1
0
Fork 0
forked from fte/fteqw
fteqw/engine/d3d/d3d11_backend.c

2938 lines
82 KiB
C
Raw Normal View History

#include "quakedef.h"
#ifdef D3D11QUAKE
#include "glquake.h"
#include "gl_draw.h"
#include "shader.h"
#define COBJMACROS
#include <d3d11.h>
extern ID3D11Device *pD3DDev11;
extern ID3D11DeviceContext *d3ddevctx;
//#define d3dcheck(foo) foo
#define d3dcheck(foo) do{HRESULT err = foo; if (FAILED(err)) Sys_Error("D3D reported error on backend line %i - error 0x%x\n", __LINE__, (unsigned int)err);} while(0)
#define MAX_TMUS 16
extern float d3d_trueprojection[16];
static void BE_RotateForEntity (const entity_t *e, const model_t *mod);
/*========================================== tables for deforms =====================================*/
#if 0
#define frand() (rand()*(1.0/RAND_MAX))
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
static float *FTableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
//bad values allow us to crash (so I can debug em)
return NULL;
}
static void FTable_Init(void)
{
unsigned int i;
double t;
for (i = 0; i < FTABLE_SIZE; i++)
{
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin(t * 2*M_PI);
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
}
typedef vec3_t mat3_t[3];
static mat3_t axisDefault={{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
static void Matrix3_Transpose (mat3_t in, mat3_t out)
{
out[0][0] = in[0][0];
out[1][1] = in[1][1];
out[2][2] = in[2][2];
out[0][1] = in[1][0];
out[0][2] = in[2][0];
out[1][0] = in[0][1];
out[1][2] = in[2][1];
out[2][0] = in[0][2];
out[2][1] = in[1][2];
}
static void Matrix3_Multiply_Vec3 (const mat3_t a, const vec3_t b, vec3_t product)
{
product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}
static int Matrix3_Compare(const mat3_t in, const mat3_t out)
{
return !memcmp(in, out, sizeof(mat3_t));
}
#endif
/*================================================*/
//global constant-buffer
typedef struct
{
float m_view[16];
float m_projection[16];
vec3_t v_eyepos;
float v_time;
} cbuf_view_t;
//entity-specific constant-buffer
typedef struct
{
float m_model[16];
vec3_t e_eyepos;
float e_time;
vec3_t e_light_ambient; float pad1;
vec3_t e_light_dir; float pad2;
vec3_t e_light_mul; float pad3;
} cbuf_entity_t;
//vertex attributes
typedef struct
{
vecV_t coord;
vec2_t tex;
vec2_t lm;
vec3_t ndir;
vec3_t sdir;
vec3_t tdir;
byte_vec4_t colorsb;
} vbovdata_t;
typedef struct
{
backendmode_t mode;
unsigned int flags;
float curtime;
const entity_t *curentity;
const dlight_t *curdlight;
vec3_t curdlight_colours;
shader_t *curshader;
texnums_t *curtexnums;
int curvertdecl;
unsigned int shaderbits;
unsigned int curcull;
float depthbias;
float depthfactor;
float m_model[16];
unsigned int lastpasscount;
vbo_t *batchvbo;
batch_t *curbatch;
batch_t dummybatch;
shader_t *shader_rtlight;
texid_t curtex[MAX_TMUS];
unsigned int tmuflags[MAX_TMUS];
ID3D11SamplerState *cursamplerstate[MAX_TMUS];
ID3D11SamplerState *sampstate[(SHADER_PASS_NEAREST|SHADER_PASS_CLAMP)+1];
mesh_t **meshlist;
unsigned int nummeshes;
#define NUMECBUFFERS 8
ID3D11Buffer *vcbuffer;
ID3D11Buffer *ecbuffers[NUMECBUFFERS];
int ecbufferidx;
unsigned int wbatch;
unsigned int maxwbatches;
batch_t *wbatches;
qboolean textureschanged;
ID3D11ShaderResourceView *pendingtextures[MAX_TMUS];
float depthrange;
qboolean purgevertexstream;
ID3D11Buffer *vertexstream;
int vertexstreamoffset;
qboolean purgeindexstream;
ID3D11Buffer *indexstream;
int indexstreamoffset;
} d3d11backend_t;
#define VERTEXSTREAMSIZE (1024*1024*2) //2mb = 1 PAE jumbo page
#define DYNVBUFFSIZE 65536
#define DYNIBUFFSIZE 65536
static d3d11backend_t shaderstate;
extern int be_maxpasses;
static void BE_CreateSamplerStates(void)
{
D3D11_SAMPLER_DESC sampdesc;
int flags;
for (flags = 0; flags <= (SHADER_PASS_CLAMP|SHADER_PASS_NEAREST); flags++)
{
if (flags & SHADER_PASS_NEAREST)
sampdesc.Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR;
else
sampdesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
if (flags & SHADER_PASS_CLAMP)
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
}
else
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
}
sampdesc.MipLODBias = 0.0f;
sampdesc.MaxAnisotropy = 1;
sampdesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
sampdesc.BorderColor[0] = 0;
sampdesc.BorderColor[1] = 0;
sampdesc.BorderColor[2] = 0;
sampdesc.BorderColor[3] = 0;
sampdesc.MinLOD = 0;
sampdesc.MaxLOD = D3D11_FLOAT32_MAX;
ID3D11Device_CreateSamplerState(pD3DDev11, &sampdesc, &shaderstate.sampstate[flags]);
}
}
static void BE_DestroySamplerStates(void)
{
int flags;
for (flags = 0; flags <= (SHADER_PASS_CLAMP|SHADER_PASS_NEAREST); flags++)
{
if (shaderstate.sampstate[flags])
ID3D11SamplerState_Release(shaderstate.sampstate[flags]);
shaderstate.sampstate[flags] = NULL;
}
}
static void BE_ApplyTMUState(unsigned int tu, unsigned int flags)
{
ID3D11SamplerState *nstate;
flags = flags & (SHADER_PASS_CLAMP|SHADER_PASS_NEAREST);
nstate = shaderstate.sampstate[flags];
if (nstate != shaderstate.cursamplerstate[tu])
{
shaderstate.cursamplerstate[tu] = nstate;
//fixme: is it significant to bulk-apply this later?
ID3D11DeviceContext_PSSetSamplers(d3ddevctx, tu, 1, &nstate);
}
/*
if ((flags ^ shaderstate.tmuflags[tu]) & (SHADER_PASS_NEAREST|SHADER_PASS_CLAMP))
{
D3D11_SAMPLER_DESC sampdesc;
ID3D11SamplerState *sstate;
shaderstate.tmuflags[tu] = flags;
if (flags & SHADER_PASS_NEAREST)
sampdesc.Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR;
else
sampdesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
if (flags & SHADER_PASS_CLAMP)
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
}
else
{
sampdesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
sampdesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
}
sampdesc.MipLODBias = 0.0f;
sampdesc.MaxAnisotropy = 1;
sampdesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
sampdesc.BorderColor[0] = 0;
sampdesc.BorderColor[1] = 0;
sampdesc.BorderColor[2] = 0;
sampdesc.BorderColor[3] = 0;
sampdesc.MinLOD = 0;
sampdesc.MaxLOD = D3D11_FLOAT32_MAX;
if (!FAILED(ID3D11Device_CreateSamplerState(pD3DDev11, &sampdesc, &sstate)))
{
ID3D11DeviceContext_PSSetSamplers(d3ddevctx, tu, 1, &sstate);
ID3D11SamplerState_Release(sstate);
}
}
*/
}
static void D3D11BE_ApplyShaderBits(unsigned int bits)
{
unsigned int delta;
if (shaderstate.flags & (BEF_FORCEADDITIVE|BEF_FORCETRANSPARENT|BEF_FORCENODEPTH|BEF_FORCEDEPTHTEST|BEF_FORCEDEPTHWRITE))
{
if (shaderstate.flags & BEF_FORCEADDITIVE)
bits = (bits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS))
| (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE);
else if (shaderstate.flags & BEF_FORCETRANSPARENT)
{
if ((bits & SBITS_BLEND_BITS) == (SBITS_SRCBLEND_ONE|SBITS_DSTBLEND_ZERO) || !(bits & SBITS_BLEND_BITS)) /*if transparency is forced, clear alpha test bits*/
bits = (bits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS))
| (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA);
}
if (shaderstate.flags & BEF_FORCENODEPTH) /*EF_NODEPTHTEST dp extension*/
bits |= SBITS_MISC_NODEPTHTEST;
else
{
if (shaderstate.flags & BEF_FORCEDEPTHTEST)
bits &= ~SBITS_MISC_NODEPTHTEST;
if (shaderstate.flags & BEF_FORCEDEPTHWRITE)
bits |= SBITS_MISC_DEPTHWRITE;
}
}
delta = bits ^ shaderstate.shaderbits;
if (!delta)
return;
shaderstate.shaderbits = bits;
if (delta & (SBITS_BLEND_BITS|SBITS_MASK_BITS))
{
D3D11_BLEND_DESC blend = {0};
ID3D11BlendState *newblendstate;
blend.IndependentBlendEnable = FALSE;
blend.AlphaToCoverageEnable = FALSE; //FIXME
if (bits & SBITS_BLEND_BITS)
{
switch(bits & SBITS_SRCBLEND_BITS)
{
case SBITS_SRCBLEND_ZERO: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ZERO; break;
case SBITS_SRCBLEND_ONE: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; break;
case SBITS_SRCBLEND_DST_COLOR: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_DEST_COLOR; break;
case SBITS_SRCBLEND_ONE_MINUS_DST_COLOR: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_DEST_COLOR; break;
case SBITS_SRCBLEND_SRC_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_SRC_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; break;
case SBITS_SRCBLEND_DST_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_DEST_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_DST_ALPHA: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_DEST_ALPHA; break;
case SBITS_SRCBLEND_ALPHA_SATURATE: blend.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA_SAT; break;
default: Sys_Error("Bad shader blend src\n"); return;
}
switch(bits & SBITS_DSTBLEND_BITS)
{
case SBITS_DSTBLEND_ZERO: blend.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; break;
case SBITS_DSTBLEND_ONE: blend.RenderTarget[0].DestBlend = D3D11_BLEND_ONE; break;
case SBITS_DSTBLEND_SRC_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_SRC_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA; break;
case SBITS_DSTBLEND_DST_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_DEST_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_DST_ALPHA: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_DEST_ALPHA; break;
case SBITS_DSTBLEND_SRC_COLOR: blend.RenderTarget[0].DestBlend = D3D11_BLEND_SRC_COLOR; break;
case SBITS_DSTBLEND_ONE_MINUS_SRC_COLOR: blend.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_COLOR; break;
default: Sys_Error("Bad shader blend dst\n"); return;
}
blend.RenderTarget[0].BlendEnable = TRUE;
}
else
{
blend.RenderTarget[0].SrcBlend = D3D11_BLEND_ZERO;
blend.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
blend.RenderTarget[0].BlendEnable = FALSE;
}
blend.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
blend.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA;//blend.RenderTarget[0].SrcBlend;
blend.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;//blend.RenderTarget[0].DestBlend;
blend.RenderTarget[0].BlendOpAlpha = blend.RenderTarget[0].BlendOp;
if (bits&SBITS_MASK_BITS)
{
blend.RenderTarget[0].RenderTargetWriteMask = 0;
if (!(bits&SBITS_MASK_RED))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_RED;
if (!(bits&SBITS_MASK_GREEN))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_GREEN;
if (!(bits&SBITS_MASK_BLUE))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_BLUE;
if (!(bits&SBITS_MASK_ALPHA))
blend.RenderTarget[0].RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_ALPHA;
}
else
blend.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
if (!FAILED(ID3D11Device_CreateBlendState(pD3DDev11, &blend, &newblendstate)))
{
ID3D11DeviceContext_OMSetBlendState(d3ddevctx, newblendstate, NULL, 0xffffffff);
ID3D11BlendState_Release(newblendstate);
}
}
if (delta & SBITS_ATEST_BITS)
{
/*
switch(bits & SBITS_ATEST_BITS)
{
case SBITS_ATEST_NONE:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, FALSE);
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 0);
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, 0);
break;
case SBITS_ATEST_GT0:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 0);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_GREATER);
break;
case SBITS_ATEST_LT128:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 128);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_LESS);
break;
case SBITS_ATEST_GE128:
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHATESTENABLE, TRUE);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAREF, 128);
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL);
break;
}
*/
}
if (delta & (SBITS_MISC_DEPTHEQUALONLY|SBITS_MISC_DEPTHCLOSERONLY|SBITS_MISC_NODEPTHTEST|SBITS_MISC_DEPTHWRITE))
{
D3D11_DEPTH_STENCIL_DESC depthdesc;
ID3D11DepthStencilState *newdepthstate;
if (bits & SBITS_MISC_NODEPTHTEST)
depthdesc.DepthEnable = false;
else
depthdesc.DepthEnable = true;
if (bits & SBITS_MISC_DEPTHWRITE)
depthdesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
else
depthdesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
switch(bits & (SBITS_MISC_DEPTHEQUALONLY|SBITS_MISC_DEPTHCLOSERONLY))
{
default:
case 0:
depthdesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL;
break;
case SBITS_MISC_DEPTHEQUALONLY:
depthdesc.DepthFunc = D3D11_COMPARISON_EQUAL;
break;
case SBITS_MISC_DEPTHCLOSERONLY:
depthdesc.DepthFunc = D3D11_COMPARISON_LESS;
break;
}
//make sure the stencil part is actually valid, even if we're not using it.
depthdesc.StencilEnable = false;
depthdesc.StencilReadMask = 0xFF;
depthdesc.StencilWriteMask = 0xFF;
depthdesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthdesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
depthdesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP;
depthdesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthdesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
//and change it
if (!FAILED(ID3D11Device_CreateDepthStencilState(pD3DDev11, &depthdesc, &newdepthstate)))
{
ID3D11DeviceContext_OMSetDepthStencilState(d3ddevctx, newdepthstate, 0);
ID3D11DepthStencilState_Release(newdepthstate);
}
}
}
void D3D11BE_Reset(qboolean before)
{
int i;
if (before)
{
/*backbuffer is going away, release stuff so it can be destroyed cleanly*/
}
else
{
/*we have a new backbuffer etc, reassert state*/
for (i = 0; i < MAX_TMUS; i++)
{
shaderstate.tmuflags[i] = ~0;
BE_ApplyTMUState(i, 0);
}
/*force all state to change, thus setting a known state*/
shaderstate.shaderbits = ~0;
D3D11BE_ApplyShaderBits(0);
}
}
static const char LIGHTPASS_SHADER[] = "\
{\n\
program rtlight\n\
{\n\
map $diffuse\n\
blendfunc add\n\
}\n\
{\n\
map $normalmap\n\
}\n\
{\n\
map $specular\n\
}\n\
}";
void D3D11BE_Init(void)
{
D3D11_BUFFER_DESC bd;
int i;
be_maxpasses = MAX_TMUS;
memset(&shaderstate, 0, sizeof(shaderstate));
shaderstate.curvertdecl = -1;
for (i = 0; i < MAXLIGHTMAPS; i++)
shaderstate.dummybatch.lightmap[i] = -1;
BE_CreateSamplerStates();
// FTable_Init();
/* shaderstate.dynxyz_size = sizeof(vecV_t) * DYNVBUFFSIZE;
shaderstate.dyncol_size = sizeof(byte_vec4_t) * DYNVBUFFSIZE;
shaderstate.dynst_size = sizeof(vec2_t) * DYNVBUFFSIZE;
shaderstate.dynidx_size = sizeof(index_t) * DYNIBUFFSIZE;
*/
D3D11BE_Reset(false);
//set up the constant buffers
for (i = 0; i < NUMECBUFFERS; i++)
{
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = sizeof(cbuf_entity_t);
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.ecbuffers[i])))
return;
}
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = sizeof(cbuf_view_t);
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.vcbuffer)))
return;
//generate the streaming buffers for stuff that doesn't provide info in nice static vbos
bd.BindFlags = D3D11_BIND_INDEX_BUFFER;
bd.ByteWidth = VERTEXSTREAMSIZE;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
bd.Usage = D3D11_USAGE_DYNAMIC;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.indexstream)))
return;
bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bd.ByteWidth = VERTEXSTREAMSIZE;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
bd.MiscFlags = 0;
bd.StructureByteStride = 0;
bd.Usage = D3D11_USAGE_DYNAMIC;
if (FAILED(ID3D11Device_CreateBuffer(pD3DDev11, &bd, NULL, &shaderstate.vertexstream)))
return;
shaderstate.shader_rtlight = R_RegisterShader("rtlight", LIGHTPASS_SHADER);
R_InitFlashblends();
}
void D3D11BE_Shutdown(void)
{
BE_DestroySamplerStates();
Z_Free(shaderstate.wbatches);
shaderstate.wbatches = NULL;
}
#if 0
static void allocvertexbuffer(ID3D11Buffer *buff, unsigned int bmaxsize, unsigned int *offset, void **data, unsigned int bytes)
{
unsigned int boff;
if (*offset + bytes > bmaxsize)
{
boff = 0;
*offset = bytes;
}
else
{
boff = *offset;
*offset += bytes;
}
// d3dcheck(IDirect3DVertexBuffer9_Lock(buff, boff, bytes, data, boff?D3DLOCK_NOOVERWRITE:D3DLOCK_DISCARD));
}
static unsigned int allocindexbuffer(void **dest, unsigned int entries)
{
unsigned int bytes = entries*sizeof(index_t);
unsigned int offset;
/*
if (shaderstate.dynidx_offs + bytes > DYNIBUFFSIZE)
{
offset = 0;
shaderstate.dynidx_offs = 0;
}
else
{
offset = shaderstate.dynidx_offs;
shaderstate.dynidx_offs += bytes;
}
*/
// d3dcheck(IDirect3DIndexBuffer9_Lock(shaderstate.dynidx_buff, offset, (unsigned int)entries, dest, offset?D3DLOCK_NOOVERWRITE:D3DLOCK_DISCARD));
return offset/sizeof(index_t);
}
#endif
ID3D11ShaderResourceView *D3D11_Image_View(const texid_t *id);
static void BindTexture(unsigned int tu, const texid_t *id)
{
ID3D11ShaderResourceView *view = D3D11_Image_View(id);
if (shaderstate.pendingtextures[tu] != view)
{
shaderstate.textureschanged = true;
shaderstate.pendingtextures[tu] = view;
}
}
static void SelectPassTexture(unsigned int tu, shaderpass_t *pass)
{
extern texid_t r_whiteimage;
texid_t foo;
switch(pass->texgen)
{
default:
case T_GEN_DIFFUSE:
BindTexture(tu, &shaderstate.curtexnums->base);
break;
case T_GEN_NORMALMAP:
BindTexture(tu, &shaderstate.curtexnums->bump);
break;
case T_GEN_SPECULAR:
BindTexture(tu, &shaderstate.curtexnums->specular);
break;
case T_GEN_UPPEROVERLAY:
BindTexture(tu, &shaderstate.curtexnums->upperoverlay);
break;
case T_GEN_LOWEROVERLAY:
BindTexture(tu, &shaderstate.curtexnums->loweroverlay);
break;
case T_GEN_FULLBRIGHT:
BindTexture(tu, &shaderstate.curtexnums->fullbright);
break;
case T_GEN_ANIMMAP:
BindTexture(tu, &pass->anim_frames[(int)(pass->anim_fps * shaderstate.curtime) % pass->anim_numframes]);
break;
case T_GEN_SINGLEMAP:
BindTexture(tu, &pass->anim_frames[0]);
break;
case T_GEN_DELUXMAP:
{
int lmi = shaderstate.curbatch->lightmap[0];
if (lmi < 0 || !lightmap[lmi]->hasdeluxe)
BindTexture(tu, &r_nulltex);
else
{
lmi+=1;
BindTexture(tu, &lightmap[lmi]->lightmap_texture);
}
}
break;
case T_GEN_LIGHTMAP:
{
int lmi = shaderstate.curbatch->lightmap[0];
if (lmi < 0)
BindTexture(tu, &r_whiteimage);
else
BindTexture(tu, &lightmap[lmi]->lightmap_texture);
}
break;
/*case T_GEN_CURRENTRENDER:
FIXME: no code to grab the current screen and convert to a texture
break;*/
case T_GEN_VIDEOMAP:
{
foo = Media_UpdateForShader(pass->cin);
BindTexture(tu, &foo);
}
break;
}
BE_ApplyTMUState(tu, pass->flags);
//pass blend modes are skipped - they're really only useful for fixed function. we should just use blend modes instead.
}
#if 0
static void colourgenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *srcb, vec4_t *srcf, byte_vec4_t *dst, const mesh_t *mesh)
{
/*
D3DCOLOR block;
switch (pass->rgbgen)
{
case RGB_GEN_ENTITY:
block = D3DCOLOR_COLORVALUE(shaderstate.curentity->shaderRGBAf[0], shaderstate.curentity->shaderRGBAf[1], shaderstate.curentity->shaderRGBAf[2], shaderstate.curentity->shaderRGBAf[3]);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_ONE_MINUS_ENTITY:
block = D3DCOLOR_COLORVALUE(1-shaderstate.curentity->shaderRGBAf[0], 1-shaderstate.curentity->shaderRGBAf[1], 1-shaderstate.curentity->shaderRGBAf[2], 1-shaderstate.curentity->shaderRGBAf[3]);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_VERTEX_LIGHTING:
case RGB_GEN_VERTEX_EXACT:
if (srcb)
{
while((cnt)--)
{
qbyte r, g, b;
r=srcb[cnt][0];
g=srcb[cnt][1];
b=srcb[cnt][2];
dst[cnt][0] = b;
dst[cnt][1] = g;
dst[cnt][2] = r;
}
}
else if (srcf)
{
while((cnt)--)
{
int r, g, b;
r=srcf[cnt][0]*255;
g=srcf[cnt][1]*255;
b=srcf[cnt][2]*255;
dst[cnt][0] = bound(0, b, 255);
dst[cnt][1] = bound(0, g, 255);
dst[cnt][2] = bound(0, r, 255);
}
}
else
goto identity;
break;
case RGB_GEN_ONE_MINUS_VERTEX:
if (srcb)
{
while((cnt)--)
{
qbyte r, g, b;
r=255-srcb[cnt][0];
g=255-srcb[cnt][1];
b=255-srcb[cnt][2];
dst[cnt][0] = b;
dst[cnt][1] = g;
dst[cnt][2] = r;
}
}
else if (srcf)
{
while((cnt)--)
{
int r, g, b;
r=255-srcf[cnt][0]*255;
g=255-srcf[cnt][1]*255;
b=255-srcf[cnt][2]*255;
dst[cnt][0] = bound(0, b, 255);
dst[cnt][1] = bound(0, g, 255);
dst[cnt][2] = bound(0, r, 255);
}
}
else
goto identity;
break;
case RGB_GEN_IDENTITY_LIGHTING:
//compensate for overbrights
block = D3DCOLOR_RGBA(255, 255, 255, 255); //shaderstate.identitylighting
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
default:
identity:
case RGB_GEN_IDENTITY:
block = D3DCOLOR_RGBA(255, 255, 255, 255);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_CONST:
block = D3DCOLOR_COLORVALUE(pass->rgbgen_func.args[0], pass->rgbgen_func.args[1], pass->rgbgen_func.args[2], 1);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
break;
case RGB_GEN_LIGHTING_DIFFUSE:
//collect lighting details for mobile entities
if (!mesh->normals_array)
{
block = D3DCOLOR_RGBA(255, 255, 255, 255);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
}
else
{
R_LightArraysByte_BGR(shaderstate.curentity , mesh->xyz_array, dst, cnt, mesh->normals_array);
}
break;
case RGB_GEN_WAVE:
{
float *table;
float c;
table = FTableForFunc(pass->rgbgen_func.type);
c = pass->rgbgen_func.args[2] + shaderstate.curtime * pass->rgbgen_func.args[3];
c = FTABLE_EVALUATE(table, c) * pass->rgbgen_func.args[1] + pass->rgbgen_func.args[0];
c = bound(0.0f, c, 1.0f);
block = D3DCOLOR_COLORVALUE(c, c, c, 1);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
}
break;
case RGB_GEN_TOPCOLOR:
case RGB_GEN_BOTTOMCOLOR:
#ifdef warningmsg
#pragma warningmsg("fix 24bit player colours")
#endif
block = D3DCOLOR_RGBA(255, 255, 255, 255);
while((cnt)--)
{
((D3DCOLOR*)dst)[cnt] = block;
}
// Con_Printf("RGB_GEN %i not supported\n", pass->rgbgen);
break;
}
*/
}
static void alphagenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *srcb, vec4_t *srcf, byte_vec4_t *dst, const mesh_t *mesh)
{
/*FIXME: Skip this if the rgbgen did it*/
/*
float *table;
unsigned char t;
float f;
vec3_t v1, v2;
switch (pass->alphagen)
{
default:
case ALPHA_GEN_IDENTITY:
if (shaderstate.flags & BEF_FORCETRANSPARENT)
{
f = shaderstate.curentity->shaderRGBAf[3];
if (f < 0)
t = 0;
else if (f >= 1)
t = 255;
else
t = f*255;
while(cnt--)
dst[cnt][3] = t;
}
else
{
while(cnt--)
dst[cnt][3] = 255;
}
break;
case ALPHA_GEN_CONST:
t = pass->alphagen_func.args[0]*255;
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_WAVE:
table = FTableForFunc(pass->alphagen_func.type);
f = pass->alphagen_func.args[2] + shaderstate.curtime * pass->alphagen_func.args[3];
f = FTABLE_EVALUATE(table, f) * pass->alphagen_func.args[1] + pass->alphagen_func.args[0];
t = bound(0.0f, f, 1.0f)*255;
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_PORTAL:
//FIXME: should this be per-vert?
VectorAdd(mesh->xyz_array[0], shaderstate.curentity->origin, v1);
VectorSubtract(r_origin, v1, v2);
f = VectorLength(v2) * (1.0 / 255.0);
t = bound(0.0f, f, 1.0f)*255;
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_VERTEX:
if (srcb)
{
while(cnt--)
{
dst[cnt][3] = srcb[cnt][3];
}
}
else if (srcf)
{
while(cnt--)
{
dst[cnt][3] = bound(0, srcf[cnt][3]*255, 255);
}
}
else
{
while(cnt--)
{
dst[cnt][3] = 255;
}
}
break;
case ALPHA_GEN_ENTITY:
t = bound(0, shaderstate.curentity->shaderRGBAf[3], 1)*255;
while(cnt--)
{
dst[cnt][3] = t;
}
break;
case ALPHA_GEN_SPECULAR:
{
int i;
VectorSubtract(r_origin, shaderstate.curentity->origin, v1);
if (!Matrix3_Compare(shaderstate.curentity->axis, (void *)axisDefault))
{
Matrix3_Multiply_Vec3(shaderstate.curentity->axis, v2, v2);
}
else
{
VectorCopy(v1, v2);
}
for (i = 0; i < cnt; i++)
{
VectorSubtract(v2, mesh->xyz_array[i], v1);
f = DotProduct(v1, mesh->normals_array[i] ) * Q_rsqrt(DotProduct(v1,v1));
f = f * f * f * f * f;
dst[i][3] = bound (0.0f, (int)(f*255), 255);
}
}
break;
}
*/
}
static unsigned int BE_GenerateColourMods(unsigned int vertcount, const shaderpass_t *pass)
{
unsigned int ret = 0;
unsigned char *map;
const mesh_t *m;
unsigned int mno;
m = shaderstate.meshlist[0];
if (pass->flags & SHADER_PASS_NOCOLORARRAY)
{
shaderstate.passsinglecolour = true;
// shaderstate.passcolour = D3DCOLOR_RGBA(255,255,255,255);
colourgenbyte(pass, 1, (byte_vec4_t*)&shaderstate.passcolour, NULL, (byte_vec4_t*)&shaderstate.passcolour, m);
alphagenbyte(pass, 1, (byte_vec4_t*)&shaderstate.passcolour, NULL, (byte_vec4_t*)&shaderstate.passcolour, m);
/*FIXME: just because there's no rgba set, there's no reason to assume it should be a single colour (unshaded ents)*/
// d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_COL, NULL, 0, 0));
}
else
{
shaderstate.passsinglecolour = false;
ret |= D3D_VDEC_COL4B;
if (shaderstate.batchvbo && (m->colors4f_array &&
((pass->rgbgen == RGB_GEN_VERTEX_LIGHTING) ||
(pass->rgbgen == RGB_GEN_VERTEX_EXACT) ||
(pass->rgbgen == RGB_GEN_ONE_MINUS_VERTEX)) &&
(pass->alphagen == ALPHA_GEN_VERTEX)))
{
// d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_COL, shaderstate.batchvbo->colours.d3d.buff, shaderstate.batchvbo->colours.d3d.offs, sizeof(byte_vec4_t)));
}
else
{
/* allocvertexbuffer(shaderstate.dyncol_buff, shaderstate.dyncol_size, &shaderstate.dyncol_offs, (void**)&map, vertcount*sizeof(D3DCOLOR));
for (vertcount = 0, mno = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
colourgenbyte(pass, m->numvertexes, m->colors4b_array, m->colors4f_array, (byte_vec4_t*)map, m);
alphagenbyte(pass, m->numvertexes, m->colors4b_array, m->colors4f_array, (byte_vec4_t*)map, m);
map += m->numvertexes*4;
vertcount += m->numvertexes;
}
d3dcheck(IDirect3DVertexBuffer9_Unlock(shaderstate.dyncol_buff));
d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_COL, shaderstate.dyncol_buff, shaderstate.dyncol_offs - vertcount*sizeof(D3DCOLOR), sizeof(D3DCOLOR)));
*/
}
}
return ret;
}
#endif
/*********************************************************************************************************/
/*========================================== texture coord generation =====================================*/
#if 0
static void tcgen_environment(float *st, unsigned int numverts, float *xyz, float *normal)
{
int i;
vec3_t viewer, reflected;
float d;
vec3_t rorg;
RotateLightVector(shaderstate.curentity->axis, shaderstate.curentity->origin, r_origin, rorg);
for (i = 0 ; i < numverts ; i++, xyz += 3, normal += 3, st += 2 )
{
VectorSubtract (rorg, xyz, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
static float *tcgen(const shaderpass_t *pass, int cnt, float *dst, const mesh_t *mesh)
{
int i;
vecV_t *src;
switch (pass->tcgen)
{
default:
case TC_GEN_BASE:
return (float*)mesh->st_array;
case TC_GEN_LIGHTMAP:
return (float*)mesh->lmst_array;
case TC_GEN_NORMAL:
return (float*)mesh->normals_array;
case TC_GEN_SVECTOR:
return (float*)mesh->snormals_array;
case TC_GEN_TVECTOR:
return (float*)mesh->tnormals_array;
case TC_GEN_ENVIRONMENT:
tcgen_environment(dst, cnt, (float*)mesh->xyz_array, (float*)mesh->normals_array);
return dst;
case TC_GEN_DOTPRODUCT:
return dst;//mesh->st_array[0];
case TC_GEN_VECTOR:
src = mesh->xyz_array;
for (i = 0; i < cnt; i++, dst += 2)
{
static vec3_t tc_gen_s = { 1.0f, 0.0f, 0.0f };
static vec3_t tc_gen_t = { 0.0f, 1.0f, 0.0f };
dst[0] = DotProduct(tc_gen_s, src[i]);
dst[1] = DotProduct(tc_gen_t, src[i]);
}
return dst;
}
}
/*src and dst can be the same address when tcmods are chained*/
static void tcmod(const tcmod_t *tcmod, int cnt, const float *src, float *dst, const mesh_t *mesh)
{
float *table;
float t1, t2;
float cost, sint;
int j;
#define R_FastSin(x) sin((x)*(2*M_PI))
switch (tcmod->type)
{
case SHADER_TCMOD_ROTATE:
cost = tcmod->args[0] * shaderstate.curtime;
sint = R_FastSin(cost);
cost = R_FastSin(cost + 0.25);
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
t1 = cost * (src[0] - 0.5f) - sint * (src[1] - 0.5f) + 0.5f;
t2 = cost * (src[1] - 0.5f) + sint * (src[0] - 0.5f) + 0.5f;
dst[0] = t1;
dst[1] = t2;
}
break;
case SHADER_TCMOD_SCALE:
t1 = tcmod->args[0];
t2 = tcmod->args[1];
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] * t1;
dst[1] = src[1] * t2;
}
break;
case SHADER_TCMOD_TURB:
t1 = tcmod->args[2] + shaderstate.curtime * tcmod->args[3];
t2 = tcmod->args[1];
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] + R_FastSin (src[0]*t2+t1) * t2;
dst[1] = src[1] + R_FastSin (src[1]*t2+t1) * t2;
}
break;
case SHADER_TCMOD_STRETCH:
table = FTableForFunc(tcmod->args[0]);
t2 = tcmod->args[3] + shaderstate.curtime * tcmod->args[4];
t1 = FTABLE_EVALUATE(table, t2) * tcmod->args[2] + tcmod->args[1];
t1 = t1 ? 1.0f / t1 : 1.0f;
t2 = 0.5f - 0.5f * t1;
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] * t1 + t2;
dst[1] = src[1] * t1 + t2;
}
break;
case SHADER_TCMOD_SCROLL:
t1 = tcmod->args[0] * shaderstate.curtime;
t2 = tcmod->args[1] * shaderstate.curtime;
for (j = 0; j < cnt; j++, dst += 2, src+=2)
{
dst[0] = src[0] + t1;
dst[1] = src[1] + t2;
}
break;
case SHADER_TCMOD_TRANSFORM:
for (j = 0; j < cnt; j++, dst+=2, src+=2)
{
t1 = src[0];
t2 = src[1];
dst[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4];
dst[1] = t2 * tcmod->args[1] + t1 * tcmod->args[3] + tcmod->args[5];
}
break;
default:
break;
}
}
static void GenerateTCMods(const shaderpass_t *pass, float *dest)
{
mesh_t *mesh;
unsigned int mno;
// unsigned int fvertex = 0; //unused variable
int i;
float *src;
for (mno = 0; mno < shaderstate.nummeshes; mno++)
{
mesh = shaderstate.meshlist[mno];
src = tcgen(pass, mesh->numvertexes, dest, mesh);
//tcgen might return unmodified info
if (pass->numtcmods)
{
tcmod(&pass->tcmods[0], mesh->numvertexes, src, dest, mesh);
for (i = 1; i < pass->numtcmods; i++)
{
tcmod(&pass->tcmods[i], mesh->numvertexes, dest, dest, mesh);
}
}
else if (src != dest)
{
memcpy(dest, src, sizeof(vec2_t)*mesh->numvertexes);
}
dest += mesh->numvertexes*2;
}
}
#endif
//end texture coords
/*******************************************************************************************************************/
#if 0
static void deformgen(const deformv_t *deformv, int cnt, vecV_t *src, vecV_t *dst, const mesh_t *mesh)
{
float *table;
int j, k;
float args[4];
float deflect;
switch (deformv->type)
{
default:
case DEFORMV_NONE:
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
break;
case DEFORMV_WAVE:
if (!mesh->normals_array)
{
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
return;
}
args[0] = deformv->func.args[0];
args[1] = deformv->func.args[1];
args[3] = deformv->func.args[2] + deformv->func.args[3] * shaderstate.curtime;
table = FTableForFunc(deformv->func.type);
for ( j = 0; j < cnt; j++ )
{
deflect = deformv->args[0] * (src[j][0]+src[j][1]+src[j][2]) + args[3];
deflect = FTABLE_EVALUATE(table, deflect) * args[1] + args[0];
// Deflect vertex along its normal by wave amount
VectorMA(src[j], deflect, mesh->normals_array[j], dst[j]);
}
break;
case DEFORMV_NORMAL:
//normal does not actually move the verts, but it does change the normals array
//we don't currently support that.
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
/*
args[0] = deformv->args[1] * shaderstate.curtime;
for ( j = 0; j < cnt; j++ )
{
args[1] = normalsArray[j][2] * args[0];
deflect = deformv->args[0] * R_FastSin(args[1]);
normalsArray[j][0] *= deflect;
deflect = deformv->args[0] * R_FastSin(args[1] + 0.25);
normalsArray[j][1] *= deflect;
VectorNormalizeFast(normalsArray[j]);
}
*/ break;
case DEFORMV_MOVE:
table = FTableForFunc(deformv->func.type);
deflect = deformv->func.args[2] + shaderstate.curtime * deformv->func.args[3];
deflect = FTABLE_EVALUATE(table, deflect) * deformv->func.args[1] + deformv->func.args[0];
for ( j = 0; j < cnt; j++ )
VectorMA(src[j], deflect, deformv->args, dst[j]);
break;
case DEFORMV_BULGE:
args[0] = deformv->args[0]/(2*M_PI);
args[1] = deformv->args[1];
args[2] = shaderstate.curtime * deformv->args[2]/(2*M_PI);
for (j = 0; j < cnt; j++)
{
deflect = R_FastSin(mesh->st_array[j][0]*args[0] + args[2])*args[1];
dst[j][0] = src[j][0]+deflect*mesh->normals_array[j][0];
dst[j][1] = src[j][1]+deflect*mesh->normals_array[j][1];
dst[j][2] = src[j][2]+deflect*mesh->normals_array[j][2];
}
break;
case DEFORMV_AUTOSPRITE:
if (mesh->numindexes < 6)
break;
for (j = 0; j < cnt-3; j+=4, src+=4, dst+=4)
{
vec3_t mid, d;
float radius;
mid[0] = 0.25*(src[0][0] + src[1][0] + src[2][0] + src[3][0]);
mid[1] = 0.25*(src[0][1] + src[1][1] + src[2][1] + src[3][1]);
mid[2] = 0.25*(src[0][2] + src[1][2] + src[2][2] + src[3][2]);
VectorSubtract(src[0], mid, d);
radius = 2*VectorLength(d);
for (k = 0; k < 4; k++)
{
dst[k][0] = mid[0] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[0+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[0+1]);
dst[k][1] = mid[1] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[4+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[4+1]);
dst[k][2] = mid[2] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[8+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[8+1]);
}
}
break;
case DEFORMV_AUTOSPRITE2:
if (mesh->numindexes < 6)
break;
for (k = 0; k < mesh->numindexes; k += 6)
{
int long_axis, short_axis;
vec3_t axis;
float len[3];
mat3_t m0, m1, m2, result;
float *quad[4];
vec3_t rot_centre, tv;
quad[0] = (float *)(dst + mesh->indexes[k+0]);
quad[1] = (float *)(dst + mesh->indexes[k+1]);
quad[2] = (float *)(dst + mesh->indexes[k+2]);
for (j = 2; j >= 0; j--)
{
quad[3] = (float *)(dst + mesh->indexes[k+3+j]);
if (!VectorEquals (quad[3], quad[0]) &&
!VectorEquals (quad[3], quad[1]) &&
!VectorEquals (quad[3], quad[2]))
{
break;
}
}
// build a matrix were the longest axis of the billboard is the Y-Axis
VectorSubtract(quad[1], quad[0], m0[0]);
VectorSubtract(quad[2], quad[0], m0[1]);
VectorSubtract(quad[2], quad[1], m0[2]);
len[0] = DotProduct(m0[0], m0[0]);
len[1] = DotProduct(m0[1], m0[1]);
len[2] = DotProduct(m0[2], m0[2]);
if ((len[2] > len[1]) && (len[2] > len[0]))
{
if (len[1] > len[0])
{
long_axis = 1;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 1;
}
}
else if ((len[1] > len[2]) && (len[1] > len[0]))
{
if (len[2] > len[0])
{
long_axis = 2;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 2;
}
}
else //if ( (len[0] > len[1]) && (len[0] > len[2]) )
{
if (len[2] > len[1])
{
long_axis = 2;
short_axis = 1;
}
else
{
long_axis = 1;
short_axis = 2;
}
}
if (DotProduct(m0[long_axis], m0[short_axis]))
{
VectorNormalize2(m0[long_axis], axis);
VectorCopy(axis, m0[1]);
if (axis[0] || axis[1])
{
VectorVectors(m0[1], m0[2], m0[0]);
}
else
{
VectorVectors(m0[1], m0[0], m0[2]);
}
}
else
{
VectorNormalize2(m0[long_axis], axis);
VectorNormalize2(m0[short_axis], m0[0]);
VectorCopy(axis, m0[1]);
CrossProduct(m0[0], m0[1], m0[2]);
}
for (j = 0; j < 3; j++)
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;
if (shaderstate.curentity)
{
VectorAdd(shaderstate.curentity->origin, rot_centre, tv);
}
else
{
VectorCopy(rot_centre, tv);
}
VectorSubtract(r_origin, tv, tv);
// filter any longest-axis-parts off the camera-direction
deflect = -DotProduct(tv, axis);
VectorMA(tv, deflect, axis, m1[2]);
VectorNormalizeFast(m1[2]);
VectorCopy(axis, m1[1]);
CrossProduct(m1[1], m1[2], m1[0]);
Matrix3_Transpose(m1, m2);
Matrix3_Multiply(m2, m0, result);
for (j = 0; j < 4; j++)
{
VectorSubtract(quad[j], rot_centre, tv);
Matrix3_Multiply_Vec3((void *)result, tv, quad[j]);
VectorAdd(rot_centre, quad[j], quad[j]);
}
}
break;
// case DEFORMV_PROJECTION_SHADOW:
// break;
}
}
#endif
#if 0
/*does not do the draw call, does not consider indicies (except for billboard generation) */
static qboolean BE_DrawMeshChain_SetupPass(shaderpass_t *pass, unsigned int vertcount)
{
int vdec;
void *map;
int i;
unsigned int passno = 0, tmu;
int lastpass = pass->numMergedPasses;
for (i = 0; i < lastpass; i++)
{
if (pass[i].texgen == T_GEN_UPPEROVERLAY && !TEXVALID(shaderstate.curtexnums->upperoverlay))
continue;
if (pass[i].texgen == T_GEN_LOWEROVERLAY && !TEXVALID(shaderstate.curtexnums->loweroverlay))
continue;
if (pass[i].texgen == T_GEN_FULLBRIGHT && !TEXVALID(shaderstate.curtexnums->fullbright))
continue;
break;
}
if (i == lastpass)
return false;
/*all meshes in a chain must have the same features*/
vdec = 0;
/*we only use one colour, generated from the first pass*/
vdec |= BE_GenerateColourMods(vertcount, pass);
tmu = 0;
/*activate tmus*/
for (passno = 0; passno < lastpass; passno++)
{
if (pass[passno].texgen == T_GEN_UPPEROVERLAY && !TEXVALID(shaderstate.curtexnums->upperoverlay))
continue;
if (pass[passno].texgen == T_GEN_LOWEROVERLAY && !TEXVALID(shaderstate.curtexnums->loweroverlay))
continue;
if (pass[passno].texgen == T_GEN_FULLBRIGHT && !TEXVALID(shaderstate.curtexnums->fullbright))
continue;
SelectPassTexture(tmu, pass+passno);
vdec |= D3D_VDEC_ST0<<tmu;
/*
if (shaderstate.batchvbo && pass[passno].tcgen == TC_GEN_BASE && !pass[passno].numtcmods)
d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_TC0+tmu, shaderstate.batchvbo->texcoord.d3d.buff, shaderstate.batchvbo->texcoord.d3d.offs, sizeof(vec2_t)));
else if (shaderstate.batchvbo && pass[passno].tcgen == TC_GEN_LIGHTMAP && !pass[passno].numtcmods)
d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_TC0+tmu, shaderstate.batchvbo->lmcoord[0].d3d.buff, shaderstate.batchvbo->lmcoord[0].d3d.offs, sizeof(vec2_t)));
else
{
allocvertexbuffer(shaderstate.dynst_buff[tmu], shaderstate.dynst_size, &shaderstate.dynst_offs[tmu], &map, vertcount*sizeof(vec2_t));
GenerateTCMods(pass+passno, map);
d3dcheck(IDirect3DVertexBuffer9_Unlock(shaderstate.dynst_buff[tmu]));
d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_TC0+tmu, shaderstate.dynst_buff[tmu], shaderstate.dynst_offs[tmu] - vertcount*sizeof(vec2_t), sizeof(vec2_t)));
}
*/
tmu++;
}
/*deactivate any extras*/
for (; tmu < shaderstate.lastpasscount; )
{
// d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_TC0+tmu, NULL, 0, 0));
BindTexture(tmu, NULL);
// d3dcheck(IDirect3DDevice9_SetTextureStageState(pD3DDev9, tmu, D3DTSS_COLOROP, D3DTOP_DISABLE));
tmu++;
}
shaderstate.lastpasscount = tmu;
// if (meshchain->normals_array &&
// meshchain->2 &&
// meshchain->tnormals_array)
// vdec |= D3D_VDEC_NORMS;
if (vdec != shaderstate.curvertdecl)
{
shaderstate.curvertdecl = vdec;
// d3dcheck(IDirect3DDevice9_SetVertexDeclaration(pD3DDev9, vertexdecls[shaderstate.curvertdecl]));
}
D3D11BE_ApplyShaderBits(pass->shaderbits);
return true;
}
#endif
static void BE_SubmitMeshChain(int idxfirst)
{
int starti, endi;
int m;
mesh_t *mesh;
/*if (shaderstate.batchvbo)
{
ID3D11DeviceContext_DrawIndexed(d3ddevctx, shaderstate.batchvbo->indexcount, 0, 0);
return;
}*/
for (m = 0, mesh = shaderstate.meshlist[0]; m < shaderstate.nummeshes; )
{
starti = mesh->vbofirstelement;
endi = starti+mesh->numindexes;
//find consecutive surfaces
for (++m; m < shaderstate.nummeshes; m++)
{
mesh = shaderstate.meshlist[m];
if (endi == mesh->vbofirstelement)
{
endi = mesh->vbofirstelement+mesh->numindexes;
}
else
{
break;
}
}
ID3D11DeviceContext_DrawIndexed(d3ddevctx, endi - starti, starti, 0);
RQuantAdd(RQUANT_DRAWS, 1);
}
}
static void BE_ApplyUniforms(program_t *prog, int permu)
{
ID3D11Buffer *cbuf[2] =
{
shaderstate.ecbuffers[shaderstate.ecbufferidx],
shaderstate.vcbuffer
};
//FIXME: how many of these calls can we avoid?
ID3D11DeviceContext_IASetInputLayout(d3ddevctx, prog->permu[permu].handle.hlsl.layout);
ID3D11DeviceContext_VSSetShader(d3ddevctx, prog->permu[permu].handle.hlsl.vert, NULL, 0);
ID3D11DeviceContext_PSSetShader(d3ddevctx, prog->permu[permu].handle.hlsl.frag, NULL, 0);
ID3D11DeviceContext_IASetPrimitiveTopology(d3ddevctx, D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
ID3D11DeviceContext_VSSetConstantBuffers(d3ddevctx, 0, 2, cbuf);
ID3D11DeviceContext_PSSetConstantBuffers(d3ddevctx, 0, 2, cbuf);
}
static void BE_RenderMeshProgram(shader_t *s, unsigned int vertcount, unsigned int idxfirst, unsigned int idxcount)
{
int passno;
int perm = 0;
program_t *p = s->prog;
if (TEXVALID(shaderstate.curtexnums->bump) && p->permu[perm|PERMUTATION_BUMPMAP].handle.hlsl.vert)
perm |= PERMUTATION_BUMPMAP;
if (TEXVALID(shaderstate.curtexnums->fullbright) && p->permu[perm|PERMUTATION_FULLBRIGHT].handle.hlsl.vert)
perm |= PERMUTATION_FULLBRIGHT;
if (p->permu[perm|PERMUTATION_UPPERLOWER].handle.hlsl.vert && (TEXVALID(shaderstate.curtexnums->upperoverlay) || TEXVALID(shaderstate.curtexnums->loweroverlay)))
perm |= PERMUTATION_UPPERLOWER;
if (r_refdef.gfog_rgbd[3] && p->permu[perm|PERMUTATION_FOG].handle.hlsl.vert)
perm |= PERMUTATION_FOG;
// if (r_glsl_offsetmapping.ival && TEXVALID(shaderstate.curtexnums->bump) && p->handle[perm|PERMUTATION_OFFSET.hlsl.vert)
// perm |= PERMUTATION_OFFSET;
BE_ApplyUniforms(p, perm);
D3D11BE_ApplyShaderBits(s->passes->shaderbits);
/*activate tmus*/
for (passno = 0; passno < s->numpasses; passno++)
{
SelectPassTexture(passno, s->passes+passno);
}
/*deactivate any extras*/
for (; passno < shaderstate.lastpasscount; passno++)
{
shaderstate.pendingtextures[passno] = NULL;
shaderstate.textureschanged = true;
}
if (shaderstate.textureschanged)
ID3D11DeviceContext_PSSetShaderResources(d3ddevctx, 0, passno, shaderstate.pendingtextures);
shaderstate.lastpasscount = s->numpasses;
BE_SubmitMeshChain(idxfirst);
}
static void D3D11BE_Cull(unsigned int cullflags)
{
D3D11_RASTERIZER_DESC rasterdesc;
ID3D11RasterizerState *newrasterizerstate;
cullflags |= r_refdef.flipcull;
if (shaderstate.curcull != cullflags)
{
shaderstate.curcull = cullflags;
rasterdesc.AntialiasedLineEnable = false;
if (shaderstate.curcull & 1)
{
if (shaderstate.curcull & SHADER_CULL_FRONT)
rasterdesc.CullMode = D3D11_CULL_FRONT;
else if (shaderstate.curcull & SHADER_CULL_BACK)
rasterdesc.CullMode = D3D11_CULL_BACK;
else
rasterdesc.CullMode = D3D11_CULL_NONE;
}
else
{
if (shaderstate.curcull & SHADER_CULL_FRONT)
rasterdesc.CullMode = D3D11_CULL_BACK;
else if (shaderstate.curcull & SHADER_CULL_BACK)
rasterdesc.CullMode = D3D11_CULL_FRONT;
else
rasterdesc.CullMode = D3D11_CULL_NONE;
}
rasterdesc.DepthBias = 0;
rasterdesc.DepthBiasClamp = 0.0f;
rasterdesc.DepthClipEnable = true;
rasterdesc.FillMode = D3D11_FILL_SOLID;
rasterdesc.FrontCounterClockwise = false;
rasterdesc.MultisampleEnable = false;
rasterdesc.ScissorEnable = false;
rasterdesc.SlopeScaledDepthBias = 0.0f;
ID3D11Device_CreateRasterizerState(pD3DDev11, &rasterdesc, &newrasterizerstate);
ID3D11DeviceContext_RSSetState(d3ddevctx, newrasterizerstate);
ID3D11RasterizerState_Release(newrasterizerstate);
}
}
static void BE_DrawMeshChain_Internal(void)
{
unsigned int vertcount, idxcount, idxfirst;
mesh_t *m;
// void *map;
int i;
unsigned int mno;
unsigned int passno = 0;
shaderpass_t *pass = shaderstate.curshader->passes;
extern cvar_t r_polygonoffset_submodel_factor;
// float pushdepth;
// float pushfactor;
D3D11BE_Cull(shaderstate.curshader->flags & (SHADER_CULL_FRONT | SHADER_CULL_BACK));
/*
pushdepth = (shaderstate.curshader->polyoffset.factor + ((shaderstate.flags & BEF_PUSHDEPTH)?r_polygonoffset_submodel_factor.value:0))/0xffff;
if (pushdepth != shaderstate.depthbias)
{
shaderstate.depthbias = pushdepth;
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_DEPTHBIAS, *(DWORD*)&shaderstate.depthbias);
}
pushdepth = shaderstate.curshader->polyoffset.unit/-1;// + ((shaderstate.flags & BEF_PUSHDEPTH)?8:0);
pushfactor = shaderstate.curshader->polyoffset.factor/-1;
if (pushfactor != shaderstate.depthfactor)
{
shaderstate.depthfactor = pushfactor;
IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_SLOPESCALEDEPTHBIAS, *(DWORD*)&shaderstate.depthfactor);
}
*/
if (shaderstate.batchvbo)
{
vertcount = shaderstate.batchvbo->vertcount;
idxcount = shaderstate.batchvbo->indexcount;
}
else
{
for (mno = 0, vertcount = 0, idxcount = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
vertcount += m->numvertexes;
idxcount += m->numindexes;
}
}
/*vertex buffers are common to all passes*/
if (shaderstate.batchvbo)
{
unsigned int strides[] = {sizeof(vbovdata_t)};
ID3D11DeviceContext_IASetVertexBuffers(d3ddevctx, 0, 1, (ID3D11Buffer**)&shaderstate.batchvbo->coord.d3d.buff, strides, &shaderstate.batchvbo->coord.d3d.offs);
// d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_VERT, shaderstate.batchvbo->coord.d3d.buff, shaderstate.batchvbo->coord.d3d.offs, sizeof(vecV_t)));
}
else
{
return;
/* allocvertexbuffer(shaderstate.dynxyz_buff, shaderstate.dynxyz_size, &shaderstate.dynxyz_offs, &map, vertcount*sizeof(vecV_t));
for (mno = 0, vertcount = 0; mno < shaderstate.nummeshes; mno++)
{
vecV_t *dest = (vecV_t*)((char*)map+vertcount*sizeof(vecV_t));
m = shaderstate.meshlist[mno];
deformgen(&shaderstate.curshader->deforms[0], m->numvertexes, m->xyz_array, dest, m);
for (i = 1; i < shaderstate.curshader->numdeforms; i++)
{
deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, dest, dest, m);
}
vertcount += m->numvertexes;
}
d3dcheck(IDirect3DVertexBuffer9_Unlock(shaderstate.dynxyz_buff));
d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_VERT, shaderstate.dynxyz_buff, shaderstate.dynxyz_offs - vertcount*sizeof(vecV_t), sizeof(vecV_t)));
*/
}
/*so are index buffers*/
if (shaderstate.batchvbo)
{
ID3D11DeviceContext_IASetIndexBuffer(d3ddevctx, shaderstate.batchvbo->indicies.d3d.buff, DXGI_FORMAT_R16_UINT, shaderstate.batchvbo->indicies.d3d.offs);
idxfirst = 0;
}
else
{
return;
/* idxfirst = allocindexbuffer(&map, idxcount);
for (mno = 0, vertcount = 0; mno < shaderstate.nummeshes; mno++)
{
m = shaderstate.meshlist[mno];
for (i = 0; i < m->numindexes; i++)
((index_t*)map)[i] = m->indexes[i]+vertcount;
map = (char*)map + m->numindexes*sizeof(index_t);
vertcount += m->numvertexes;
}
d3dcheck(IDirect3DIndexBuffer9_Unlock(shaderstate.dynidx_buff));
d3dcheck(IDirect3DDevice9_SetIndices(pD3DDev9, shaderstate.dynidx_buff));
*/
}
switch (shaderstate.mode)
{
case BEM_LIGHT:
BE_RenderMeshProgram(shaderstate.shader_rtlight, vertcount, idxfirst, idxcount);
break;
case BEM_DEPTHONLY:
shaderstate.lastpasscount = 0;
i = 0;
if (i != shaderstate.curvertdecl)
{
shaderstate.curvertdecl = i;
// d3dcheck(IDirect3DDevice9_SetVertexDeclaration(pD3DDev9, vertexdecls[shaderstate.curvertdecl]));
}
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_COLORWRITEENABLE, 0);
/*deactivate any extras*/
for (passno = 0; passno < shaderstate.lastpasscount; )
{
// d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_TC0+passno, NULL, 0, 0));
BindTexture(passno, NULL);
// d3dcheck(IDirect3DDevice9_SetTextureStageState(pD3DDev9, passno, D3DTSS_COLOROP, D3DTOP_DISABLE));
passno++;
}
shaderstate.lastpasscount = 0;
BE_SubmitMeshChain(idxfirst);
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE|D3DCOLORWRITEENABLE_ALPHA);
break;
default:
case BEM_STANDARD:
if (shaderstate.curshader->prog)
{
BE_RenderMeshProgram(shaderstate.curshader, vertcount, idxfirst, idxcount);
}
else if (developer.ival)
Con_DPrintf("Shader %s has no hlsl program\n", shaderstate.curshader->name);
//else d3d11 has no fixed function pipeline.
break;
}
}
void D3D11BE_SelectMode(backendmode_t mode)
{
shaderstate.mode = mode;
if (mode == BEM_STENCIL)
D3D11BE_ApplyShaderBits(SBITS_MASK_BITS);
}
void D3D11BE_SelectDLight(dlight_t *dl, vec3_t colour)
{
shaderstate.curdlight = dl;
VectorCopy(colour, shaderstate.curdlight_colours);
}
void D3D11BE_SelectEntity(entity_t *ent)
{
BE_RotateForEntity(ent, ent->model);
}
static qboolean BE_GenTempMeshVBO(vbo_t **vbo, mesh_t *mesh)
{
static vbo_t tmpvbo;
D3D11_MAPPED_SUBRESOURCE msr;
int i;
D3D11_MAP type;
int sz;
//vbo first
{
vbovdata_t *out;
sz = sizeof(*out) * mesh->numvertexes;
if (shaderstate.purgevertexstream || shaderstate.vertexstreamoffset + sz > VERTEXSTREAMSIZE)
{
shaderstate.purgevertexstream = false;
shaderstate.vertexstreamoffset = 0;
type = D3D11_MAP_WRITE_DISCARD;
}
else
{
type = D3D11_MAP_WRITE_NO_OVERWRITE; //yes sir, sorry sir, we promise to not break anything
}
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.vertexstream, 0, type, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map vertex stream buffer start\n");
return false;
}
//figure out where our pointer is and mark it as consumed
out = (vbovdata_t*)((qbyte*)msr.pData + shaderstate.vertexstreamoffset);
//FIXME: do we actually need to bother setting all this junk?
tmpvbo.coord.d3d.buff = shaderstate.vertexstream;
tmpvbo.coord.d3d.offs = (quintptr_t)&out[0].coord - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
tmpvbo.texcoord.d3d.buff = shaderstate.vertexstream;
tmpvbo.texcoord.d3d.offs = (quintptr_t)&out[0].tex - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
tmpvbo.lmcoord[0].d3d.buff = shaderstate.vertexstream;
tmpvbo.lmcoord[0].d3d.offs = (quintptr_t)&out[0].lm - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
tmpvbo.normals.d3d.buff = shaderstate.vertexstream;
tmpvbo.normals.d3d.offs = (quintptr_t)&out[0].ndir - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
tmpvbo.svector.d3d.buff = shaderstate.vertexstream;
tmpvbo.svector.d3d.offs = (quintptr_t)&out[0].sdir - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
tmpvbo.tvector.d3d.buff = shaderstate.vertexstream;
tmpvbo.tvector.d3d.offs = (quintptr_t)&out[0].tdir - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
tmpvbo.colours.d3d.buff = shaderstate.vertexstream;
tmpvbo.colours.d3d.offs = (quintptr_t)&out[0].colorsb - (quintptr_t)&out[0] + shaderstate.vertexstreamoffset;
//consumed
shaderstate.vertexstreamoffset += sz;
//now vomit into the buffer
if (!mesh->normals_array && mesh->colors4f_array)
{
//2d drawing
for (i = 0; i < mesh->numvertexes; i++)
{
VectorCopy(mesh->xyz_array[i], out[i].coord);
Vector2Copy(mesh->st_array[i], out[i].tex);
VectorClear(out[i].ndir);
VectorClear(out[i].sdir);
VectorClear(out[i].tdir);
Vector4Scale(mesh->colors4f_array[i], 255, out[i].colorsb);
}
}
else if (!mesh->normals_array && mesh->colors4b_array)
{
//2d drawing, ish
for (i = 0; i < mesh->numvertexes; i++)
{
VectorCopy(mesh->xyz_array[i], out[i].coord);
Vector2Copy(mesh->st_array[i], out[i].tex);
VectorClear(out[i].ndir);
VectorClear(out[i].sdir);
VectorClear(out[i].tdir);
*(unsigned int*)out[i].colorsb = *(unsigned int*)mesh->colors4b_array[i];
}
}
else if (mesh->normals_array && !mesh->colors4f_array && !mesh->colors4b_array)
{
//hlsl-lit models
for (i = 0; i < mesh->numvertexes; i++)
{
VectorCopy(mesh->xyz_array[i], out[i].coord);
Vector2Copy(mesh->st_array[i], out[i].tex);
VectorCopy(mesh->normals_array[i], out[i].ndir);
VectorCopy(mesh->snormals_array[i], out[i].sdir);
VectorCopy(mesh->tnormals_array[i], out[i].tdir);
*(unsigned int*)out[i].colorsb = 0xffffffff; //write colours to ensure nothing is read back within the cpu cache block.
}
}
else
{
//common stuff
for (i = 0; i < mesh->numvertexes; i++)
{
VectorCopy(mesh->xyz_array[i], out[i].coord);
Vector2Copy(mesh->st_array[i], out[i].tex);
}
//not so common stuff
if (mesh->normals_array)
{
for (i = 0; i < mesh->numvertexes; i++)
{
VectorCopy(mesh->normals_array[i], out[i].ndir);
VectorCopy(mesh->snormals_array[i], out[i].sdir);
VectorCopy(mesh->tnormals_array[i], out[i].tdir);
}
}
//some sort of colours
if (mesh->colors4b_array)
{
for (i = 0; i < mesh->numvertexes; i++)
{
Vector4Copy(mesh->colors4b_array[i], out[i].colorsb);
}
}
else if (mesh->colors4f_array)
{
for (i = 0; i < mesh->numvertexes; i++)
{
Vector4Scale(mesh->colors4f_array[i], 255, out[i].colorsb);
}
}
else
{
for (i = 0; i < mesh->numvertexes; i++)
{
Vector4Set(out[i].colorsb, 255, 255, 255, 255);
}
}
}
//and we're done
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.vertexstream, 0);
}
//now ebo
{
index_t *out;
sz = sizeof(*out) * mesh->numindexes;
if (shaderstate.purgeindexstream || shaderstate.indexstreamoffset + sz > VERTEXSTREAMSIZE)
{
shaderstate.purgeindexstream = false;
shaderstate.indexstreamoffset = 0;
type = D3D11_MAP_WRITE_DISCARD;
}
else
{
type = D3D11_MAP_WRITE_NO_OVERWRITE;
}
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.indexstream, 0, type, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map vertex stream buffer start\n");
return false;
}
out = (index_t*)((qbyte*)msr.pData + shaderstate.indexstreamoffset);
tmpvbo.indicies.d3d.buff = shaderstate.indexstream;
tmpvbo.indicies.d3d.offs = shaderstate.indexstreamoffset;
//consumed
shaderstate.indexstreamoffset += sz;
memcpy(out, mesh->indexes, sz);
//and we're done
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.indexstream, 0);
}
tmpvbo.indexcount = mesh->numindexes;
tmpvbo.vertcount = mesh->numvertexes;
tmpvbo.next = NULL;
*vbo = &tmpvbo;
return true;
}
void D3D11BE_GenBatchVBOs(vbo_t **vbochain, batch_t *firstbatch, batch_t *stopbatch)
{
int maxvboelements;
int maxvboverts;
int vert = 0, idx = 0;
batch_t *batch;
vbo_t *vbo;
int i, j;
mesh_t *m;
ID3D11Buffer *vbuff;
ID3D11Buffer *ebuff;
index_t *vboedata, *vboedatastart;
vbovdata_t *vbovdata, *vbovdatastart;
D3D11_BUFFER_DESC vbodesc;
D3D11_BUFFER_DESC ebodesc;
D3D11_SUBRESOURCE_DATA srd;
vbo = Z_Malloc(sizeof(*vbo));
maxvboverts = 0;
maxvboelements = 0;
for(batch = firstbatch; batch != stopbatch; batch = batch->next)
{
for (i=0 ; i<batch->maxmeshes ; i++)
{
m = batch->mesh[i];
maxvboelements += m->numindexes;
maxvboverts += m->numvertexes;
}
}
vbovdatastart = vbovdata = BZ_Malloc(sizeof(*vbovdata) * maxvboverts);
vboedatastart = vboedata = BZ_Malloc(sizeof(*vboedata) * maxvboelements);
for(batch = firstbatch; batch != stopbatch; batch = batch->next)
{
batch->vbo = vbo;
for (j=0 ; j<batch->maxmeshes ; j++)
{
m = batch->mesh[j];
m->vbofirstvert = vert;
for (i = 0; i < m->numvertexes; i++)
{
VectorCopy(m->xyz_array[i], vbovdata->coord);
vbovdata->coord[3] = 1;
Vector2Copy(m->st_array[i], vbovdata->tex);
if (m->lmst_array[0])
Vector2Copy(m->lmst_array[0][i], vbovdata->lm);
else
Vector2Copy(m->st_array[i], vbovdata->tex);
if (m->normals_array)
VectorCopy(m->normals_array[i], vbovdata->ndir);
else
VectorSet(vbovdata->ndir, 0, 0, 1);
if (m->snormals_array)
VectorCopy(m->snormals_array[i], vbovdata->sdir);
else
VectorSet(vbovdata->sdir, 1, 0, 0);
if (m->tnormals_array)
VectorCopy(m->tnormals_array[i], vbovdata->tdir);
else
VectorSet(vbovdata->tdir, 0, 1, 0);
if (m->colors4f_array)
Vector4Scale(m->colors4f_array[i], 255, vbovdata->colorsb);
else if (m->colors4b_array)
Vector4Copy(m->colors4b_array[i], vbovdata->colorsb);
else
Vector4Set(vbovdata->colorsb, 255, 255, 255, 255);
vbovdata++;
}
m->vbofirstelement = idx;
for (i = 0; i < m->numindexes; i++)
{
*vboedata++ = vert + m->indexes[i];
}
idx += m->numindexes;
vert += m->numvertexes;
}
}
//generate the ebo, and submit the data to the driver
ebodesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
ebodesc.ByteWidth = sizeof(*vboedata) * maxvboelements;
ebodesc.CPUAccessFlags = 0;
ebodesc.MiscFlags = 0;
ebodesc.StructureByteStride = 0;
ebodesc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = vboedatastart;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
ID3D11Device_CreateBuffer(pD3DDev11, &ebodesc, &srd, &ebuff);
BZ_Free(vboedatastart);
//generate the vbo, and submit the data to the driver
vbodesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vbodesc.ByteWidth = sizeof(*vbovdata) * maxvboverts;
vbodesc.CPUAccessFlags = 0;
vbodesc.MiscFlags = 0;
vbodesc.StructureByteStride = 0;
vbodesc.Usage = D3D11_USAGE_DEFAULT;
srd.pSysMem = vbovdatastart;
srd.SysMemPitch = 0;
srd.SysMemSlicePitch = 0;
ID3D11Device_CreateBuffer(pD3DDev11, &vbodesc, &srd, &vbuff);
BZ_Free(vbovdatastart);
vbovdata = NULL;
vbo->coord.d3d.buff = vbuff;
vbo->coord.d3d.offs = (quintptr_t)&vbovdata->coord;
vbo->texcoord.d3d.buff = vbuff;
vbo->texcoord.d3d.offs = (quintptr_t)&vbovdata->tex;
vbo->lmcoord[0].d3d.buff = vbuff;
vbo->lmcoord[0].d3d.offs = (quintptr_t)&vbovdata->lm;
vbo->normals.d3d.buff = vbuff;
vbo->normals.d3d.offs = (quintptr_t)&vbovdata->ndir;
vbo->svector.d3d.buff = vbuff;
vbo->svector.d3d.offs = (quintptr_t)&vbovdata->sdir;
vbo->tvector.d3d.buff = vbuff;
vbo->tvector.d3d.offs = (quintptr_t)&vbovdata->tdir;
vbo->colours.d3d.buff = vbuff;
vbo->colours.d3d.offs = (quintptr_t)&vbovdata->colorsb;
vbo->indicies.d3d.buff = ebuff;
vbo->indicies.d3d.offs = 0;
vbo->indexcount = maxvboelements;
vbo->vertcount = maxvboverts;
vbo->next = *vbochain;
*vbochain = vbo;
}
void D3D11BE_GenBrushModelVBO(model_t *mod)
{
unsigned int vcount;
batch_t *batch, *fbatch;
int sortid;
int i;
fbatch = NULL;
vcount = 0;
for (sortid = 0; sortid < SHADER_SORT_COUNT; sortid++)
{
if (!mod->batches[sortid])
continue;
for (fbatch = batch = mod->batches[sortid]; batch != NULL; batch = batch->next)
{
//firstmesh got reused as the number of verticies in each batch
if (vcount + batch->firstmesh > MAX_INDICIES)
{
D3D11BE_GenBatchVBOs(&mod->vbos, fbatch, batch);
fbatch = batch;
vcount = 0;
}
for (i = 0; i < batch->maxmeshes; i++)
vcount += batch->mesh[i]->numvertexes;
}
D3D11BE_GenBatchVBOs(&mod->vbos, fbatch, batch);
}
}
/*Wipes a vbo*/
void D3D11BE_ClearVBO(vbo_t *vbo)
{
ID3D11Buffer *vbuff = vbo->coord.d3d.buff;
ID3D11Buffer *ebuff = vbo->indicies.d3d.buff;
if (vbuff)
ID3D11Buffer_Release(vbuff);
if (ebuff)
ID3D11Buffer_Release(ebuff);
vbo->coord.d3d.buff = NULL;
vbo->indicies.d3d.buff = NULL;
BZ_Free(vbo);
}
/*upload all lightmaps at the start to reduce lags*/
static void BE_UploadLightmaps(qboolean force)
{
int i;
for (i = 0; i < numlightmaps; i++)
{
if (!lightmap[i])
continue;
if (force)
{
lightmap[i]->rectchange.l = 0;
lightmap[i]->rectchange.t = 0;
lightmap[i]->rectchange.w = LMBLOCK_WIDTH;
lightmap[i]->rectchange.h = LMBLOCK_HEIGHT;
lightmap[i]->modified = true;
}
if (lightmap[i]->modified)
{
D3D11_UploadLightmap(lightmap[i]);
}
}
}
void D3D11BE_UploadAllLightmaps(void)
{
BE_UploadLightmaps(true);
}
qboolean D3D11BE_LightCullModel(vec3_t org, model_t *model)
{
#ifdef RTLIGHTS
if ((shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_STENCIL))
{
/*true if hidden from current light*/
/*we have no rtlight support, so mneh*/
}
#endif
return false;
}
batch_t *D3D11BE_GetTempBatch(void)
{
if (shaderstate.wbatch >= shaderstate.maxwbatches)
{
shaderstate.wbatch++;
return NULL;
}
return &shaderstate.wbatches[shaderstate.wbatch++];
}
void D3D11BE_SetupViewCBuffer(void)
{
cbuf_view_t *cbv;
D3D11_MAPPED_SUBRESOURCE msr;
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.vcbuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map constant buffer\n");
return;
}
cbv = (cbuf_view_t*)msr.pData;
memcpy(cbv->m_projection, d3d_trueprojection/*r_refdef.m_projection*/, sizeof(cbv->m_projection));
memcpy(cbv->m_view, r_refdef.m_view, sizeof(cbv->m_view));
VectorCopy(r_origin, cbv->v_eyepos);
cbv->v_time = r_refdef.time;
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.vcbuffer, 0);
}
//also updates the entity constant buffer
static void BE_RotateForEntity (const entity_t *e, const model_t *mod)
{
float ndr;
float mv[16];
float *m = shaderstate.m_model;
cbuf_entity_t *cbe;
D3D11_MAPPED_SUBRESOURCE msr;
shaderstate.ecbufferidx = (shaderstate.ecbufferidx + 1) & (NUMECBUFFERS-1);
if (FAILED(ID3D11DeviceContext_Map(d3ddevctx, (ID3D11Resource*)shaderstate.ecbuffers[shaderstate.ecbufferidx], 0, D3D11_MAP_WRITE_DISCARD, 0, &msr)))
{
Con_Printf("BE_RotateForEntity: failed to map constant buffer\n");
return;
}
cbe = (cbuf_entity_t*)msr.pData;
shaderstate.curentity = e;
m[0] = e->axis[0][0];
m[1] = e->axis[0][1];
m[2] = e->axis[0][2];
m[3] = 0;
m[4] = e->axis[1][0];
m[5] = e->axis[1][1];
m[6] = e->axis[1][2];
m[7] = 0;
m[8] = e->axis[2][0];
m[9] = e->axis[2][1];
m[10] = e->axis[2][2];
m[11] = 0;
m[12] = e->origin[0];
m[13] = e->origin[1];
m[14] = e->origin[2];
m[15] = 1;
if (e->scale != 1 && e->scale != 0) //hexen 2 stuff
{
float z;
float escale;
escale = e->scale;
switch(e->drawflags&SCALE_TYPE_MASKIN)
{
default:
case SCALE_TYPE_UNIFORM:
VectorScale((m+0), escale, (m+0));
VectorScale((m+4), escale, (m+4));
VectorScale((m+8), escale, (m+8));
break;
case SCALE_TYPE_XYONLY:
VectorScale((m+0), escale, (m+0));
VectorScale((m+4), escale, (m+4));
break;
case SCALE_TYPE_ZONLY:
VectorScale((m+8), escale, (m+8));
break;
}
if (mod && (e->drawflags&SCALE_TYPE_MASKIN) != SCALE_TYPE_XYONLY)
{
switch(e->drawflags&SCALE_ORIGIN_MASKIN)
{
case SCALE_ORIGIN_CENTER:
z = ((mod->maxs[2] + mod->mins[2]) * (1-escale))/2;
VectorMA((m+12), z, e->axis[2], (m+12));
break;
case SCALE_ORIGIN_BOTTOM:
VectorMA((m+12), mod->mins[2]*(1-escale), e->axis[2], (m+12));
break;
case SCALE_ORIGIN_TOP:
VectorMA((m+12), -mod->maxs[2], e->axis[2], (m+12));
break;
}
}
}
else if (mod && !strcmp(mod->name, "progs/eyes.mdl"))
{
/*resize eyes, to make them easier to see*/
m[14] -= (22 + 8);
VectorScale((m+0), 2, (m+0));
VectorScale((m+4), 2, (m+4));
VectorScale((m+8), 2, (m+8));
}
if (mod && !ruleset_allow_larger_models.ival && mod->clampscale != 1)
{ //possibly this should be on a per-frame basis, but that's a real pain to do
Con_DPrintf("Rescaling %s by %f\n", mod->name, mod->clampscale);
VectorScale((m+0), mod->clampscale, (m+0));
VectorScale((m+4), mod->clampscale, (m+4));
VectorScale((m+8), mod->clampscale, (m+8));
}
if (e->flags & Q2RF_WEAPONMODEL)
{
/*FIXME: no bob*/
float iv[16];
Matrix4_Invert(r_refdef.m_view, iv);
Matrix4x4_CM_NewRotation(90, 1, 0, 0);
Matrix4_Multiply(iv, m, mv);
Matrix4_Multiply(mv, Matrix4x4_CM_NewRotation(-90, 1, 0, 0), iv);
Matrix4_Multiply(iv, Matrix4x4_CM_NewRotation(90, 0, 0, 1), mv);
memcpy(cbe->m_model, mv, sizeof(cbe->m_model));
}
else
{
memcpy(cbe->m_model, m, sizeof(cbe->m_model));
}
cbe->e_time = r_refdef.time - shaderstate.curentity->shaderTime;
VectorCopy(e->light_avg, cbe->e_light_ambient);
VectorCopy(e->light_dir, cbe->e_light_dir);
VectorCopy(e->light_range, cbe->e_light_mul);
ID3D11DeviceContext_Unmap(d3ddevctx, (ID3D11Resource*)shaderstate.ecbuffers[shaderstate.ecbufferidx], 0);
ndr = (e->flags & Q2RF_DEPTHHACK)?0.333:1;
if (ndr != shaderstate.depthrange)
{
D3D11_VIEWPORT vport;
shaderstate.depthrange = ndr;
vport.TopLeftX = (r_refdef.vrect.x * vid.pixelwidth) / vid.width;
vport.TopLeftY = (r_refdef.vrect.y * vid.pixelheight) / vid.height;
vport.Width = (r_refdef.vrect.width * vid.pixelwidth) / vid.width;
vport.Height = (r_refdef.vrect.height * vid.pixelheight) / vid.height;
vport.MinDepth = 0;
vport.MaxDepth = shaderstate.depthrange;
d3ddevctx->lpVtbl->RSSetViewports(d3ddevctx, 1, &vport);
}
}
void D3D11BE_SubmitBatch(batch_t *batch)
{
shaderstate.nummeshes = batch->meshes - batch->firstmesh;
if (!shaderstate.nummeshes)
return;
if (shaderstate.curentity != batch->ent)
{
BE_RotateForEntity(batch->ent, batch->ent->model);
shaderstate.curtime = r_refdef.time - shaderstate.curentity->shaderTime;
}
shaderstate.curbatch = batch;
shaderstate.batchvbo = batch->vbo;
shaderstate.meshlist = batch->mesh + batch->firstmesh;
shaderstate.curshader = batch->shader;
shaderstate.curtexnums = batch->skin;
shaderstate.flags = batch->flags;
if (!shaderstate.batchvbo)
{
if (!BE_GenTempMeshVBO(&shaderstate.batchvbo, batch->mesh[0]))
return;
BE_DrawMeshChain_Internal();
}
else
BE_DrawMeshChain_Internal();
}
void D3D11BE_DrawMesh_List(shader_t *shader, int nummeshes, mesh_t **meshlist, vbo_t *vbo, texnums_t *texnums, unsigned int beflags)
{
shaderstate.curbatch = &shaderstate.dummybatch;
shaderstate.batchvbo = vbo;
shaderstate.curshader = shader;
shaderstate.curtexnums = texnums;
shaderstate.meshlist = meshlist;
shaderstate.nummeshes = nummeshes;
shaderstate.flags = beflags;
if (!shaderstate.batchvbo)
{
if (!BE_GenTempMeshVBO(&shaderstate.batchvbo, meshlist[0]))
return;
shaderstate.nummeshes = 1;
BE_DrawMeshChain_Internal();
}
else
BE_DrawMeshChain_Internal();
}
void D3D11BE_DrawMesh_Single(shader_t *shader, mesh_t *meshchain, vbo_t *vbo, texnums_t *texnums, unsigned int beflags)
{
shaderstate.curbatch = &shaderstate.dummybatch;
shaderstate.batchvbo = vbo;
shaderstate.curtime = realtime;
shaderstate.curshader = shader;
shaderstate.curtexnums = texnums?texnums:&shader->defaulttextures;
shaderstate.meshlist = &meshchain;
shaderstate.nummeshes = 1;
shaderstate.flags = beflags;
if (!shaderstate.batchvbo)
{
if (!BE_GenTempMeshVBO(&shaderstate.batchvbo, meshchain))
return;
BE_DrawMeshChain_Internal();
}
else
BE_DrawMeshChain_Internal();
}
static void BE_SubmitMeshesSortList(batch_t *sortlist)
{
batch_t *batch;
for (batch = sortlist; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
else if (batch->texture)
{
batch->shader = R_TextureAnimation(batch->ent->framestate.g[FS_REG].frame[0], batch->texture)->shader;
batch->skin = &batch->shader->defaulttextures;
}
if (batch->shader->flags & SHADER_NODLIGHT)
if (shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_SMAPLIGHT)
continue;
if (batch->shader->flags & SHADER_SKY)
{
if (!batch->shader->prog)
{
if (shaderstate.mode == BEM_STANDARD)
R_DrawSkyChain (batch);
continue;
}
}
BE_SubmitBatch(batch);
}
}
/*generates a new modelview matrix, as well as vpn vectors*/
static void R_MirrorMatrix(plane_t *plane)
{
float mirror[16];
float view[16];
float result[16];
vec3_t pnorm;
VectorNegate(plane->normal, pnorm);
mirror[0] = 1-2*pnorm[0]*pnorm[0];
mirror[1] = -2*pnorm[0]*pnorm[1];
mirror[2] = -2*pnorm[0]*pnorm[2];
mirror[3] = 0;
mirror[4] = -2*pnorm[1]*pnorm[0];
mirror[5] = 1-2*pnorm[1]*pnorm[1];
mirror[6] = -2*pnorm[1]*pnorm[2] ;
mirror[7] = 0;
mirror[8] = -2*pnorm[2]*pnorm[0];
mirror[9] = -2*pnorm[2]*pnorm[1];
mirror[10] = 1-2*pnorm[2]*pnorm[2];
mirror[11] = 0;
mirror[12] = -2*pnorm[0]*plane->dist;
mirror[13] = -2*pnorm[1]*plane->dist;
mirror[14] = -2*pnorm[2]*plane->dist;
mirror[15] = 1;
view[0] = vpn[0];
view[1] = vpn[1];
view[2] = vpn[2];
view[3] = 0;
view[4] = -vright[0];
view[5] = -vright[1];
view[6] = -vright[2];
view[7] = 0;
view[8] = vup[0];
view[9] = vup[1];
view[10] = vup[2];
view[11] = 0;
view[12] = r_refdef.vieworg[0];
view[13] = r_refdef.vieworg[1];
view[14] = r_refdef.vieworg[2];
view[15] = 1;
VectorMA(r_refdef.vieworg, 0.25, plane->normal, r_refdef.pvsorigin);
Matrix4_Multiply(mirror, view, result);
vpn[0] = result[0];
vpn[1] = result[1];
vpn[2] = result[2];
vright[0] = -result[4];
vright[1] = -result[5];
vright[2] = -result[6];
vup[0] = result[8];
vup[1] = result[9];
vup[2] = result[10];
r_refdef.vieworg[0] = result[12];
r_refdef.vieworg[1] = result[13];
r_refdef.vieworg[2] = result[14];
}
static entity_t *R_NearestPortal(plane_t *plane)
{
int i;
entity_t *best = NULL;
float dist, bestd = 0;
//for q3-compat, portals on world scan for a visedict to use for their view.
for (i = 0; i < cl_numvisedicts; i++)
{
if (cl_visedicts[i].rtype == RT_PORTALSURFACE)
{
dist = DotProduct(cl_visedicts[i].origin, plane->normal)-plane->dist;
dist = fabs(dist);
if (dist < 64 && (!best || dist < bestd))
best = &cl_visedicts[i];
}
}
return best;
}
static void TransformCoord(vec3_t in, vec3_t planea[3], vec3_t planeo, vec3_t viewa[3], vec3_t viewo, vec3_t result)
{
int i;
vec3_t local;
vec3_t transformed;
float d;
local[0] = in[0] - planeo[0];
local[1] = in[1] - planeo[1];
local[2] = in[2] - planeo[2];
VectorClear(transformed);
for ( i = 0 ; i < 3 ; i++ )
{
d = DotProduct(local, planea[i]);
VectorMA(transformed, d, viewa[i], transformed);
}
result[0] = transformed[0] + viewo[0];
result[1] = transformed[1] + viewo[1];
result[2] = transformed[2] + viewo[2];
}
static void TransformDir(vec3_t in, vec3_t planea[3], vec3_t viewa[3], vec3_t result)
{
int i;
float d;
vec3_t tmp;
VectorCopy(in, tmp);
VectorClear(result);
for ( i = 0 ; i < 3 ; i++ )
{
d = DotProduct(tmp, planea[i]);
VectorMA(result, d, viewa[i], result);
}
}
static void R_RenderScene(void)
{
// IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_PROJECTION, (D3DMATRIX*)d3d_trueprojection);
// IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_VIEW, (D3DMATRIX*)r_refdef.m_view);
R_SetFrustum (r_refdef.m_projection, r_refdef.m_view);
Surf_DrawWorld();
}
static void R_DrawPortal(batch_t *batch, batch_t **blist)
{
entity_t *view;
float glplane[4];
plane_t plane;
refdef_t oldrefdef;
mesh_t *mesh = batch->mesh[batch->firstmesh];
int sort;
if (r_refdef.recurse)
return;
VectorCopy(mesh->normals_array[0], plane.normal);
plane.dist = DotProduct(mesh->xyz_array[0], plane.normal);
//if we're too far away from the surface, don't draw anything
if (batch->shader->flags & SHADER_AGEN_PORTAL)
{
/*there's a portal alpha blend on that surface, that fades out after this distance*/
if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist > batch->shader->portaldist)
return;
}
//if we're behind it, then also don't draw anything.
if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist < 0)
return;
view = R_NearestPortal(&plane);
//if (!view)
// return;
oldrefdef = r_refdef;
r_refdef.recurse = true;
r_refdef.externalview = true;
if (!view || VectorCompare(view->origin, view->oldorigin))
{
r_refdef.flipcull ^= true;
R_MirrorMatrix(&plane);
}
else
{
float d;
vec3_t paxis[3], porigin, vaxis[3], vorg;
void PerpendicularVector( vec3_t dst, const vec3_t src );
/*calculate where the surface is meant to be*/
VectorCopy(mesh->normals_array[0], paxis[0]);
PerpendicularVector(paxis[1], paxis[0]);
CrossProduct(paxis[0], paxis[1], paxis[2]);
d = DotProduct(view->origin, plane.normal) - plane.dist;
VectorMA(view->origin, -d, paxis[0], porigin);
/*grab the camera origin*/
VectorNegate(view->axis[0], vaxis[0]);
VectorNegate(view->axis[1], vaxis[1]);
VectorCopy(view->axis[2], vaxis[2]);
VectorCopy(view->oldorigin, vorg);
VectorCopy(vorg, r_refdef.pvsorigin);
/*rotate it a bit*/
RotatePointAroundVector(vaxis[1], vaxis[0], view->axis[1], sin(realtime)*4);
CrossProduct(vaxis[0], vaxis[1], vaxis[2]);
TransformCoord(oldrefdef.vieworg, paxis, porigin, vaxis, vorg, r_refdef.vieworg);
TransformDir(vpn, paxis, vaxis, vpn);
TransformDir(vright, paxis, vaxis, vright);
TransformDir(vup, paxis, vaxis, vup);
}
Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg);
VectorAngles(vpn, vup, r_refdef.viewangles);
VectorCopy(r_refdef.vieworg, r_origin);
/*FIXME: the batch stuff should be done in renderscene*/
/*fixup the first mesh index*/
for (sort = 0; sort < SHADER_SORT_COUNT; sort++)
for (batch = blist[sort]; batch; batch = batch->next)
{
batch->firstmesh = batch->meshes;
}
/*FIXME: can we get away with stenciling the screen?*/
/*Add to frustum culling instead of clip planes?*/
glplane[0] = plane.normal[0];
glplane[1] = plane.normal[1];
glplane[2] = plane.normal[2];
glplane[3] = -plane.dist;
// IDirect3DDevice9_SetClipPlane(pD3DDev9, 0, glplane);
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CLIPPLANEENABLE, D3DCLIPPLANE0);
R_RenderScene();
// IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CLIPPLANEENABLE, 0);
for (sort = 0; sort < SHADER_SORT_COUNT; sort++)
for (batch = blist[sort]; batch; batch = batch->next)
{
batch->firstmesh = 0;
}
r_refdef = oldrefdef;
/*broken stuff*/
AngleVectors (r_refdef.viewangles, vpn, vright, vup);
VectorCopy (r_refdef.vieworg, r_origin);
// IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_PROJECTION, (D3DMATRIX*)d3d_trueprojection);
// IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_VIEW, (D3DMATRIX*)r_refdef.m_view);
R_SetFrustum (r_refdef.m_projection, r_refdef.m_view);
}
static void BE_SubmitMeshesPortals(batch_t **worldlist, batch_t *dynamiclist)
{
batch_t *batch, *old;
int i;
/*attempt to draw portal shaders*/
if (shaderstate.mode == BEM_STANDARD)
{
for (i = 0; i < 2; i++)
{
for (batch = i?dynamiclist:worldlist[SHADER_SORT_PORTAL]; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
else
batch->shader = R_TextureAnimation(batch->ent->framestate.g[FS_REG].frame[0], batch->texture)->shader;
/*draw already-drawn portals as depth-only, to ensure that their contents are not harmed*/
BE_SelectMode(BEM_DEPTHONLY);
for (old = worldlist[SHADER_SORT_PORTAL]; old && old != batch; old = old->next)
{
if (old->meshes == old->firstmesh)
continue;
BE_SubmitBatch(old);
}
if (!old)
{
for (old = dynamiclist; old != batch; old = old->next)
{
if (old->meshes == old->firstmesh)
continue;
BE_SubmitBatch(old);
}
}
BE_SelectMode(BEM_STANDARD);
R_DrawPortal(batch, worldlist);
/*clear depth again*/
// IDirect3DDevice9_Clear(pD3DDev9, 0, NULL, D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(0,0,0), 1, 0);
}
}
}
}
void D3D11BE_SubmitMeshes (qboolean drawworld, batch_t **blist, int first, int stop)
{
model_t *model = cl.worldmodel;
int i;
for (i = first; i < stop; i++)
{
if (drawworld)
{
if (i == SHADER_SORT_PORTAL /*&& !r_noportals.ival*/ && !r_refdef.recurse)
BE_SubmitMeshesPortals(model->batches, blist[i]);
BE_SubmitMeshesSortList(model->batches[i]);
}
BE_SubmitMeshesSortList(blist[i]);
}
}
#ifdef RTLIGHTS
void D3D11BE_BaseEntTextures(void)
{
batch_t *batches[SHADER_SORT_COUNT];
BE_GenModelBatches(batches);
D3D11BE_SubmitMeshes(false, batches, SHADER_SORT_PORTAL, SHADER_SORT_DECAL);
BE_SelectEntity(&r_worldentity);
}
void D3D11BE_RenderShadowBuffer(unsigned int numverts, ID3D11Buffer *vbuf, unsigned int numindicies, ID3D11Buffer *ibuf)
{
/*
IDirect3DDevice9_SetStreamSource(pD3DDev9, STRM_VERT, vbuf, 0, sizeof(vecV_t));
IDirect3DDevice9_SetIndices(pD3DDev9, ibuf);
if (0 != shaderstate.curvertdecl)
{
shaderstate.curvertdecl = 0;
d3dcheck(IDirect3DDevice9_SetVertexDeclaration(pD3DDev9, vertexdecls[shaderstate.curvertdecl]));
}
IDirect3DDevice9_DrawIndexedPrimitive(pD3DDev9, D3DPT_TRIANGLELIST, 0, 0, numverts, 0, numindicies/3);
*/
}
#endif
void D3D11BE_DrawWorld (qboolean drawworld, qbyte *vis)
{
batch_t *batches[SHADER_SORT_COUNT];
RSpeedLocals();
shaderstate.curentity = NULL;
shaderstate.depthrange = 0;
if (!r_refdef.recurse)
{
if (shaderstate.wbatch > shaderstate.maxwbatches)
{
int newm = shaderstate.wbatch;
Z_Free(shaderstate.wbatches);
shaderstate.wbatches = Z_Malloc(newm * sizeof(*shaderstate.wbatches));
memset(shaderstate.wbatches + shaderstate.maxwbatches, 0, (newm - shaderstate.maxwbatches) * sizeof(*shaderstate.wbatches));
shaderstate.maxwbatches = newm;
}
shaderstate.wbatch = 0;
}
D3D11BE_SetupViewCBuffer();
BE_GenModelBatches(batches);
if (vis)
{
BE_UploadLightmaps(false);
//make sure the world draws correctly
r_worldentity.shaderRGBAf[0] = 1;
r_worldentity.shaderRGBAf[1] = 1;
r_worldentity.shaderRGBAf[2] = 1;
r_worldentity.shaderRGBAf[3] = 1;
r_worldentity.axis[0][0] = 1;
r_worldentity.axis[1][1] = 1;
r_worldentity.axis[2][2] = 1;
BE_SelectMode(BEM_STANDARD);
RSpeedRemark();
D3D11BE_SubmitMeshes(true, batches, SHADER_SORT_PORTAL, SHADER_SORT_DECAL);
RSpeedEnd(RSPEED_WORLD);
#ifdef RTLIGHTS
RSpeedRemark();
D3D11BE_SelectEntity(&r_worldentity);
Sh_DrawLights(vis);
RSpeedEnd(RSPEED_STENCILSHADOWS);
#endif
D3D11BE_SubmitMeshes(true, batches, SHADER_SORT_DECAL, SHADER_SORT_COUNT);
}
else
{
RSpeedRemark();
D3D11BE_SubmitMeshes(false, batches, SHADER_SORT_PORTAL, SHADER_SORT_COUNT);
RSpeedEnd(RSPEED_DRAWENTITIES);
}
R_RenderDlights ();
BE_RotateForEntity(&r_worldentity, NULL);
}
void D3D11BE_VBO_Begin(vbobctx_t *ctx, unsigned int maxsize)
{
}
void D3D11BE_VBO_Data(vbobctx_t *ctx, void *data, unsigned int size, vboarray_t *varray)
{
}
void D3D11BE_VBO_Finish(vbobctx_t *ctx, void *edata, unsigned int esize, vboarray_t *earray)
{
}
void D3D11BE_VBO_Destroy(vboarray_t *vearray)
{
}
void D3D11BE_Scissor(srect_t *rect)
{
//stub
}
#endif