONE,
"{\n"
"program lpp_light\n"
"{\n"
"map $sourcecolour\n"
"blendfunc gl_one gl_one\n"
"nodepthtest\n"
"}\n"
"surfaceparm nodlight\n"
"lpp_light\n"
"}\n"
);
#endif
}
l = cl_dlights+rtlights_first;
for (i=rtlights_first; i<rtlights_max; i++, l++)
{
if (!l->radius)
continue;
if (R_CullSphere(l->origin, l->radius))
continue;
lmode = 0;
#ifdef RTLIGHTS
if (!(((i >= RTL_FIRST)?!r_shadow_realtime_world_shadows.ival:!r_shadow_realtime_dlight_shadows.ival) || l->flags & LFLAG_NOSHADOWS))
lmode |= LSHADER_SMAP;
#endif
// if (TEXLOADED(l->cubetexture))
// lmode |= LSHADER_CUBE;
b = BE_GetTempBatch();
if (!b)
return;
b->flags = 0;
b->shader = lpplight_shader[lmode];
sort = b->shader->sort;
b->buildmeshes = R_GenDlightMesh;
b->ent = &r_worldentity;
b->mesh = NULL;
b->firstmesh = 0;
b->meshes = 1;
b->skin = NULL;
b->texture = NULL;
for (j = 0; j < MAXRLIGHTMAPS; j++)
b->lightmap[j] = -1;
b->surf_first = i;
b->surf_count = lmode;
b->flags |= BEF_NOSHADOWS;
b->vbo = NULL;
b->next = batches[sort];
batches[sort] = b;
}
}
/*
=============================================================================
DYNAMIC LIGHTS
=============================================================================
*/
/*
=============
R_PushDlights
=============
*/
void R_PushDlights (void)
{
int i;
dlight_t *l;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
#ifdef RTLIGHTS
/*if we're doing full rtlighting only, then don't bother calculating old-style dlights as they won't be visible anyway*/
if (r_shadow_realtime_world.ival && r_shadow_realtime_world_lightmaps.value < 0.1)
return;
#endif
if (r_dynamic.ival <= 0|| !cl.worldmodel)
return;
if (!cl.worldmodel->nodes)
return;
currentmodel = cl.worldmodel;
if (!currentmodel->funcs.MarkLights)
return;
l = cl_dlights+rtlights_first;
for (i=rtlights_first ; i <= DL_LAST ; i++, l++)
{
if (!l->radius || !(l->flags & LFLAG_LIGHTMAP))
continue;
currentmodel->funcs.MarkLights( l, 1<<i, currentmodel->nodes );
}
}
/////////////////////////////////////////////////////////////
//rtlight loading
#ifdef RTLIGHTS
qboolean R_ImportRTLights(const char *entlump)
{
typedef enum lighttype_e {LIGHTTYPE_MINUSX, LIGHTTYPE_RECIPX, LIGHTTYPE_RECIPXX, LIGHTTYPE_NONE, LIGHTTYPE_SUN, LIGHTTYPE_MINUSXX} lighttype_t;
/*I'm using the DP code so I know I'll get the DP results*/
int entnum, style, islight, skin, pflags, n;
lighttype_t type;
float origin[3], angles[3], radius, color[3], light[4], fadescale, lightscale, originhack[3], overridecolor[3], colourscales[3], vec[4];
char key[256], value[8192];
int nest;
qboolean okay = false;
//a quick note about tenebrae:
//by default, tenebrae's rtlights come from the server via static entities, which is all fancy and posh and actually fairly nice... if all servers actually did it.
//(the tenebrae gamecode uses spawnflag 2048 for static lights. note the pflags_fulldynamic fte/dp vs tenebrae difference)
//failing that, it will insert lights with some crappy fixed radius around only all 'classname light' entities, without any colours or anything, vanilla only.
//such lights are ONLY created if they're not near some other existing light (like a static entity one).
//this can result in FTE having noticably more and bigger lights than tenebrae. shadowmapping doesn't help performance either.
float lightmaplevel = -1;
COM_Parse(entlump);
if (!strcmp(com_token, "Version"))
{
entlump = COM_Parse(entlump);
entlump = COM_Parse(entlump);
}
for (entnum = 0; ;entnum++)
{
entlump = COM_Parse(entlump);
if (com_token[0] != '{')
break;
type = LIGHTTYPE_MINUSX;
origin[0] = origin[1] = origin[2] = 0;
originhack[0] = originhack[1] = originhack[2] = 0;
angles[0] = angles[1] = angles[2] = 0;
color[0] = color[1] = color[2] = 1;
light[0] = light[1] = light[2] = 1;light[3] = 300;
overridecolor[0] = overridecolor[1] = overridecolor[2] = 1;
fadescale = 1;
lightscale = 1;
style = 0;
skin = 0;
pflags = 0;
VectorSet(colourscales, r_editlights_import_ambient.value, r_editlights_import_diffuse.value, r_editlights_import_specular.value);
//effects = 0;
islight = false;
nest = 1;
while (1)
{
entlump = COM_Parse(entlump);
if (!entlump)
break; // error
if (com_token[0] == '{')
{
nest++;
continue;
}
if (com_token[0] == '}')
{
nest--;
if (!nest)
break; // end of entity
continue;
}
if (nest!=1)
continue;
if (com_token[0] == '_')
Q_strncpyz(key, com_token + 1, sizeof(key));
else
Q_strncpyz(key, com_token, sizeof(key));
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
entlump = COM_Parse(entlump);
if (!entlump)
break; // error
Q_strncpyz(value, com_token, sizeof(value));
// now that we have the key pair worked out...
if (!strcmp("light", key))
{
n = sscanf(value, "%f %f %f %f", &vec[0], &vec[1], &vec[2], &vec[3]);
if (n == 1)
{
// quake
light[0] = vec[0] * (1.0f / 256.0f);
light[1] = vec[0] * (1.0f / 256.0f);
light[2] = vec[0] * (1.0f / 256.0f);
light[3] = vec[0];
}
else if (n == 4)
{
// halflife
light[0] = vec[0] * (1.0f / 255.0f);
light[1] = vec[1] * (1.0f / 255.0f);
light[2] = vec[2] * (1.0f / 255.0f);
light[3] = vec[3];
}
}
else if (!strcmp("delay", key))
type = atoi(value);
else if (!strcmp("origin", key))
sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]);
else if (!strcmp("angle", key))
angles[0] = 0, angles[1] = atof(value), angles[2] = 0;
else if (!strcmp("angles", key))
sscanf(value, "%f %f %f", &angles[0], &angles[1], &angles[2]);
else if (!strcmp("color", key))
sscanf(value, "%f %f %f", &color[0], &color[1], &color[2]);
else if (!strcmp("wait", key))
fadescale = atof(value);
else if (!strcmp("classname", key))
{
if (!strncmp(value, "light", 5))
{
islight = true;
if (!strcmp(value, "light_fluoro"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 1;
overridecolor[2] = 1;
}
if (!strcmp(value, "light_fluorospark"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 1;
overridecolor[2] = 1;
}
if (!strcmp(value, "light_globe"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.8;
overridecolor[2] = 0.4;
}
if (!strcmp(value, "light_flame_large_yellow"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_flame_small_yellow"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_torch_small_white"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_torch_small_walltorch"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
}
}
else if (!strcmp("style", key))
style = atoi(value);
else if (!strcmp("skin", key))
skin = (int)atof(value);
else if (!strcmp("pflags", key))
pflags = (int)atof(value);
//else if (!strcmp("effects", key))
//effects = (int)atof(value);
else if (!strcmp("scale", key))
lightscale = atof(value);
else if (!strcmp("fade", key))
fadescale = atof(value);
#ifdef MAP_PROC
else if (!strcmp("nodynamicshadows", key)) //doom3
;
else if (!strcmp("noshadows", key)) //doom3
{
if (atof(value))
pflags |= PFLAGS_NOSHADOW;
}
else if (!strcmp("nospecular", key))//doom3
{
if (atof(value))
colourscales[2] = 0;
}
else if (!strcmp("nodiffuse", key)) //doom3
{
if (atof(value))
colourscales[1] = 0;
}
#endif
else if (!strcmp("light_radius", key))
{
light[0] = 1;
light[1] = 1;
light[2] = 1;
light[3] = atof(value);
}
else if (entnum == 0 && !strcmp("noautolight", key))
{
//tenebrae compat. don't generate rtlights automagically if the world entity specifies this.
if (atoi(value))
{
okay = true;
return okay;
}
}
else if (entnum == 0 && !strcmp("lightmapbright", key))
{
//tenebrae compat. this overrides r_shadow_realtime_world_lightmap
lightmaplevel = atof(value);
}
}
if (!islight)
continue;
if (lightscale <= 0)
lightscale = 1;
if (fadescale <= 0)
fadescale = 1;
if (color[0] >= 16 || color[1] >= 16 || color[2] >= 16) //_color 255 255 255 should be identity, not super-oversaturated.
VectorScale(color, 1/255.0, color); //if only there were standards for this sort of thing.
if (color[0] == color[1] && color[0] == color[2])
{
color[0] *= overridecolor[0];
color[1] *= overridecolor[1];
color[2] *= overridecolor[2];
}
radius = light[3] * r_editlights_import_radius.value * lightscale / fadescale;
color[0] = color[0] * light[0];
color[1] = color[1] * light[1];
color[2] = color[2] * light[2];
switch (type)
{
case LIGHTTYPE_MINUSX:
break;
case LIGHTTYPE_RECIPX:
radius *= 2;
VectorScale(color, (1.0f / 16.0f), color);
break;
case LIGHTTYPE_RECIPXX:
radius *= 2;
VectorScale(color, (1.0f / 16.0f), color);
break;
default:
case LIGHTTYPE_NONE:
break;
case LIGHTTYPE_SUN:
break;
case LIGHTTYPE_MINUSXX:
break;
}
VectorAdd(origin, originhack, origin);
if (radius >= 1 && !(cl.worldmodel->funcs.PointContents(cl.worldmodel, NULL, origin) & FTECONTENTS_SOLID))
{
dlight_t *dl = CL_AllocSlight();
if (!dl)
break;
VectorCopy(origin, dl->origin);
AngleVectors(angles, dl->axis[0], dl->axis[1], dl->axis[2]);
VectorInverse(dl->axis[1]);
dl->radius = radius;
VectorCopy(color, dl->color);
dl->flags = 0;
dl->flags |= LFLAG_REALTIMEMODE;
dl->flags |= (pflags & PFLAGS_CORONA)?LFLAG_FLASHBLEND:0;
dl->flags |= (pflags & PFLAGS_NOSHADOW)?LFLAG_NOSHADOWS:0;
dl->style = style+1;
VectorCopy(colourscales, dl->lightcolourscales);
if (skin >= 16)
R_LoadNumberedLightTexture(dl, skin);
okay = true;
}
}
return okay;
}
qboolean R_LoadRTLights(void)
{
dlight_t *dl;
char fname[MAX_QPATH];
char cubename[MAX_QPATH];
char *file;
char *end;
int style;
vec3_t org;
float radius;
vec3_t rgb;
vec3_t avel;
float fov;
unsigned int flags;
float coronascale;
float corona;
float ambientscale, diffusescale, specularscale;
vec3_t angles;
//delete all old lights, even dynamic ones
rtlights_first = RTL_FIRST;
rtlights_max = RTL_FIRST;
COM_StripExtension(cl.worldmodel->name, fname, sizeof(fname));
strncat(fname, ".rtlights", MAX_QPATH-1);
file = COM_LoadTempFile(fname, NULL);
if (file)
while(1)
{
end = strchr(file, '\n');
if (!end)
end = file + strlen(file);
if (end == file)
break;
*end = '\0';
while(*file == ' ' || *file == '\t')
file++;
if (*file == '#')
{
file++;
while(*file == ' ' || *file == '\t')
file++;
file = COM_Parse(file);
if (!Q_strcasecmp(com_token, "lightmaps"))
{
file = COM_Parse(file);
//foo = atoi(com_token);
}
else
Con_DPrintf("Unknown directive: %s\n", com_token);
file = end+1;
continue;
}
else if (*file == '!')
{
flags = LFLAG_NOSHADOWS;
file++;
}
else
flags = 0;
file = COM_Parse(file);
org[0] = atof(com_token);
file = COM_Parse(file);
org[1] = atof(com_token);
file = COM_Parse(file);
org[2] = atof(com_token);
file = COM_Parse(file);
radius = atof(com_token);
file = COM_Parse(file);
rgb[0] = file?atof(com_token):1;
file = COM_Parse(file);
rgb[1] = file?atof(com_token):1;
file = COM_Parse(file);
rgb[2] = file?atof(com_token):1;
file = COM_Parse(file);
style = file?atof(com_token):0;
file = COM_Parse(file);
//cubemap
Q_strncpyz(cubename, com_token, sizeof(cubename));
file = COM_Parse(file);
//corona
corona = file?atof(com_token):0;
file = COM_Parse(file);
angles[0] = file?atof(com_token):0;
file = COM_Parse(file);
angles[1] = file?atof(com_token):0;
file = COM_Parse(file);
angles[2] = file?atof(com_token):0;
file = COM_Parse(file);
//corona scale
coronascale = file?atof(com_token):0.25;
file = COM_Parse(file);
//ambient
ambientscale = file?atof(com_token):0;
file = COM_Parse(file);
//diffuse
diffusescale = file?atof(com_token):1;
file = COM_Parse(file);
//specular
specularscale = file?atof(com_token):1;
file = COM_Parse(file);
flags |= file?atoi(com_token):LFLAG_REALTIMEMODE;
fov = avel[0] = avel[1] = avel[2] = 0;
while(file)
{
file = COM_Parse(file);
if (!strncmp(com_token, "rotx=", 5))
avel[0] = file?atof(com_token+5):0;
else if (!strncmp(com_token, "roty=", 5))
avel[1] = file?atof(com_token+5):0;
else if (!strncmp(com_token, "rotz=", 5))
avel[2] = file?atof(com_token+5):0;
else if (!strncmp(com_token, "fov=", 4))
fov = file?atof(com_token+4):0;
}
if (radius)
{
dl = CL_AllocSlight();
if (!dl)
break;
VectorCopy(org, dl->origin);
dl->radius = radius;
VectorCopy(rgb, dl->color);
dl->corona = corona;
dl->coronascale = coronascale;
dl->die = 0;
dl->flags = flags;
dl->fov = fov;
dl->lightcolourscales[0] = ambientscale;
dl->lightcolourscales[1] = diffusescale;
dl->lightcolourscales[2] = specularscale;
AngleVectorsFLU(angles, dl->axis[0], dl->axis[1], dl->axis[2]);
VectorCopy(avel, dl->rotation);
Q_strncpyz(dl->cubemapname, cubename, sizeof(dl->cubemapname));
if (*dl->cubemapname)
dl->cubetexture = R_LoadReplacementTexture(dl->cubemapname, "", IF_CUBEMAP, NULL, 0, 0, TF_INVALID);
else
dl->cubetexture = r_nulltex;
dl->style = style+1;
}
file = end+1;
}
return !!file;
}
void R_SaveRTLights_f(void)
{
dlight_t *light;
vfsfile_t *f;
unsigned int i;
char fname[MAX_QPATH];
char sysname[MAX_OSPATH];
vec3_t ang;
COM_StripExtension(cl.worldmodel->name, fname, sizeof(fname));
strncat(fname, ".rtlights", MAX_QPATH-1);
FS_CreatePath(fname, FS_GAMEONLY);
f = FS_OpenVFS(fname, "wb", FS_GAMEONLY);
if (!f)
{
Con_Printf("couldn't open %s\n", fname);
return;
}
// VFS_PUTS(f, va("#lightmap %f\n", foo));
for (light = cl_dlights+rtlights_first, i=rtlights_first; i<rtlights_max; i++, light++)
{
if (light->die)
continue;
if (!light->radius)
continue;
VectorAngles(light->axis[0], light->axis[2], ang, false);
VFS_PUTS(f, va(
"%s%f %f %f "
"%f %f %f %f "
"%i "
"\"%s\" %f "
"%f %f %f "
"%f %f %f %f %i "
"rotx=%g roty=%g rotz=%g fov=%g "
"\n"
,
(light->flags & LFLAG_NOSHADOWS)?"!":"", light->origin[0], light->origin[1], light->origin[2],
light->radius, light->color[0], light->color[1], light->color[2],
light->style-1,
light->cubemapname, light->corona,
ang[0], ang[1], ang[2],
light->coronascale, light->lightcolourscales[0], light->lightcolourscales[1], light->lightcolourscales[2], light->flags&(LFLAG_NORMALMODE|LFLAG_REALTIMEMODE|LFLAG_CREPUSCULAR),
light->rotation[0],light->rotation[1],light->rotation[2],light->fov
));
}
VFS_CLOSE(f);
FS_NativePath(fname, FS_GAMEONLY, sysname, sizeof(sysname));
Con_Printf("rtlights saved to %s\n", sysname);
}
void R_StaticEntityToRTLight(int i)
{
entity_state_t *state = &cl_static_entities[i].state;
dlight_t *dl;
if (!(state->lightpflags&(PFLAGS_FULLDYNAMIC|PFLAGS_CORONA)))
return;
dl = CL_AllocSlight();
if (!dl)
return;
VectorCopy(state->origin, dl->origin);
AngleVectors(state->angles, dl->axis[0], dl->axis[1], dl->axis[2]);
VectorInverse(dl->axis[1]);
dl->radius = state->light[3];
if (!dl->radius)
dl->radius = 350;
VectorScale(state->light, 1.0/1024, dl->color);
if (!state->light[0] && !state->light[1] && !state->light[2])
VectorSet(dl->color, 1, 1, 1);
dl->flags = 0;
dl->flags |= LFLAG_NORMALMODE|LFLAG_REALTIMEMODE;
dl->flags |= (state->lightpflags & PFLAGS_NOSHADOW)?LFLAG_NOSHADOWS:0;
if (state->lightpflags & PFLAGS_CORONA)
dl->corona = 1;
dl->style = state->lightstyle+1;
if (state->lightpflags & PFLAGS_FULLDYNAMIC)
{
dl->lightcolourscales[0] = r_editlights_import_ambient.value;
dl->lightcolourscales[1] = r_editlights_import_diffuse.value;
dl->lightcolourscales[2] = r_editlights_import_specular.value;
}
else
{ //corona-only light
dl->lightcolourscales[0] = 0;
dl->lightcolourscales[1] = 0;
dl->lightcolourscales[2] = 0;
}
if (state->skinnum >= 16)
R_LoadNumberedLightTexture(dl, state->skinnum);
}
void R_ReloadRTLights_f(void)
{
int i;
if (!cl.worldmodel)
{
Con_Printf("Cannot reload lights at this time\n");
return;
}
rtlights_first = RTL_FIRST;
rtlights_max = RTL_FIRST;
if (!strcmp(Cmd_Argv(1), "bsp"))
R_ImportRTLights(Mod_GetEntitiesString(cl.worldmodel));
else if (!strcmp(Cmd_Argv(1), "rtlights"))
R_LoadRTLights();
else if (!strcmp(Cmd_Argv(1), "none"))
;
else
{
R_LoadRTLights();
if (rtlights_first == rtlights_max)
R_ImportRTLights(Mod_GetEntitiesString(cl.worldmodel));
}
for (i = 0; i < cl.num_statics; i++)
{
R_StaticEntityToRTLight(i);
}
}
#endif
/*
=============================================================================
LIGHT SAMPLING
=============================================================================
*/
mplane_t *lightplane;
vec3_t lightspot;
static void GLQ3_AddLatLong(qbyte latlong[2], vec3_t dir, float mag)
{
float lat = (float)latlong[0] * (2 * M_PI)*(1.0 / 255.0);
float lng = (float)latlong[1] * (2 * M_PI)*(1.0 / 255.0);
dir[0] += mag * cos ( lng ) * sin ( lat );
dir[1] += mag * sin ( lng ) * sin ( lat );
dir[2] += mag * cos ( lat );
}
void GLQ3_LightGrid(model_t *mod, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir)
{
q3lightgridinfo_t *lg = (q3lightgridinfo_t *)cl.worldmodel->lightgrid;
int index[8];
int vi[3];
int i, j;
float t[8];
vec3_t vf, vf2;
vec3_t ambient, diffuse, direction;
if (!lg || (!lg->lightgrid && !lg->rbspelements) || lg->numlightgridelems < 1)
{
if(res_ambient)
{
res_ambient[0] = 64;
res_ambient[1] = 64;
res_ambient[2] = 64;
}
if (res_diffuse)
{
res_diffuse[0] = 192;
res_diffuse[1] = 192;
res_diffuse[2] = 192;
}
if (res_dir)
{
res_dir[0] = 1;
res_dir[1] = 1;
res_dir[2] = 0.1;
}
return;
}
//If in doubt, steal someone else's code...
//Thanks QFusion.
for ( i = 0; i < 3; i++ )
{
vf[i] = (point[i] - lg->gridMins[i]) / lg->gridSize[i];
vi[i] = (int)(vf[i]);
vf[i] = vf[i] - floor(vf[i]);
vf2[i] = 1.0f - vf[i];
}
for ( i = 0; i < 8; i++ )
{
//bound it properly
index[i] = bound(0, vi[0]+((i&1)?1:0), lg->gridBounds[0]-1) * 1 +
bound(0, vi[1]+((i&2)?1:0), lg->gridBounds[1]-1) * lg->gridBounds[0] +
bound(0, vi[2]+((i&4)?1:0), lg->gridBounds[2]-1) * lg->gridBounds[3] ;
t[i] = ((i&1)?vf[0]:vf2[0]) *
((i&2)?vf[1]:vf2[1]) *
((i&4)?vf[2]:vf2[2]) ;
}
//rbsp has a separate grid->index lookup for compression.
if (lg->rbspindexes)
{
for (i = 0; i < 8; i++)
index[i] = lg->rbspindexes[index[i]];
}
VectorClear(ambient);
VectorClear(diffuse);
VectorClear(direction);
if (lg->rbspelements)
{
for (i = 0; i < 8; i++)
{ //rbsp has up to 4 styles per grid element, which needs to be scaled by that style's current value
float tot = 0;
for (j = 0; j < countof(lg->rbspelements[index[i]].styles); j++)
{
qbyte st = lg->rbspelements[index[i]].styles[j];
if (st != 255)
{
float mag = d_lightstylevalue[st] * 1.0/255 * t[i];
//FIXME: cl_lightstyle[st].colours[rgb]
VectorMA (ambient, mag, lg->rbspelements[index[i]].ambient[j], ambient);
VectorMA (diffuse, mag, lg->rbspelements[index[i]].diffuse[j], diffuse);
tot += mag;
}
}
GLQ3_AddLatLong(lg->rbspelements[index[i]].direction, direction, tot);
}
}
else
{
for (i = 0; i < 8; i++)
{
VectorMA (ambient, t[i], lg->lightgrid[index[i]].ambient, ambient);
VectorMA (diffuse, t[i], lg->lightgrid[index[i]].diffuse, diffuse);
GLQ3_AddLatLong(lg->lightgrid[index[i]].direction, direction, t[i]);
}
VectorScale(ambient, d_lightstylevalue[0]/255.0, ambient);
VectorScale(diffuse, d_lightstylevalue[0]/255.0, diffuse);
//FIXME: cl_lightstyle[0].colours[rgb]
}
//q3bsp has *4 overbrighting.
// VectorScale(ambient, 4, ambient);
// VectorScale(diffuse, 4, diffuse);
/*ambient is the min level*/
/*diffuse is the max level*/
VectorCopy(ambient, res_ambient);
if (res_diffuse)
VectorAdd(diffuse, ambient, res_diffuse);
if (res_dir)
VectorCopy(direction, res_dir);
}
static int GLRecursiveLightPoint (mnode_t *node, vec3_t start, vec3_t end)
{
int r;
float front, back, frac;
int side;
mplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
qbyte *lightmap;
unsigned scale;
int maps;
if (cl.worldmodel->fromgame == fg_quake2)
{
if (node->contents != -1)
return -1; // solid
}
else if (node->contents < 0)
return -1; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return GLRecursiveLightPoint (node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = GLRecursiveLightPoint (node->children[side], start, mid);
if (r >= 0)
return r; // hit something
if ( (back < 0) == side )
return -1; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];;
if (s < surf->texturemins[0] || t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
return 0;
ds >>= surf->lmshift;
dt >>= surf->lmshift;
lightmap = surf->samples;
r = 0;
if (lightmap)
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
lightmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
r += (lightmap[0]+lightmap[1]+lightmap[2]) * scale / 3;
lightmap += ((surf->extents[0]>>surf->lmshift)+1) * ((surf->extents[1]>>surf->lmshift)+1)*3;
}
}
else
{
lightmap += dt * ((surf->extents[0]>>surf->lmshift)+1) + ds;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
r += *lightmap * scale;
lightmap += ((surf->extents[0]>>surf->lmshift)+1) * ((surf->extents[1]>>surf->lmshift)+1);
}
}
r >>= 8;
}
return r;
}
// go down back side
return GLRecursiveLightPoint (node->children[!side], mid, end);
}
int R_LightPoint (vec3_t p)
{
vec3_t end;
int r;
if (r_refdef.flags & 1)
return 255;
if (!cl.worldmodel || !cl.worldmodel->lightdata)
return 255;
if (cl.worldmodel->fromgame == fg_quake3)
{
GLQ3_LightGrid(cl.worldmodel, p, NULL, end, NULL);
return (end[0] + end[1] + end[2])/3;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = GLRecursiveLightPoint (cl.worldmodel->rootnode, p, end);
if (r == -1)
r = 0;
return r;
}
#ifdef PEXT_LIGHTSTYLECOL
static float *GLRecursiveLightPoint3C (model_t *mod, mnode_t *node, vec3_t start, vec3_t end)
{
static float l[6];
float *r;
float front, back, frac;
int side;
mplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
qbyte *lightmap, *deluxmap;
float scale, overbright;
int maps;
if (mod->fromgame == fg_quake2)
{
if (node->contents != -1)
return NULL; // solid
}
else if (node->contents < 0)
return NULL; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return GLRecursiveLightPoint3C (mod, node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = GLRecursiveLightPoint3C (mod, node->children[side], start, mid);
if (r && r[0]+r[1]+r[2] >= 0)
return r; // hit something
if ( (back < 0) == side )
return NULL; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = mod->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];
if (s < surf->texturemins[0] ||
t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
{
l[0]=0;l[1]=0;l[2]=0;
l[3]=0;l[4]=1;l[5]=1;
return l;
}
ds >>= surf->lmshift;
dt >>= surf->lmshift;
lightmap = surf->samples;
l[0]=0;l[1]=0;l[2]=0;
l[3]=0;l[4]=0;l[5]=0;
if (lightmap)
{
overbright = 1/255.0f;
if (mod->deluxdata)
{
if (mod->engineflags & MDLF_RGBLIGHTING)
{
deluxmap = surf->samples - mod->lightdata + mod->deluxdata;
lightmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds)*3;
deluxmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]*overbright;
l[0] += lightmap[0] * scale * cl_lightstyle[surf->styles[maps]].colours[0];
l[1] += lightmap[1] * scale * cl_lightstyle[surf->styles[maps]].colours[1];
l[2] += lightmap[2] * scale * cl_lightstyle[surf->styles[maps]].colours[2];
l[3] += (deluxmap[0]-127)*scale;
l[4] += (deluxmap[1]-127)*scale;
l[5] += (deluxmap[2]-127)*scale;
lightmap += ((surf->extents[0]>>surf->lmshift)+1) *
((surf->extents[1]>>surf->lmshift)+1) * 3;
deluxmap += ((surf->extents[0]>>surf->lmshift)+1) *
((surf->extents[1]>>surf->lmshift)+1) * 3;
}
}
else
{
deluxmap = (surf->samples - mod->lightdata)*3 + mod->deluxdata;
lightmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds);
deluxmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]*overbright;
l[0] += *lightmap * scale * cl_lightstyle[surf->styles[maps]].colours[0];
l[1] += *lightmap * scale * cl_lightstyle[surf->styles[maps]].colours[1];
l[2] += *lightmap * scale * cl_lightstyle[surf->styles[maps]].colours[2];
l[3] += deluxmap[0]*scale;
l[4] += deluxmap[1]*scale;
l[5] += deluxmap[2]*scale;
lightmap += ((surf->extents[0]>>surf->lmshift)+1) *
((surf->extents[1]>>surf->lmshift)+1);
deluxmap += ((surf->extents[0]>>surf->lmshift)+1) *
((surf->extents[1]>>surf->lmshift)+1) * 3;
}
}
}
else
{
if (mod->engineflags & MDLF_RGBLIGHTING)
{
lightmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]*overbright;
l[0] += lightmap[0] * scale * cl_lightstyle[surf->styles[maps]].colours[0];
l[1] += lightmap[1] * scale * cl_lightstyle[surf->styles[maps]].colours[1];
l[2] += lightmap[2] * scale * cl_lightstyle[surf->styles[maps]].colours[2];
lightmap += ((surf->extents[0]>>surf->lmshift)+1) *
((surf->extents[1]>>surf->lmshift)+1) * 3;
}
}
else
{
lightmap += (dt * ((surf->extents[0]>>surf->lmshift)+1) + ds);
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]*overbright;
l[0] += *lightmap * scale * cl_lightstyle[surf->styles[maps]].colours[0];
l[1] += *lightmap * scale * cl_lightstyle[surf->styles[maps]].colours[1];
l[2] += *lightmap * scale * cl_lightstyle[surf->styles[maps]].colours[2];
lightmap += ((surf->extents[0]>>surf->lmshift)+1) *
((surf->extents[1]>>surf->lmshift)+1);
}
}
}
}
return l;
}
// go down back side
return GLRecursiveLightPoint3C (mod, node->children[!side], mid, end);
}
#endif
void GLQ1BSP_LightPointValues(model_t *model, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir)
{
vec3_t end;
float *r;
#ifdef RTLIGHTS
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
#endif
if (!model->lightdata || r_fullbright.ival)
{
res_diffuse[0] = 0;
res_diffuse[1] = 0;
res_diffuse[2] = 0;
res_ambient[0] = 255;
res_ambient[1] = 255;
res_ambient[2] = 255;
res_dir[0] = 1;
res_dir[1] = 1;
res_dir[2] = 0.1;
VectorNormalize(res_dir);
return;
}
end[0] = point[0];
end[1] = point[1];
end[2] = point[2] - 2048;
r = GLRecursiveLightPoint3C(model, model->rootnode, point, end);
if (r == NULL)
{
res_diffuse[0] = 0;
res_diffuse[1] = 0;
res_diffuse[2] = 0;
res_ambient[0] = 0;
res_ambient[1] = 0;
res_ambient[2] = 0;
res_dir[0] = 0;
res_dir[1] = 1;
res_dir[2] = 1;
}
else
{
res_diffuse[0] = r[0]*2;
res_diffuse[1] = r[1]*2;
res_diffuse[2] = r[2]*2;
/*bright on one side, dark on the other, but not too dark*/
res_ambient[0] = r[0]/2;
res_ambient[1] = r[1]/2;
res_ambient[2] = r[2]/2;
res_dir[0] = r[3];
res_dir[1] = r[4];
res_dir[2] = -r[5];
if (!res_dir[0] && !res_dir[1] && !res_dir[2])
res_dir[1] = res_dir[2] = 1;
VectorNormalize(res_dir);
}
#ifdef RTLIGHTS
if (r_shadow_realtime_world.ival)
{
float lm = r_shadow_realtime_world_lightmaps.value;
if (lm < 0) lm = 0;
if (lm > 1) lm = 1;
VectorScale(res_diffuse, lm, res_diffuse);
VectorScale(res_ambient, lm, res_ambient);
}
#endif
}
#endif