1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_alias.c

1407 lines
36 KiB
C

//a note about dedicated servers:
//In the server-side gamecode, a couple of q1 extensions require knowing something about models.
//So we load models serverside, if required.
//things we need:
//tag/bone names and indexes so we can have reasonable modding with tags. :)
//tag/bone positions so we can shoot from the actual gun or other funky stuff
//vertex positions so we can trace against the mesh rather than the bbox.
//we use the gl renderer's model code because it supports more sorts of models than the sw renderer. Sad but true.
#include "quakedef.h"
#ifdef GLQUAKE
#include "glquake.h"
#endif
#if defined(GLQUAKE) || defined(D3DQUAKE)
#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif
#define MAX_BONES 256
#include "com_mesh.h"
//FIXME
typedef struct
{
float scale[3]; // multiply qbyte verts by this
float translate[3]; // then add this
char name[16]; // frame name from grabbing
dtrivertx_t verts[1]; // variable sized
} dmd2aliasframe_t;
// entity_state_t->renderfx flags
#define Q2RF_MINLIGHT 1 // always have some light (viewmodel)
#define Q2RF_VIEWERMODEL 2 // don't draw through eyes, only mirrors
#define Q2RF_WEAPONMODEL 4 // only draw through eyes
#define Q2RF_FULLBRIGHT 8 // always draw full intensity
#define Q2RF_DEPTHHACK 16 // for view weapon Z crunching
#define Q2RF_TRANSLUCENT 32
#define Q2RF_FRAMELERP 64
#define Q2RF_BEAM 128
#define Q2RF_CUSTOMSKIN 256 // skin is an index in image_precache
#define Q2RF_GLOW 512 // pulse lighting for bonus items
#define Q2RF_SHELL_RED 1024
#define Q2RF_SHELL_GREEN 2048
#define Q2RF_SHELL_BLUE 4096
//ROGUE
#define Q2RF_IR_VISIBLE 0x00008000 // 32768
#define Q2RF_SHELL_DOUBLE 0x00010000 // 65536
#define Q2RF_SHELL_HALF_DAM 0x00020000
#define Q2RF_USE_DISGUISE 0x00040000
//ROGUE
extern cvar_t gl_part_flame, r_fullbrightSkins, r_fb_models;
extern cvar_t r_noaliasshadows;
void R_TorchEffect (vec3_t pos, int type);
void GLMod_FloodFillSkin( qbyte *skin, int skinwidth, int skinheight );
extern char loadname[32]; // for hunk tags
int numTempColours;
byte_vec4_t *tempColours;
int numTempVertexCoords;
vec3_t *tempVertexCoords;
int numTempNormals;
vec3_t *tempNormals;
extern cvar_t gl_ati_truform;
extern cvar_t r_vertexdlights;
extern cvar_t mod_md3flags;
extern cvar_t r_skin_overlays;
#ifndef SERVERONLY
static hashtable_t skincolourmapped;
extern avec3_t shadevector, shadelight, ambientlight;
//changes vertex lighting values
#if 0
static void R_GAliasApplyLighting(mesh_t *mesh, vec3_t org, vec3_t angles, float *colormod)
{
int l, v;
vec3_t rel;
vec3_t dir;
float dot, d, a;
if (mesh->colors4f_array)
{
float l;
int temp;
int i;
avec4_t *colours = mesh->colors4f_array;
vec3_t *normals = mesh->normals_array;
vec3_t ambient, shade;
qbyte alphab = bound(0, colormod[3], 1);
if (!mesh->normals_array)
{
mesh->colors4f_array = NULL;
return;
}
VectorCopy(ambientlight, ambient);
VectorCopy(shadelight, shade);
for (i = 0; i < 3; i++)
{
ambient[i] *= colormod[i];
shade[i] *= colormod[i];
}
for (i = mesh->numvertexes-1; i >= 0; i--)
{
l = DotProduct(normals[i], shadevector);
temp = l*ambient[0]+shade[0];
colours[i][0] = temp;
temp = l*ambient[1]+shade[1];
colours[i][1] = temp;
temp = l*ambient[2]+shade[2];
colours[i][2] = temp;
colours[i][3] = alphab;
}
}
if (r_vertexdlights.value && mesh->colors4f_array)
{
//don't include world lights
for (l=rtlights_first ; l<RTL_FIRST; l++)
{
if (cl_dlights[l].radius)
{
VectorSubtract (cl_dlights[l].origin,
org,
dir);
if (Length(dir)>cl_dlights[l].radius+mesh->radius) //far out man!
continue;
rel[0] = -DotProduct(dir, currententity->axis[0]);
rel[1] = -DotProduct(dir, currententity->axis[1]); //quake's crazy.
rel[2] = -DotProduct(dir, currententity->axis[2]);
/*
glBegin(GL_LINES);
glVertex3f(0,0,0);
glVertex3f(rel[0],rel[1],rel[2]);
glEnd();
*/
for (v = 0; v < mesh->numvertexes; v++)
{
VectorSubtract(mesh->xyz_array[v], rel, dir);
dot = DotProduct(dir, mesh->normals_array[v]);
if (dot>0)
{
d = DotProduct(dir, dir);
a = 1/d;
if (a>0)
{
a *= 10000000*dot/sqrt(d);
mesh->colors4f_array[v][0] += a*cl_dlights[l].color[0];
mesh->colors4f_array[v][1] += a*cl_dlights[l].color[1];
mesh->colors4f_array[v][2] += a*cl_dlights[l].color[2];
}
// else
// mesh->colors4f_array[v][1] = 1;
}
// else
// mesh->colors4f_array[v][2] = 1;
}
}
}
}
}
#endif
void GL_GAliasFlushSkinCache(void)
{
int i;
bucket_t *b;
for (i = 0; i < skincolourmapped.numbuckets; i++)
{
while((b = skincolourmapped.bucket[i]))
{
skincolourmapped.bucket[i] = b->next;
BZ_Free(b->data);
}
}
if (skincolourmapped.bucket)
BZ_Free(skincolourmapped.bucket);
skincolourmapped.bucket = NULL;
skincolourmapped.numbuckets = 0;
}
static texnums_t *GL_ChooseSkin(galiasinfo_t *inf, char *modelname, int surfnum, entity_t *e)
{
galiasskin_t *skins;
texnums_t *texnums;
int frame;
unsigned int subframe;
unsigned int tc, bc;
qboolean forced;
if ((e->model->engineflags & MDLF_NOTREPLACEMENTS) && !ruleset_allow_sensative_texture_replacements.ival)
forced = true;
else
forced = false;
if (!gl_nocolors.ival || forced)
{
if (e->scoreboard)
{
if (!e->scoreboard->skin)
Skin_Find(e->scoreboard);
tc = e->scoreboard->ttopcolor;
bc = e->scoreboard->tbottomcolor;
}
else
{
tc = 1;
bc = 1;
}
if (forced || tc != 1 || bc != 1 || (e->scoreboard && e->scoreboard->skin))
{
int inwidth, inheight;
int tinwidth, tinheight;
char *skinname;
qbyte *original;
galiascolourmapped_t *cm;
char hashname[512];
// if (e->scoreboard->skin->cachedbpp
/* if (cls.protocol == CP_QUAKE2)
{
if (e->scoreboard && e->scoreboard->skin)
snprintf(hashname, sizeof(hashname), "%s$%s$%i", modelname, e->scoreboard->skin->name, surfnum);
else
snprintf(hashname, sizeof(hashname), "%s$%i", modelname, surfnum);
skinname = hashname;
}
else */
{
if (e->scoreboard && e->scoreboard->skin)
{
snprintf(hashname, sizeof(hashname), "%s$%s$%i", modelname, e->scoreboard->skin->name, surfnum);
skinname = hashname;
}
else if (surfnum)
{
snprintf(hashname, sizeof(hashname), "%s$%i", modelname, surfnum);
skinname = hashname;
}
else
skinname = modelname;
}
if (!skincolourmapped.numbuckets)
{
void *buckets = BZ_Malloc(Hash_BytesForBuckets(256));
memset(buckets, 0, Hash_BytesForBuckets(256));
Hash_InitTable(&skincolourmapped, 256, buckets);
}
if (!inf->numskins)
{
skins = NULL;
subframe = 0;
texnums = NULL;
}
else
{
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (!skins->texnums)
{
skins = NULL;
subframe = 0;
texnums = NULL;
}
else
{
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
subframe = cl.time*skins->skinspeed;
subframe = subframe%skins->texnums;
texnums = (texnums_t*)((char *)skins + skins->ofstexnums + subframe*sizeof(texnums_t));
}
}
for (cm = Hash_Get(&skincolourmapped, skinname); cm; cm = Hash_GetNext(&skincolourmapped, skinname, cm))
{
if (cm->tcolour == tc && cm->bcolour == bc && cm->skinnum == e->skinnum && cm->subframe == subframe)
{
return &cm->texnum;
}
}
//colourmap isn't present yet.
cm = BZ_Malloc(sizeof(*cm));
Q_strncpyz(cm->name, skinname, sizeof(cm->name));
Hash_Add(&skincolourmapped, cm->name, cm, &cm->bucket);
cm->tcolour = tc;
cm->bcolour = bc;
cm->skinnum = e->skinnum;
cm->subframe = subframe;
cm->texnum.fullbright = r_nulltex;
cm->texnum.base = r_nulltex;
cm->texnum.loweroverlay = r_nulltex;
cm->texnum.upperoverlay = r_nulltex;
cm->texnum.shader = texnums?texnums->shader:R_RegisterSkin(skinname);
if (!texnums)
{ //load just the skin
if (e->scoreboard && e->scoreboard->skin)
{
if (cls.protocol == CP_QUAKE2)
{
original = Skin_Cache32(e->scoreboard->skin);
if (original)
{
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
cm->texnum.base = R_LoadTexture32(e->scoreboard->skin->name, inwidth, inheight, (unsigned int*)original, IF_NOALPHA|IF_NOGAMMA);
return &cm->texnum;
}
}
else
{
original = Skin_Cache8(e->scoreboard->skin);
if (original)
{
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
cm->texnum.base = R_LoadTexture8(e->scoreboard->skin->name, inwidth, inheight, original, IF_NOALPHA|IF_NOGAMMA, 1);
return &cm->texnum;
}
}
if (TEXVALID(e->scoreboard->skin->tex_base))
{
texnums = &cm->texnum;
texnums->loweroverlay = e->scoreboard->skin->tex_lower;
texnums->upperoverlay = e->scoreboard->skin->tex_upper;
texnums->base = e->scoreboard->skin->tex_base;
return texnums;
}
cm->texnum.base = R_LoadHiResTexture(e->scoreboard->skin->name, "skins", IF_NOALPHA);
return &cm->texnum;
}
return NULL;
}
cm->texnum.bump = texnums[cm->skinnum].bump; //can't colour bumpmapping
if (cls.protocol != CP_QUAKE2 && ((!texnums || !strcmp(modelname, "progs/player.mdl")) && e->scoreboard && e->scoreboard->skin))
{
original = Skin_Cache8(e->scoreboard->skin);
inwidth = e->scoreboard->skin->width;
inheight = e->scoreboard->skin->height;
if (!original && TEXVALID(e->scoreboard->skin->tex_base))
{
texnums = &cm->texnum;
texnums->loweroverlay = e->scoreboard->skin->tex_lower;
texnums->upperoverlay = e->scoreboard->skin->tex_upper;
texnums->base = e->scoreboard->skin->tex_base;
return texnums;
}
}
else
{
original = NULL;
inwidth = 0;
inheight = 0;
}
if (!original)
{
if (skins->ofstexels)
{
original = (qbyte *)skins + skins->ofstexels;
inwidth = skins->skinwidth;
inheight = skins->skinheight;
}
else
{
original = NULL;
inwidth = 0;
inheight = 0;
}
}
tinwidth = skins->skinwidth;
tinheight = skins->skinheight;
if (original)
{
int i, j;
unsigned translate32[256];
static unsigned pixels[512*512];
unsigned *out;
unsigned frac, fracstep;
unsigned scaled_width, scaled_height;
qbyte *inrow;
texnums = &cm->texnum;
texnums->base = r_nulltex;
texnums->fullbright = r_nulltex;
scaled_width = gl_max_size.value < 512 ? gl_max_size.value : 512;
scaled_height = gl_max_size.value < 512 ? gl_max_size.value : 512;
//handle the case of an external skin being smaller than the texture that its meant to replace
//(to support the evil hackage of the padding on the outside of common qw skins)
if (tinwidth > inwidth)
tinwidth = inwidth;
if (tinheight > inheight)
tinheight = inheight;
//don't make scaled width any larger than it needs to be
for (i = 0; i < 10; i++)
{
scaled_width = (1<<i);
if (scaled_width >= tinwidth)
break; //its covered
}
if (scaled_width > gl_max_size.value)
scaled_width = gl_max_size.value; //whoops, we made it too big
for (i = 0; i < 10; i++)
{
scaled_height = (1<<i);
if (scaled_height >= tinheight)
break; //its covered
}
if (scaled_height > gl_max_size.value)
scaled_height = gl_max_size.value; //whoops, we made it too big
{
for (i=0 ; i<256 ; i++)
translate32[i] = d_8to24rgbtable[i];
for (i = 0; i < 16; i++)
{
if (tc >= 16)
{
//assumption: row 0 is pure white.
*((unsigned char*)&translate32[TOP_RANGE+i]+0) = (((tc&0xff0000)>>16)**((unsigned char*)&d_8to24rgbtable[i]+0))>>8;
*((unsigned char*)&translate32[TOP_RANGE+i]+1) = (((tc&0x00ff00)>> 8)**((unsigned char*)&d_8to24rgbtable[i]+1))>>8;
*((unsigned char*)&translate32[TOP_RANGE+i]+2) = (((tc&0x0000ff)>> 0)**((unsigned char*)&d_8to24rgbtable[i]+2))>>8;
*((unsigned char*)&translate32[TOP_RANGE+i]+3) = 0xff;
}
else
{
if (tc < 8)
translate32[TOP_RANGE+i] = d_8to24rgbtable[(tc<<4)+i];
else
translate32[TOP_RANGE+i] = d_8to24rgbtable[(tc<<4)+15-i];
}
if (bc >= 16)
{
*((unsigned char*)&translate32[BOTTOM_RANGE+i]+0) = (((bc&0xff0000)>>16)**((unsigned char*)&d_8to24rgbtable[i]+0))>>8;
*((unsigned char*)&translate32[BOTTOM_RANGE+i]+1) = (((bc&0x00ff00)>> 8)**((unsigned char*)&d_8to24rgbtable[i]+1))>>8;
*((unsigned char*)&translate32[BOTTOM_RANGE+i]+2) = (((bc&0x0000ff)>> 0)**((unsigned char*)&d_8to24rgbtable[i]+2))>>8;
*((unsigned char*)&translate32[BOTTOM_RANGE+i]+3) = 0xff;
}
else
{
if (bc < 8)
translate32[BOTTOM_RANGE+i] = d_8to24rgbtable[(bc<<4)+i];
else
translate32[BOTTOM_RANGE+i] = d_8to24rgbtable[(bc<<4)+15-i];
}
}
}
out = pixels;
fracstep = tinwidth*0x10000/scaled_width;
for (i=0 ; i<scaled_height ; i++, out += scaled_width)
{
inrow = original + inwidth*(i*inheight/scaled_height);
frac = fracstep >> 1;
for (j=0 ; j<scaled_width ; j+=4)
{
out[j] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+1] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+2] = translate32[inrow[frac>>16]];
frac += fracstep;
out[j+3] = translate32[inrow[frac>>16]];
frac += fracstep;
}
}
texnums->base = R_AllocNewTexture(scaled_width, scaled_height);
R_Upload(texnums->base, "", TF_RGBX32, pixels, NULL, scaled_width, scaled_height, IF_NOMIPMAP);
//now do the fullbrights.
out = pixels;
fracstep = tinwidth*0x10000/scaled_width;
for (i=0 ; i<scaled_height ; i++, out += scaled_width)
{
inrow = original + inwidth*(i*inheight/scaled_height);
frac = fracstep >> 1;
for (j=0 ; j<scaled_width ; j+=1)
{
if (inrow[frac>>16] < 255-vid.fullbright)
((char *) (&out[j]))[3] = 0; //alpha 0
frac += fracstep;
}
}
texnums->fullbright = R_AllocNewTexture(scaled_width, scaled_height);
R_Upload(texnums->fullbright, "", TF_RGBA32, pixels, NULL, scaled_width, scaled_height, IF_NOMIPMAP);
}
else
{
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
if (!inf->numskins || !skins->texnums)
return NULL;
frame = cl.time*skins->skinspeed;
frame = frame%skins->texnums;
texnums = (texnums_t*)((char *)skins + skins->ofstexnums + frame*sizeof(texnums_t));
memcpy(&cm->texnum, texnums, sizeof(cm->texnum));
}
return &cm->texnum;
}
}
if (!inf->numskins)
return NULL;
skins = (galiasskin_t*)((char *)inf + inf->ofsskins);
if (e->skinnum >= 0 && e->skinnum < inf->numskins)
skins += e->skinnum;
else
{
Con_DPrintf("Skin number out of range\n");
if (!inf->numskins)
return NULL;
}
if (!skins->texnums)
return NULL;
frame = cl.time*skins->skinspeed;
frame = frame%skins->texnums;
texnums = (texnums_t*)((char *)skins + skins->ofstexnums + frame*sizeof(texnums_t));
return texnums;
}
#if defined(RTLIGHTS) && defined(GLQUAKE)
static int numFacing;
static qbyte *triangleFacing;
static void R_CalcFacing(mesh_t *mesh, vec3_t lightpos)
{
float *v1, *v2, *v3;
vec3_t d1, d2, norm;
int i;
index_t *indexes = mesh->indexes;
int numtris = mesh->numindexes/3;
if (numFacing < numtris)
{
if (triangleFacing)
BZ_Free(triangleFacing);
triangleFacing = BZ_Malloc(sizeof(*triangleFacing)*numtris);
numFacing = numtris;
}
for (i = 0; i < numtris; i++, indexes+=3)
{
v1 = (float *)(mesh->xyz_array + indexes[0]);
v2 = (float *)(mesh->xyz_array + indexes[1]);
v3 = (float *)(mesh->xyz_array + indexes[2]);
VectorSubtract(v1, v2, d1);
VectorSubtract(v3, v2, d2);
CrossProduct(d1, d2, norm);
triangleFacing[i] = (( lightpos[0] - v1[0] ) * norm[0] + ( lightpos[1] - v1[1] ) * norm[1] + ( lightpos[2] - v1[2] ) * norm[2]) > 0;
}
}
#define PROJECTION_DISTANCE 30000
static int numProjectedShadowVerts;
static vec3_t *ProjectedShadowVerts;
static void R_ProjectShadowVolume(mesh_t *mesh, vec3_t lightpos)
{
int numverts = mesh->numvertexes;
int i;
vecV_t *input = mesh->xyz_array;
vec3_t *projected;
if (numProjectedShadowVerts < numverts)
{
if (ProjectedShadowVerts)
BZ_Free(ProjectedShadowVerts);
ProjectedShadowVerts = BZ_Malloc(sizeof(*ProjectedShadowVerts)*numverts);
numProjectedShadowVerts = numverts;
}
projected = ProjectedShadowVerts;
for (i = 0; i < numverts; i++)
{
projected[i][0] = input[i][0] + (input[i][0]-lightpos[0])*PROJECTION_DISTANCE;
projected[i][1] = input[i][1] + (input[i][1]-lightpos[1])*PROJECTION_DISTANCE;
projected[i][2] = input[i][2] + (input[i][2]-lightpos[2])*PROJECTION_DISTANCE;
}
}
static void R_DrawShadowVolume(mesh_t *mesh)
{
int t;
vec3_t *proj = ProjectedShadowVerts;
vecV_t *verts = mesh->xyz_array;
index_t *indexes = mesh->indexes;
int *neighbours = mesh->trneighbors;
int numtris = mesh->numindexes/3;
qglBegin(GL_TRIANGLES);
for (t = 0; t < numtris; t++)
{
if (triangleFacing[t])
{
//draw front
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(verts[indexes[t*3+2]]);
//draw back
qglVertex3fv(proj[indexes[t*3+1]]);
qglVertex3fv(proj[indexes[t*3+0]]);
qglVertex3fv(proj[indexes[t*3+2]]);
//draw side caps
if (neighbours[t*3+0] < 0 || !triangleFacing[neighbours[t*3+0]])
{
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(proj [indexes[t*3+0]]);
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(proj [indexes[t*3+0]]);
qglVertex3fv(proj [indexes[t*3+1]]);
}
if (neighbours[t*3+1] < 0 || !triangleFacing[neighbours[t*3+1]])
{
qglVertex3fv(verts[indexes[t*3+2]]);
qglVertex3fv(verts[indexes[t*3+1]]);
qglVertex3fv(proj [indexes[t*3+1]]);
qglVertex3fv(verts[indexes[t*3+2]]);
qglVertex3fv(proj [indexes[t*3+1]]);
qglVertex3fv(proj [indexes[t*3+2]]);
}
if (neighbours[t*3+2] < 0 || !triangleFacing[neighbours[t*3+2]])
{
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(verts[indexes[t*3+2]]);
qglVertex3fv(proj [indexes[t*3+2]]);
qglVertex3fv(verts[indexes[t*3+0]]);
qglVertex3fv(proj [indexes[t*3+2]]);
qglVertex3fv(proj [indexes[t*3+0]]);
}
}
}
qglEnd();
}
#endif
//true if no shading is to be used.
static qboolean R_CalcModelLighting(entity_t *e, model_t *clmodel, unsigned int rmode)
{
vec3_t lightdir;
int i;
vec3_t dist;
float add;
if (clmodel->engineflags & MDLF_FLAME)
{
shadelight[0] = shadelight[1] = shadelight[2] = 4096;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 4096;
return true;
}
if ((e->drawflags & MLS_MASKIN) == MLS_FULLBRIGHT || (e->flags & Q2RF_FULLBRIGHT))
{
shadelight[0] = shadelight[1] = shadelight[2] = 255;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 0;
return true;
}
//shortcut here, no need to test bsp lights or world lights when there's realtime lighting going on.
if (rmode == BEM_DEPTHDARK || rmode == BEM_DEPTHONLY)
{
shadelight[0] = shadelight[1] = shadelight[2] = 0;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 0;
return true;
}
if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL))
{
if (e->flags & Q2RF_WEAPONMODEL)
{
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, r_refdef.vieworg, shadelight, ambientlight, lightdir);
for (i = 0; i < 3; i++)
{ /*viewmodels may not be pure black*/
if (ambientlight[i] < 24)
ambientlight[i] = 24;
}
}
else
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, e->origin, shadelight, ambientlight, lightdir);
}
else
{
ambientlight[0] = ambientlight[1] = ambientlight[2] = shadelight[0] = shadelight[1] = shadelight[2] = 255;
lightdir[0] = 0;
lightdir[1] = 1;
lightdir[2] = 1;
}
if (!r_vertexdlights.ival && r_dynamic.ival)
{
//don't do world lights, although that might be funny
for (i=rtlights_first; i<RTL_FIRST; i++)
{
if (cl_dlights[i].radius)
{
VectorSubtract (e->origin,
cl_dlights[i].origin,
dist);
add = cl_dlights[i].radius - Length(dist);
if (add > 0) {
add*=5;
ambientlight[0] += add * cl_dlights[i].color[0];
ambientlight[1] += add * cl_dlights[i].color[1];
ambientlight[2] += add * cl_dlights[i].color[2];
//ZOID models should be affected by dlights as well
shadelight[0] += add * cl_dlights[i].color[0];
shadelight[1] += add * cl_dlights[i].color[1];
shadelight[2] += add * cl_dlights[i].color[2];
}
}
}
}
for (i = 0; i < 3; i++) //clamp light so it doesn't get vulgar.
{
if (ambientlight[i] > 128)
ambientlight[i] = 128;
if (shadelight[i] > 192)
shadelight[i] = 192;
}
//MORE HUGE HACKS! WHEN WILL THEY CEASE!
// clamp lighting so it doesn't overbright as much
// ZOID: never allow players to go totally black
if (clmodel->engineflags & MDLF_PLAYER)
{
float fb = r_fullbrightSkins.value;
if (fb > cls.allow_fbskins)
fb = cls.allow_fbskins;
if (fb < 0)
fb = 0;
if (fb)
{
extern cvar_t r_fb_models;
if (fb >= 1 && r_fb_models.value)
{
ambientlight[0] = ambientlight[1] = ambientlight[2] = 4096;
shadelight[0] = shadelight[1] = shadelight[2] = 4096;
return true;
}
else
{
for (i = 0; i < 3; i++)
{
ambientlight[i] = max(ambientlight[i], 8 + fb * 120);
shadelight[i] = max(shadelight[i], 8 + fb * 120);
}
}
}
for (i = 0; i < 3; i++)
{
if (ambientlight[i] < 8)
ambientlight[i] = shadelight[i] = 8;
}
}
for (i = 0; i < 3; i++)
{
if (ambientlight[i] > 128)
ambientlight[i] = 128;
shadelight[i] /= 200.0/255;
ambientlight[i] /= 200.0/255;
}
if ((e->model->flags & EF_ROTATE) && cl.hexen2pickups)
{
shadelight[0] = shadelight[1] = shadelight[2] =
ambientlight[0] = ambientlight[1] = ambientlight[2] = 128+sin(cl.time*4)*64;
}
if ((e->drawflags & MLS_MASKIN) == MLS_ABSLIGHT)
{
shadelight[0] = shadelight[1] = shadelight[2] = e->abslight;
ambientlight[0] = ambientlight[1] = ambientlight[2] = 0;
}
//#define SHOWLIGHTDIR
{ //lightdir is absolute, shadevector is relative
shadevector[0] = DotProduct(lightdir, e->axis[0]);
shadevector[1] = DotProduct(lightdir, e->axis[1]);
shadevector[2] = DotProduct(lightdir, e->axis[2]);
if (e->flags & Q2RF_WEAPONMODEL)
{
vec3_t temp;
temp[0] = DotProduct(shadevector, vpn);
temp[1] = -DotProduct(shadevector, vright);
temp[2] = DotProduct(shadevector, vup);
VectorCopy(temp, shadevector);
}
VectorNormalize(shadevector);
}
shadelight[0] *= 1/255.0f;
shadelight[1] *= 1/255.0f;
shadelight[2] *= 1/255.0f;
ambientlight[0] *= 1/255.0f;
ambientlight[1] *= 1/255.0f;
ambientlight[2] *= 1/255.0f;
if (e->flags & Q2RF_GLOW)
{
shadelight[0] += sin(cl.time)*0.25;
shadelight[1] += sin(cl.time)*0.25;
shadelight[2] += sin(cl.time)*0.25;
}
return false;
}
static shader_t reskinnedmodelshader;
void R_DrawGAliasModel (entity_t *e, unsigned int rmode)
{
model_t *clmodel;
galiasinfo_t *inf;
mesh_t mesh;
texnums_t *skin;
vec3_t saveorg;
int surfnum;
int bef;
qboolean needrecolour;
qboolean nolightdir;
shader_t *shader;
// if (e->flags & Q2RF_VIEWERMODEL && e->keynum == cl.playernum[r_refdef.currentplayernum]+1)
// return;
if (r_refdef.externalview && e->flags & Q2RF_WEAPONMODEL)
return;
{
extern int cl_playerindex;
if (e->scoreboard && e->model == cl.model_precache[cl_playerindex])
{
clmodel = e->scoreboard->model;
if (!clmodel || clmodel->type != mod_alias)
clmodel = e->model;
}
else
clmodel = e->model;
}
if (clmodel->tainted)
{
if (!ruleset_allow_modified_eyes.ival && !strcmp(clmodel->name, "progs/eyes.mdl"))
return;
}
if (!(e->flags & Q2RF_WEAPONMODEL))
{
if (R_CullEntityBox (e, clmodel->mins, clmodel->maxs))
return;
#ifdef RTLIGHTS
if (BE_LightCullModel(e->origin, clmodel))
return;
}
else
{
if (BE_LightCullModel(r_origin, clmodel))
return;
#endif
}
nolightdir = R_CalcModelLighting(e, clmodel, rmode);
if (gl_affinemodels.ival)
qglHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
if (e->flags & Q2RF_DEPTHHACK)
qglDepthRange (gldepthmin, gldepthmin + 0.3*(gldepthmax-gldepthmin));
bef = BEF_FORCEDEPTHTEST;
if (e->flags & Q2RF_ADDITIVE)
{
bef |= BEF_FORCEADDITIVE;
}
else if (e->drawflags & DRF_TRANSLUCENT) //hexen2
{
bef |= BEF_FORCETRANSPARENT;
e->shaderRGBAf[3] = r_wateralpha.value;
}
else if ((e->model->flags & EFH2_SPECIAL_TRANS)) //hexen2 flags.
{
//BEFIXME: this needs to generate the right sort of default instead
//(alpha blend+disable cull)
}
else if ((e->model->flags & EFH2_TRANSPARENT))
{
//BEFIXME: make sure the shader generator works
}
else if ((e->model->flags & EFH2_HOLEY))
{
//BEFIXME: this needs to generate the right sort of default instead
//(alpha test)
}
else if (e->shaderRGBAf[3] < 1 && cls.protocol != CP_QUAKE3)
bef |= BEF_FORCETRANSPARENT;
BE_SelectMode(rmode, bef);
qglPushMatrix();
R_RotateForEntity(e, clmodel);
inf = RMod_Extradata (clmodel);
if (qglPNTrianglesfATI && gl_ati_truform.ival)
qglEnable(GL_PN_TRIANGLES_ATI);
if (clmodel == cl.model_precache_vwep[0])
{
extern int cl_playerindex;
clmodel = cl.model_precache[cl_playerindex];
}
if (e->flags & Q2RF_WEAPONMODEL)
{
VectorCopy(currententity->origin, saveorg);
VectorCopy(r_refdef.vieworg, currententity->origin);
}
memset(&mesh, 0, sizeof(mesh));
for(surfnum=0; inf; ((inf->nextsurf)?(inf = (galiasinfo_t*)((char *)inf + inf->nextsurf)):(inf=NULL)), surfnum++)
{
needrecolour = Alias_GAliasBuildMesh(&mesh, inf, e, e->shaderRGBAf[3], nolightdir);
shader = currententity->forcedshader;
skin = GL_ChooseSkin(inf, clmodel->name, surfnum, e);
if (!shader)
{
if (skin && skin->shader)
shader = skin->shader;
else
{
shader = &reskinnedmodelshader;
skin = &shader->defaulttextures;
reskinnedmodelshader.numpasses = 1;
reskinnedmodelshader.passes[0].flags = 0;
reskinnedmodelshader.passes[0].numMergedPasses = 1;
reskinnedmodelshader.passes[0].anim_frames[0] = skin->base;
if (nolightdir || !mesh.normals_array || !mesh.colors4f_array)
{
reskinnedmodelshader.passes[0].rgbgen = RGB_GEN_IDENTITY_LIGHTING;
reskinnedmodelshader.passes[0].flags |= SHADER_PASS_NOCOLORARRAY;
}
else
reskinnedmodelshader.passes[0].rgbgen = RGB_GEN_LIGHTING_DIFFUSE;
reskinnedmodelshader.passes[0].alphagen = (e->shaderRGBAf[3]<1)?ALPHA_GEN_ENTITY:ALPHA_GEN_IDENTITY;
reskinnedmodelshader.passes[0].shaderbits |= SBITS_MISC_DEPTHWRITE;
reskinnedmodelshader.passes[0].blendmode = GL_MODULATE;
reskinnedmodelshader.passes[0].texgen = T_GEN_DIFFUSE;
reskinnedmodelshader.flags = SHADER_CULL_FRONT;
}
}
BE_DrawMesh_Single(shader, &mesh, NULL, skin);
}
if (e->flags & Q2RF_WEAPONMODEL)
VectorCopy(saveorg, currententity->origin);
if (qglPNTrianglesfATI && gl_ati_truform.ival)
qglDisable(GL_PN_TRIANGLES_ATI);
qglPopMatrix();
if (gl_affinemodels.value)
qglHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
if (e->flags & Q2RF_DEPTHHACK)
qglDepthRange (gldepthmin, gldepthmax);
BE_SelectMode(rmode, 0);
}
//returns the rotated offset of the two points in result
void RotateLightVector(const vec3_t *axis, const vec3_t origin, const vec3_t lightpoint, vec3_t result)
{
vec3_t offs;
offs[0] = lightpoint[0] - origin[0];
offs[1] = lightpoint[1] - origin[1];
offs[2] = lightpoint[2] - origin[2];
result[0] = DotProduct (offs, axis[0]);
result[1] = DotProduct (offs, axis[1]);
result[2] = DotProduct (offs, axis[2]);
}
#if defined(RTLIGHTS) && defined(GLQUAKE)
void GL_LightMesh (mesh_t *mesh, vec3_t lightpos, vec3_t colours, float radius)
{
vec3_t dir;
int i;
float dot, d, f, a;
vecV_t *xyz = mesh->xyz_array;
vec3_t *normals = mesh->normals_array;
vec4_t *out = mesh->colors4f_array;
if (!out)
return; //urm..
if (normals)
{
for (i = 0; i < mesh->numvertexes; i++)
{
VectorSubtract(lightpos, xyz[i], dir);
dot = DotProduct(dir, normals[i]);
if (dot > 0)
{
d = DotProduct(dir, dir)/radius;
a = 1/d;
if (a>0)
{
a *= dot/sqrt(d);
f = a*colours[0];
out[i][0] = f;
f = a*colours[1];
out[i][1] = f;
f = a*colours[2];
out[i][2] = f;
}
else
{
out[i][0] = 0;
out[i][1] = 0;
out[i][2] = 0;
}
}
else
{
out[i][0] = 0;
out[i][1] = 0;
out[i][2] = 0;
}
out[i][3] = 1;
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
VectorSubtract(lightpos, xyz[i], dir);
out[i][0] = colours[0];
out[i][1] = colours[1];
out[i][2] = colours[2];
out[i][3] = 1;
}
}
}
//courtesy of DP
void R_BuildBumpVectors(const float *v0, const float *v1, const float *v2, const float *tc0, const float *tc1, const float *tc2, float *svector3f, float *tvector3f, float *normal3f)
{
float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2];
// 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles
// 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates
// 6 multiply, 9 subtract
VectorSubtract(v1, v0, v10);
VectorSubtract(v2, v0, v20);
normal3f[0] = v10[1] * v20[2] - v10[2] * v20[1];
normal3f[1] = v10[2] * v20[0] - v10[0] * v20[2];
normal3f[2] = v10[0] * v20[1] - v10[1] * v20[0];
// 12 multiply, 10 subtract
tc10[1] = tc1[1] - tc0[1];
tc20[1] = tc2[1] - tc0[1];
svector3f[0] = tc10[1] * v20[0] - tc20[1] * v10[0];
svector3f[1] = tc10[1] * v20[1] - tc20[1] * v10[1];
svector3f[2] = tc10[1] * v20[2] - tc20[1] * v10[2];
tc10[0] = tc1[0] - tc0[0];
tc20[0] = tc2[0] - tc0[0];
tvector3f[0] = tc10[0] * v20[0] - tc20[0] * v10[0];
tvector3f[1] = tc10[0] * v20[1] - tc20[0] * v10[1];
tvector3f[2] = tc10[0] * v20[2] - tc20[0] * v10[2];
// 12 multiply, 4 add, 6 subtract
f = DotProduct(svector3f, normal3f);
svector3f[0] -= f * normal3f[0];
svector3f[1] -= f * normal3f[1];
svector3f[2] -= f * normal3f[2];
f = DotProduct(tvector3f, normal3f);
tvector3f[0] -= f * normal3f[0];
tvector3f[1] -= f * normal3f[1];
tvector3f[2] -= f * normal3f[2];
// if texture is mapped the wrong way (counterclockwise), the tangents
// have to be flipped, this is detected by calculating a normal from the
// two tangents, and seeing if it is opposite the surface normal
// 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates
CrossProduct(tvector3f, svector3f, tangentcross);
if (DotProduct(tangentcross, normal3f) < 0)
{
VectorNegate(svector3f, svector3f);
VectorNegate(tvector3f, tvector3f);
}
}
//courtesy of DP
void R_AliasGenerateTextureVectors(mesh_t *mesh, float *normal3f, float *svector3f, float *tvector3f)
{
int i;
float sdir[3], tdir[3], normal[3], *v;
index_t *e;
float *vertex3f = (float*)mesh->xyz_array;
float *texcoord2f = (float*)mesh->st_array;
// clear the vectors
// if (svector3f)
memset(svector3f, 0, mesh->numvertexes * sizeof(float[3]));
// if (tvector3f)
memset(tvector3f, 0, mesh->numvertexes * sizeof(float[3]));
// if (normal3f)
memset(normal3f, 0, mesh->numvertexes * sizeof(float[3]));
// process each vertex of each triangle and accumulate the results
for (e = mesh->indexes; e < mesh->indexes+mesh->numindexes; e += 3)
{
R_BuildBumpVectors(vertex3f + e[0] * 3, vertex3f + e[1] * 3, vertex3f + e[2] * 3, texcoord2f + e[0] * 2, texcoord2f + e[1] * 2, texcoord2f + e[2] * 2, sdir, tdir, normal);
// if (!areaweighting)
// {
// VectorNormalize(sdir);
// VectorNormalize(tdir);
// VectorNormalize(normal);
// }
// if (svector3f)
for (i = 0;i < 3;i++)
VectorAdd(svector3f + e[i]*3, sdir, svector3f + e[i]*3);
// if (tvector3f)
for (i = 0;i < 3;i++)
VectorAdd(tvector3f + e[i]*3, tdir, tvector3f + e[i]*3);
// if (normal3f)
for (i = 0;i < 3;i++)
VectorAdd(normal3f + e[i]*3, normal, normal3f + e[i]*3);
}
// now we could divide the vectors by the number of averaged values on
// each vertex... but instead normalize them
// 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies
if (svector3f)
for (i = 0, v = svector3f;i < mesh->numvertexes;i++, v += 3)
VectorNormalize(v);
// 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies
if (tvector3f)
for (i = 0, v = tvector3f;i < mesh->numvertexes;i++, v += 3)
VectorNormalize(v);
// 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies
if (normal3f)
for (i = 0, v = normal3f;i < mesh->numvertexes;i++, v += 3)
VectorNormalize(v);
}
void R_AliasGenerateVertexLightDirs(mesh_t *mesh, vec3_t lightdir, vec3_t *results, vec3_t *normal3f, vec3_t *svector3f, vec3_t *tvector3f)
{
int i;
R_AliasGenerateTextureVectors(mesh, (float*)normal3f, (float*)svector3f, (float*)tvector3f);
for (i = 0; i < mesh->numvertexes; i++)
{
results[i][0] = -DotProduct(lightdir, tvector3f[i]);
results[i][1] = -DotProduct(lightdir, svector3f[i]);
results[i][2] = -DotProduct(lightdir, normal3f[i]);
}
}
//FIXME: Be less agressive.
//This function will have to be called twice (for geforce cards), with the same data, so do the building once and rendering twice.
void R_DrawGAliasShadowVolume(entity_t *e, vec3_t lightpos, float radius)
{
model_t *clmodel = e->model;
galiasinfo_t *inf;
mesh_t mesh;
vec3_t lightorg;
if (clmodel->engineflags & (MDLF_FLAME | MDLF_BOLT))
return;
if (r_noaliasshadows.ival)
return;
// if (e->shaderRGBAf[3] < 0.5)
// return;
RotateLightVector(e->axis, e->origin, lightpos, lightorg);
if (Length(lightorg) > radius + clmodel->radius)
return;
qglPushMatrix();
R_RotateForEntity(e, clmodel);
inf = RMod_Extradata (clmodel);
while(inf)
{
if (inf->ofs_trineighbours)
{
Alias_GAliasBuildMesh(&mesh, inf, e, 1, true);
R_CalcFacing(&mesh, lightorg);
R_ProjectShadowVolume(&mesh, lightorg);
R_DrawShadowVolume(&mesh);
}
if (inf->nextsurf)
inf = (galiasinfo_t*)((char *)inf + inf->nextsurf);
else
inf = NULL;
}
qglPopMatrix();
}
#endif
#if 0
static int R_FindTriangleWithEdge ( index_t *indexes, int numtris, index_t start, index_t end, int ignore)
{
int i;
int match, count;
count = 0;
match = -1;
for (i = 0; i < numtris; i++, indexes += 3)
{
if ( (indexes[0] == start && indexes[1] == end)
|| (indexes[1] == start && indexes[2] == end)
|| (indexes[2] == start && indexes[0] == end) ) {
if (i != ignore)
match = i;
count++;
} else if ( (indexes[1] == start && indexes[0] == end)
|| (indexes[2] == start && indexes[1] == end)
|| (indexes[0] == start && indexes[2] == end) ) {
count++;
}
}
// detect edges shared by three triangles and make them seams
if (count > 2)
match = -1;
return match;
}
#endif
#if 0
static void R_BuildTriangleNeighbours ( int *neighbours, index_t *indexes, int numtris )
{
int i, *n;
index_t *index;
for (i = 0, index = indexes, n = neighbours; i < numtris; i++, index += 3, n += 3)
{
n[0] = R_FindTriangleWithEdge (indexes, numtris, index[1], index[0], i);
n[1] = R_FindTriangleWithEdge (indexes, numtris, index[2], index[1], i);
n[2] = R_FindTriangleWithEdge (indexes, numtris, index[0], index[2], i);
}
}
#endif
#if 0
void GL_GenerateNormals(float *orgs, float *normals, int *indicies, int numtris, int numverts)
{
vec3_t d1, d2;
vec3_t norm;
int t, i, v1, v2, v3;
int tricounts[MD2MAX_VERTS];
vec3_t combined[MD2MAX_VERTS];
int triremap[MD2MAX_VERTS];
if (numverts > MD2MAX_VERTS)
return; //not an issue, you just loose the normals.
memset(triremap, 0, numverts*sizeof(triremap[0]));
v2=0;
for (i = 0; i < numverts; i++) //weld points
{
for (v1 = 0; v1 < v2; v1++)
{
if (orgs[i*3+0] == combined[v1][0] &&
orgs[i*3+1] == combined[v1][1] &&
orgs[i*3+2] == combined[v1][2])
{
triremap[i] = v1;
break;
}
}
if (v1 == v2)
{
combined[v1][0] = orgs[i*3+0];
combined[v1][1] = orgs[i*3+1];
combined[v1][2] = orgs[i*3+2];
v2++;
triremap[i] = v1;
}
}
memset(tricounts, 0, v2*sizeof(tricounts[0]));
memset(combined, 0, v2*sizeof(*combined));
for (t = 0; t < numtris; t++)
{
v1 = triremap[indicies[t*3]];
v2 = triremap[indicies[t*3+1]];
v3 = triremap[indicies[t*3+2]];
VectorSubtract((orgs+v2*3), (orgs+v1*3), d1);
VectorSubtract((orgs+v3*3), (orgs+v1*3), d2);
CrossProduct(d1, d2, norm);
VectorNormalize(norm);
VectorAdd(norm, combined[v1], combined[v1]);
VectorAdd(norm, combined[v2], combined[v2]);
VectorAdd(norm, combined[v3], combined[v3]);
tricounts[v1]++;
tricounts[v2]++;
tricounts[v3]++;
}
for (i = 0; i < numverts; i++)
{
if (tricounts[triremap[i]])
{
VectorScale(combined[triremap[i]], 1.0f/tricounts[triremap[i]], normals+i*3);
}
}
}
#endif
#endif
#endif // defined(GLQUAKE)