1
0
Fork 0
forked from fte/fteqw
fteqw/engine/common/sha2.c

567 lines
14 KiB
C
Raw Normal View History

/* sha512.c - SHA384 and SHA512 hash functions
* Copyright (C) 2003, 2008, 2009 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Test vectors from FIPS-180-2:
*
* "abc"
* 384:
* CB00753F 45A35E8B B5A03D69 9AC65007 272C32AB 0EDED163
* 1A8B605A 43FF5BED 8086072B A1E7CC23 58BAECA1 34C825A7
* 512:
* DDAF35A1 93617ABA CC417349 AE204131 12E6FA4E 89A97EA2 0A9EEEE6 4B55D39A
* 2192992A 274FC1A8 36BA3C23 A3FEEBBD 454D4423 643CE80E 2A9AC94F A54CA49F
*
* "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
* 384:
* 09330C33 F71147E8 3D192FC7 82CD1B47 53111B17 3B3B05D2
* 2FA08086 E3B0F712 FCC7C71A 557E2DB9 66C3E9FA 91746039
* 512:
* 8E959B75 DAE313DA 8CF4F728 14FC143F 8F7779C6 EB9F7FA1 7299AEAD B6889018
* 501D289E 4900F7E4 331B99DE C4B5433A C7D329EE B6DD2654 5E96E55B 874BE909
*
* "a" x 1000000
* 384:
* 9D0E1809 716474CB 086E834E 310A4A1C ED149E9C 00F24852
* 7972CEC5 704C2A5B 07B8B3DC 38ECC4EB AE97DDD8 7F3D8985
* 512:
* E718483D 0CE76964 4E2E42C7 BC15B463 8E1F98B1 3B204428 5632A803 AFA973EB
* DE0FF244 877EA60A 4CB0432C E577C31B EB009C5C 2C49AA2E 4EADB217 AD8CC09B
*/
#include "quakedef.h"
#ifndef SHA2
#define SHA2 256
#include "sha2.c"
#undef SHA2
#define SHA2 512
#endif
#undef U64_C
#undef U64_C_LOW
#undef u64
#undef ROUNDS
#undef SHA2_CONTEXT
#undef sha2trunc_init
#undef sha2_init
#if SHA2==256
#define U64_C(n) (n##ull>>32)
#define U64_C_LOW(n) (u64)(n##ull)
#define u64 quint32_t
#define ROUNDS 64
#define SHA2_CONTEXT SHA256_CONTEXT
#define sha2trunc_init sha224_init
#define sha2_init sha256_init
#else
#define U64_C(n) n##ull
#define U64_C_LOW(n) n##ull
#define u64 quint64_t
#define ROUNDS 80
#define SHA2_CONTEXT SHA512_CONTEXT
#define ROTR ROTR64
#define Ch Ch64
#define Maj Maj64
#define Sum0 Sum0_64
#define Sum1 Sum1_64
#define transform transform_64
#define sha2trunc_init sha384_init
#define sha2_init sha512_init
#define sha2_write sha512_write
#define sha2_final sha512_final
#endif
#define BLOCKBYTES (16*sizeof(u64))
#define byte qbyte
typedef struct
{
u64 h0, h1, h2, h3, h4, h5, h6, h7;
u64 nblocks;
byte buf[BLOCKBYTES];
int count;
} SHA2_CONTEXT;
static void
sha2_init (void *context)
{
SHA2_CONTEXT *hd = context;
hd->h0 = U64_C(0x6a09e667f3bcc908);
hd->h1 = U64_C(0xbb67ae8584caa73b);
hd->h2 = U64_C(0x3c6ef372fe94f82b);
hd->h3 = U64_C(0xa54ff53a5f1d36f1);
hd->h4 = U64_C(0x510e527fade682d1);
hd->h5 = U64_C(0x9b05688c2b3e6c1f);
hd->h6 = U64_C(0x1f83d9abfb41bd6b);
hd->h7 = U64_C(0x5be0cd19137e2179);
hd->nblocks = 0;
hd->count = 0;
}
static void sha2trunc_init (void *context)
{
SHA2_CONTEXT *hd = context;
//sha224 uses only the low parts.
hd->h0 = U64_C_LOW(0xcbbb9d5dc1059ed8);
hd->h1 = U64_C_LOW(0x629a292a367cd507);
hd->h2 = U64_C_LOW(0x9159015a3070dd17);
hd->h3 = U64_C_LOW(0x152fecd8f70e5939);
hd->h4 = U64_C_LOW(0x67332667ffc00b31);
hd->h5 = U64_C_LOW(0x8eb44a8768581511);
hd->h6 = U64_C_LOW(0xdb0c2e0d64f98fa7);
hd->h7 = U64_C_LOW(0x47b5481dbefa4fa4);
hd->nblocks = 0;
hd->count = 0;
}
#if defined(__GNUC__) && (__GNUC__==10)
__attribute__((optimize("no-tree-bit-ccp"))) //gcc (Debian 10.2.1-6) 10.2.1 20210110 miscompiles without this (eg: test webrtc compat with a browser)
#endif
fte_inlinestatic u64
ROTR (u64 x, u64 n)
{
return ((x >> n) | (x << (64 - n)));
}
fte_inlinestatic u64
Ch (u64 x, u64 y, u64 z)
{
return ((x & y) ^ ( ~x & z));
}
fte_inlinestatic u64
Maj (u64 x, u64 y, u64 z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
#undef S0
#undef S1
#if SHA2==256
#define S0(x) (ROTR((x),7) ^ ROTR((x),18) ^ ((x)>>3))
#define S1(x) (ROTR((x),17) ^ ROTR((x),19) ^ ((x)>>10))
fte_inlinestatic u64
Sum0 (u64 x)
{
return (ROTR (x, 2) ^ ROTR (x, 13) ^ ROTR (x, 22));
}
fte_inlinestatic u64
Sum1 (u64 x)
{
return (ROTR (x, 6) ^ ROTR (x, 11) ^ ROTR (x, 25));
}
#else
#define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
#define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
fte_inlinestatic u64
Sum0 (u64 x)
{
return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39));
}
fte_inlinestatic u64
Sum1 (u64 x)
{
return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41));
}
#endif
/****************
* Transform the message W which consists of 16 64-bit-words
*/
static void
transform (SHA2_CONTEXT *hd, const unsigned char *data)
{
u64 a, b, c, d, e, f, g, h;
u64 w[ROUNDS];
int t;
static const u64 k[] =
{
U64_C(0x428a2f98d728ae22), U64_C(0x7137449123ef65cd),
U64_C(0xb5c0fbcfec4d3b2f), U64_C(0xe9b5dba58189dbbc),
U64_C(0x3956c25bf348b538), U64_C(0x59f111f1b605d019),
U64_C(0x923f82a4af194f9b), U64_C(0xab1c5ed5da6d8118),
U64_C(0xd807aa98a3030242), U64_C(0x12835b0145706fbe),
U64_C(0x243185be4ee4b28c), U64_C(0x550c7dc3d5ffb4e2),
U64_C(0x72be5d74f27b896f), U64_C(0x80deb1fe3b1696b1),
U64_C(0x9bdc06a725c71235), U64_C(0xc19bf174cf692694),
U64_C(0xe49b69c19ef14ad2), U64_C(0xefbe4786384f25e3),
U64_C(0x0fc19dc68b8cd5b5), U64_C(0x240ca1cc77ac9c65),
U64_C(0x2de92c6f592b0275), U64_C(0x4a7484aa6ea6e483),
U64_C(0x5cb0a9dcbd41fbd4), U64_C(0x76f988da831153b5),
U64_C(0x983e5152ee66dfab), U64_C(0xa831c66d2db43210),
U64_C(0xb00327c898fb213f), U64_C(0xbf597fc7beef0ee4),
U64_C(0xc6e00bf33da88fc2), U64_C(0xd5a79147930aa725),
U64_C(0x06ca6351e003826f), U64_C(0x142929670a0e6e70),
U64_C(0x27b70a8546d22ffc), U64_C(0x2e1b21385c26c926),
U64_C(0x4d2c6dfc5ac42aed), U64_C(0x53380d139d95b3df),
U64_C(0x650a73548baf63de), U64_C(0x766a0abb3c77b2a8),
U64_C(0x81c2c92e47edaee6), U64_C(0x92722c851482353b),
U64_C(0xa2bfe8a14cf10364), U64_C(0xa81a664bbc423001),
U64_C(0xc24b8b70d0f89791), U64_C(0xc76c51a30654be30),
U64_C(0xd192e819d6ef5218), U64_C(0xd69906245565a910),
U64_C(0xf40e35855771202a), U64_C(0x106aa07032bbd1b8),
U64_C(0x19a4c116b8d2d0c8), U64_C(0x1e376c085141ab53),
U64_C(0x2748774cdf8eeb99), U64_C(0x34b0bcb5e19b48a8),
U64_C(0x391c0cb3c5c95a63), U64_C(0x4ed8aa4ae3418acb),
U64_C(0x5b9cca4f7763e373), U64_C(0x682e6ff3d6b2b8a3),
U64_C(0x748f82ee5defb2fc), U64_C(0x78a5636f43172f60),
U64_C(0x84c87814a1f0ab72), U64_C(0x8cc702081a6439ec),
U64_C(0x90befffa23631e28), U64_C(0xa4506cebde82bde9),
U64_C(0xbef9a3f7b2c67915), U64_C(0xc67178f2e372532b),
U64_C(0xca273eceea26619c), U64_C(0xd186b8c721c0c207),
U64_C(0xeada7dd6cde0eb1e), U64_C(0xf57d4f7fee6ed178),
U64_C(0x06f067aa72176fba), U64_C(0x0a637dc5a2c898a6),
U64_C(0x113f9804bef90dae), U64_C(0x1b710b35131c471b),
U64_C(0x28db77f523047d84), U64_C(0x32caab7b40c72493),
U64_C(0x3c9ebe0a15c9bebc), U64_C(0x431d67c49c100d4c),
U64_C(0x4cc5d4becb3e42b6), U64_C(0x597f299cfc657e2a),
U64_C(0x5fcb6fab3ad6faec), U64_C(0x6c44198c4a475817)
};
/* get values from the chaining vars */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
f = hd->h5;
g = hd->h6;
h = hd->h7;
#ifdef WORDS_BIGENDIAN
memcpy (w, data, BLOCKBYTES);
#else
{
int i;
byte *p2;
for (i = 0, p2 = (byte *) w; i < 16; i++, p2 += sizeof(*w))
{
#if SHA2==512
p2[7] = *data++;
p2[6] = *data++;
p2[5] = *data++;
p2[4] = *data++;
#endif
p2[3] = *data++;
p2[2] = *data++;
p2[1] = *data++;
p2[0] = *data++;
}
}
#endif
for (t = 16; t < ROUNDS; t++)
w[t] = S1 (w[t - 2]) + w[t - 7] + S0 (w[t - 15]) + w[t - 16];
for (t = 0; t < ROUNDS; )
{
u64 t1, t2;
/* Performance on a AMD Athlon(tm) Dual Core Processor 4050e
with gcc 4.3.3 using gcry_md_hash_buffer of each 10000 bytes
initialized to 0,1,2,3...255,0,... and 1000 iterations:
Not unrolled with macros: 440ms
Unrolled with macros: 350ms
Unrolled with inline: 330ms
*/
#if 0 /* Not unrolled. */
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t];
t2 = Sum0 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
t++;
#else /* Unrolled to interweave the chain variables. */
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t];
t2 = Sum0 (a) + Maj (a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+1] + w[t+1];
t2 = Sum0 (h) + Maj (h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+2] + w[t+2];
t2 = Sum0 (g) + Maj (g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+3] + w[t+3];
t2 = Sum0 (f) + Maj (f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+4] + w[t+4];
t2 = Sum0 (e) + Maj (e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+5] + w[t+5];
t2 = Sum0 (d) + Maj (d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+6] + w[t+6];
t2 = Sum0 (c) + Maj (c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+7] + w[t+7];
t2 = Sum0 (b) + Maj (b, c, d);
e += t1;
a = t1 + t2;
t += 8;
#endif
}
/* Update chaining vars. */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
hd->h5 += f;
hd->h6 += g;
hd->h7 += h;
}
/* Update the message digest with the contents
* of INBUF with length INLEN.
*/
static void
sha2_write (void *context, const void *inbuf_arg, size_t inlen)
{
const unsigned char *inbuf = inbuf_arg;
SHA2_CONTEXT *hd = context;
if (hd->count == BLOCKBYTES)
{ /* flush the buffer */
transform (hd, hd->buf);
hd->count = 0;
hd->nblocks++;
}
if (!inbuf)
return;
if (hd->count)
{
for (; inlen && hd->count < BLOCKBYTES; inlen--)
hd->buf[hd->count++] = *inbuf++;
sha2_write (context, NULL, 0);
if (!inlen)
return;
}
while (inlen >= BLOCKBYTES)
{
transform (hd, inbuf);
hd->count = 0;
hd->nblocks++;
inlen -= BLOCKBYTES;
inbuf += BLOCKBYTES;
}
for (; inlen && hd->count < BLOCKBYTES; inlen--)
hd->buf[hd->count++] = *inbuf++;
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 64 bytes representing the digest. When used for sha384,
* we take the leftmost 48 of those bytes.
*/
static void
sha2_final (void *context)
{
SHA2_CONTEXT *hd = context;
u64 t, msb, lsb;
byte *p;
sha2_write (context, NULL, 0); /* flush */ ;
t = hd->nblocks;
/* multiply by 128 to make a byte count */
lsb = t * BLOCKBYTES;
msb = t >> (sizeof(u64)*8-((BLOCKBYTES==128)?7:6));
/* add the count */
t = lsb;
if ((lsb += hd->count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> (sizeof(u64)*8-3);
if (hd->count < BLOCKBYTES-sizeof(u64)*2)
{ /* enough room */
hd->buf[hd->count++] = 0x80; /* pad */
while (hd->count < BLOCKBYTES-sizeof(u64)*2)
hd->buf[hd->count++] = 0; /* pad */
}
else
{ /* need one extra block */
hd->buf[hd->count++] = 0x80; /* pad character */
while (hd->count < BLOCKBYTES)
hd->buf[hd->count++] = 0;
sha2_write (context, NULL, 0); /* flush */ ;
memset (hd->buf, 0, BLOCKBYTES-sizeof(u64)*2); /* fill next block with zeroes */
}
#if SHA2==256
#define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \
*p++ = hd->h##a >> 8; *p++ = hd->h##a; } while (0)
/* append the 128 bit count */
hd->buf[56] = msb >> 24;
hd->buf[57] = msb >> 16;
hd->buf[58] = msb >> 8;
hd->buf[59] = msb;
hd->buf[60] = lsb >> 24;
hd->buf[61] = lsb >> 16;
hd->buf[62] = lsb >> 8;
hd->buf[63] = lsb;
#else
#define X(a) do { *p++ = hd->h##a >> 56; *p++ = hd->h##a >> 48; \
*p++ = hd->h##a >> 40; *p++ = hd->h##a >> 32; \
*p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \
*p++ = hd->h##a >> 8; *p++ = hd->h##a; } while (0)
/* append the 128 bit count */
hd->buf[112] = msb >> 56;
hd->buf[113] = msb >> 48;
hd->buf[114] = msb >> 40;
hd->buf[115] = msb >> 32;
hd->buf[116] = msb >> 24;
hd->buf[117] = msb >> 16;
hd->buf[118] = msb >> 8;
hd->buf[119] = msb;
hd->buf[120] = lsb >> 56;
hd->buf[121] = lsb >> 48;
hd->buf[122] = lsb >> 40;
hd->buf[123] = lsb >> 32;
hd->buf[124] = lsb >> 24;
hd->buf[125] = lsb >> 16;
hd->buf[126] = lsb >> 8;
hd->buf[127] = lsb;
#endif
transform (hd, hd->buf);
p = hd->buf;
#ifdef WORDS_BIGENDIAN
#undef X
#define X(a) do { *(u64*)p = hd->h##a ; p += sizeof(u64); } while (0)
#endif
X (0);
X (1);
X (2);
X (3);
X (4);
X (5);
/* Note that these last two chunks are included even for SHA384.
We just ignore them. */
X (6);
X (7);
#undef X
}
#if SHA2==256
static void sha224_finish (qbyte *digest, void *context)
{
SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context;
sha2_final(context);
memcpy(digest, hd->buf, 224/8); //only the first 224 bits of the result...
}
static void sha256_finish (qbyte *digest, void *context)
{
SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context;
sha2_final(context);
memcpy(digest, hd->buf, 256/8);
}
hashfunc_t hash_sha224 =
{
224/8,
sizeof(SHA2_CONTEXT),
sha224_init,
sha2_write,
sha224_finish
};
hashfunc_t hash_sha256 =
{
256/8,
sizeof(SHA2_CONTEXT),
sha256_init,
sha2_write,
sha256_finish
};
#endif
#if SHA2==512
static void sha384_finish (qbyte *digest, void *context)
{
SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context;
sha2_final(context);
memcpy(digest, hd->buf, 384/8);
}
static void sha512_finish (qbyte *digest, void *context)
{
SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context;
sha2_final(context);
memcpy(digest, hd->buf, 512/8);
}
hashfunc_t hash_sha384 =
{
384/8,
sizeof(SHA2_CONTEXT),
sha384_init,
sha2_write,
sha384_finish
};
hashfunc_t hash_sha512 =
{
512/8,
sizeof(SHA2_CONTEXT),
sha512_init,
sha2_write,
sha512_finish
};
#endif