1
0
Fork 0
forked from fte/fteqw
fteqw/engine/common/sha1.c
2023-04-17 03:58:20 +01:00

299 lines
9.3 KiB
C

/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
Test Vectors (from FIPS PUB 180-1)
"abc"
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
This file came to FTE via EzQuake.
*/
#include "quakedef.h"
#include <string.h>
/* #define SHA1HANDSOFF * Copies data before messing with it. */
#define SHA1HANDSOFF
typedef struct
{
unsigned int state[5];
unsigned int count[2];
unsigned char buffer[64];
} SHA1_CTX;
#define SHA1_DIGEST_SIZE 20
#define ShaBigLong(l) (((unsigned char*)&l)[0]<<24) | (((unsigned char*)&l)[1]<<16) | (((unsigned char*)&l)[2]<<8) | (((unsigned char*)&l)[3]<<0)
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
#define blk0(i) (block->l[i] = ShaBigLong(block->l[i]))
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64])
{
unsigned int a, b, c, d, e;
typedef union
{
unsigned char c[64];
unsigned int l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
unsigned char workspace[64];
block = (CHAR64LONG16*)workspace;
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context */
static void SHA1Init(void *ctx)
{
SHA1_CTX *context = ctx;
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
static void SHA1Update(void *ctx, const void* data, size_t len)
{
SHA1_CTX *context = ctx;
size_t i, j;
j = (context->count[0] >> 3) & 63;
if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++;
context->count[1] += (len >> 29);
if ((j + len) > 63)
{
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64)
{
SHA1Transform(context->state, (const qbyte*)data + i);
}
j = 0;
}
else
i = 0;
memcpy(&context->buffer[j], (const qbyte*)data + i, len - i);
}
/* Add padding and return the message digest. */
static void SHA1Final(unsigned char digest[SHA1_DIGEST_SIZE], void *ctx)
{
SHA1_CTX *context = ctx;
unsigned int i, j;
unsigned char finalcount[8];
for (i = 0; i < 8; i++)
{
finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
SHA1Update(context, (unsigned char *)"\200", 1);
while ((context->count[0] & 504) != 448)
{
SHA1Update(context, (unsigned char *)"\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < SHA1_DIGEST_SIZE; i++)
{
digest[i] = (unsigned char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
/* Wipe variables */
i = j = 0;
memset(context->buffer, 0, 64);
memset(context->state, 0, 20);
memset(context->count, 0, 8);
memset(&finalcount, 0, 8);
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
SHA1Transform(context->state, context->buffer);
#endif
}
hashfunc_t hash_sha1 =
{
SHA1_DIGEST_SIZE,
sizeof(SHA1_CTX),
SHA1Init,
SHA1Update,
SHA1Final,
};
unsigned int hashfunc_terminate_uint(const hashfunc_t *func, void *context)
{
unsigned int r = 0, l;
unsigned char *digest = alloca(func->digestsize);
func->terminate(digest, context);
for (l = 0; l < func->digestsize; l++)
r ^= digest[l]<<((l%sizeof(r))*8);
return r;
}
unsigned int CalcHashInt(const hashfunc_t *func, const void *data, size_t datasize)
{
void *ctx = alloca(func->contextsize);
func->init(ctx);
func->process(ctx, data, datasize);
return hashfunc_terminate_uint(func, ctx);
}
size_t CalcHash(const hashfunc_t *func, unsigned char *digest, size_t maxdigestsize, const unsigned char *string, size_t stringlen)
{
void *ctx = alloca(func->contextsize);
if (maxdigestsize < func->digestsize)
return 0; //panic
func->init(ctx);
func->process(ctx, string, stringlen);
func->terminate(digest, ctx);
return func->digestsize;
}
/* hmac-sha1.c -- hashed message authentication codes
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
/* Written by Simon Josefsson.
hacked up a bit by someone else...
*/
#define IPAD 0x36
#define OPAD 0x5c
static void memxor(char *dest, const char *src, size_t length)
{
size_t i;
for (i = 0; i < length; i++)
{
dest[i] ^= src[i];
}
}
//typedef size_t hashfunc_t(unsigned char *digest, size_t maxdigestsize, size_t numstrings, const unsigned char **strings, size_t *stringlens);
size_t CalcHMAC(const hashfunc_t *hashfunc, unsigned char *digest, size_t maxdigestsize,
const unsigned char *data, size_t datalen,
const unsigned char *key, size_t keylen)
{
#define HMAC_DIGEST_MAXSIZE 64
qbyte optkeybuf[HMAC_DIGEST_MAXSIZE];
qbyte innerhash[HMAC_DIGEST_MAXSIZE];
qbyte block[64];
if (hashfunc->digestsize > HMAC_DIGEST_MAXSIZE || hashfunc->digestsize > maxdigestsize)
return 0;
/* Reduce the key's size, so that it is never larger than a block. */
if (keylen > sizeof(block))
{
qbyte *ctx = alloca(hashfunc->contextsize);
hashfunc->init(ctx);
hashfunc->process(ctx, key, keylen);
hashfunc->terminate(optkeybuf, ctx);
key=optkeybuf;
}
/* Compute INNERHASH from KEY and IN. */
memset (block, IPAD, sizeof (block));
memxor (block, key, keylen);
{
qbyte *ctx = alloca(hashfunc->contextsize);
hashfunc->init(ctx);
hashfunc->process(ctx, block, sizeof(block));
hashfunc->process(ctx, data, datalen);
hashfunc->terminate(innerhash, ctx);
}
/* Compute result from KEY and INNERHASH. */
memset (block, OPAD, sizeof (block));
memxor (block, key, keylen);
{
qbyte *ctx = alloca(hashfunc->contextsize);
hashfunc->init(ctx);
hashfunc->process(ctx, block, sizeof(block));
hashfunc->process(ctx, innerhash, hashfunc->digestsize);
hashfunc->terminate(digest, ctx);
return hashfunc->digestsize;
}
}