1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_hlmdl.c

1766 lines
57 KiB
C
Raw Normal View History

#include "quakedef.h"
#ifdef HALFLIFEMODELS
#include "shader.h"
#include "com_mesh.h"
/*
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Half-Life Model Renderer (Experimental) Copyright (C) 2001 James 'Ender' Brown [ender@quakesrc.org] This program is
free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. fromquake.h -
render.c - apart from calculations (mostly range checking or value conversion code is a mix of standard Quake 1
meshing, and vertex deforms. The rendering loop uses standard Quake 1 drawing, after SetupBones deforms the vertex.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Note: this code has since been greatly modified to fix skin, submodels, hitboxes, attachments, etc.
Also, please note that it won't do all hl models....
Nor will it work 100%
*/
qboolean HLMDL_Trace (struct model_s *model, int hulloverride, const framestate_t *framestate, const vec3_t axis[3], const vec3_t p1, const vec3_t p2, const vec3_t mins, const vec3_t maxs, qboolean capsule, unsigned int against, struct trace_s *trace);
unsigned int HLMDL_Contents (struct model_s *model, int hulloverride, const framestate_t *framestate, const vec3_t axis[3], const vec3_t p, const vec3_t mins, const vec3_t maxs);
void QuaternionGLMatrix(float x, float y, float z, float w, vec4_t *GLM)
{
GLM[0][0] = 1 - 2 * y * y - 2 * z * z;
GLM[1][0] = 2 * x * y + 2 * w * z;
GLM[2][0] = 2 * x * z - 2 * w * y;
GLM[0][1] = 2 * x * y - 2 * w * z;
GLM[1][1] = 1 - 2 * x * x - 2 * z * z;
GLM[2][1] = 2 * y * z + 2 * w * x;
GLM[0][2] = 2 * x * z + 2 * w * y;
GLM[1][2] = 2 * y * z - 2 * w * x;
GLM[2][2] = 1 - 2 * x * x - 2 * y * y;
}
/*
=======================================================================================================================
QuaternionGLAngle - Convert a GL angle to a quaternion matrix
=======================================================================================================================
*/
void QuaternionGLAngle(const vec3_t angles, vec4_t quaternion)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
float yaw = angles[2] * 0.5;
float pitch = angles[1] * 0.5;
float roll = angles[0] * 0.5;
float siny = sin(yaw);
float cosy = cos(yaw);
float sinp = sin(pitch);
float cosp = cos(pitch);
float sinr = sin(roll);
float cosr = cos(roll);
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
quaternion[0] = sinr * cosp * cosy - cosr * sinp * siny;
quaternion[1] = cosr * sinp * cosy + sinr * cosp * siny;
quaternion[2] = cosr * cosp * siny - sinr * sinp * cosy;
quaternion[3] = cosr * cosp * cosy + sinr * sinp * siny;
}
matrix3x4 transform_matrix[MAX_BONES]; /* Vertex transformation matrix */
#ifndef SERVERONLY
void GL_Draw_HL_AliasFrame(short *order, vec3_t *transformed, float tex_w, float tex_h);
struct hlvremaps
{
unsigned short vertidx;
unsigned short normalidx;
unsigned short scoord;
unsigned short tcoord;
};
static index_t HLMDL_DeDupe(unsigned short *order, struct hlvremaps *rem, size_t *count, size_t first, size_t max)
{
size_t i;
for (i = *count; i-- > first;)
{
if (rem[i].vertidx == order[0] && rem[i].normalidx == order[1] && rem[i].scoord == order[2] && rem[i].tcoord == order[3])
return i;
}
i = *count;
if (i < max)
{
rem[i].vertidx = order[0];
rem[i].normalidx = order[1];
rem[i].scoord = order[2];
rem[i].tcoord = order[3];
}
*count += 1;
return i;
}
//parse the vertex info, pull out what we can
static void HLMDL_PrepareVerticies (model_t *mod, hlmodel_t *model)
{
struct hlvremaps *uvert;
size_t uvertcount=0, uvertstart;
unsigned short count;
int i;
size_t idx = 0, m, maxidx=65536*3;
size_t maxverts = 65536;
index_t *index;
mesh_t *mesh, *submesh;
int body;
uvert = malloc(sizeof(*uvert)*maxverts);
index = malloc(sizeof(byte_vec4_t)*maxidx);
model->numgeomsets = model->header->numbodyparts;
model->geomset = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset) * model->numgeomsets);
for (body = 0; body < model->numgeomsets; body++)
{
hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body;
int bodyindex;
model->geomset[body].numalternatives = bodypart->nummodels;
model->geomset[body].alternatives = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset[body].alternatives) * bodypart->nummodels);
for (bodyindex = 0; bodyindex < bodypart->nummodels; bodyindex++)
{
hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex;
struct hlalternative_s *submodel;
model->geomset[body].alternatives[bodyindex].numsubmeshes = amodel->nummesh;
model->geomset[body].alternatives[bodyindex].submesh = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset[body].alternatives[bodyindex].submesh) * amodel->nummesh);
submodel = &model->geomset[body].alternatives[bodyindex];
for(m = 0; m < amodel->nummesh; m++)
{
hlmdl_mesh_t *inmesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m;
unsigned short *order = (unsigned short *) ((qbyte *) model->header + inmesh->index);
uvertstart = uvertcount;
submodel->submesh[m].vbofirstvert = uvertstart;
submodel->submesh[m].vbofirstelement = idx;
submodel->submesh[m].numvertexes = 0;
submodel->submesh[m].numindexes = 0;
for(;;)
{
count = *order++; /* get the vertex count and primitive type */
if(!count) break; /* done */
if(count & 0x8000)
{ //fan
int first = HLMDL_DeDupe(order+0*4, uvert, &uvertcount, uvertstart, maxverts);
int prev = HLMDL_DeDupe(order+1*4, uvert, &uvertcount, uvertstart, maxverts);
count = (unsigned short)-(short)count;
if (idx + (count-2)*3 > maxidx)
break; //would overflow. fixme: extend
for (i = min(2,count); i < count; i++)
{
index[idx++] = first;
index[idx++] = prev;
index[idx++] = prev = HLMDL_DeDupe(order+i*4, uvert, &uvertcount, uvertstart, maxverts);
}
}
else
{
int v0 = HLMDL_DeDupe(order+0*4, uvert, &uvertcount, uvertstart, maxverts);
int v1 = HLMDL_DeDupe(order+1*4, uvert, &uvertcount, uvertstart, maxverts);
//emit (count-2)*3 indicies as a strip
//012 213, etc
if (idx + (count-2)*3 > maxidx)
break; //would overflow. fixme: extend
for (i = min(2,count); i < count; i++)
{
if (i & 1)
{
index[idx++] = v1;
index[idx++] = v0;
}
else
{
index[idx++] = v0;
index[idx++] = v1;
}
v0 = v1;
index[idx++] = v1 = HLMDL_DeDupe(order+i*4, uvert, &uvertcount, uvertstart, maxverts);
}
}
order += i*4;
}
if (uvertcount >= maxverts)
{
//if we're overflowing our verts, rewind, as we cannot generate this mesh. we'll just end up with a 0-index mesh, with no extra verts either
uvertcount = uvertstart;
idx = submodel->submesh[m].vbofirstelement;
}
submodel->submesh[m].numindexes = idx - submodel->submesh[m].vbofirstelement;
submodel->submesh[m].numvertexes = uvertcount - uvertstart;
}
}
}
mesh = &model->mesh;
mesh->indexes = ZG_Malloc(model->memgroup, sizeof(*mesh->indexes)*idx);
memcpy(mesh->indexes, index, sizeof(*index)*idx);
mesh->colors4b_array = ZG_Malloc(model->memgroup, sizeof(*mesh->colors4b_array)*uvertcount);
mesh->st_array = ZG_Malloc(model->memgroup, sizeof(*mesh->st_array)*uvertcount);
mesh->lmst_array[0] = ZG_Malloc(model->memgroup, sizeof(*mesh->lmst_array[0])*uvertcount);
mesh->xyz_array = ZG_Malloc(model->memgroup, sizeof(*mesh->xyz_array)*uvertcount);
mesh->normals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->normals_array)*uvertcount);
mesh->bonenums = ZG_Malloc(model->memgroup, sizeof(*mesh->bonenums)*uvertcount);
mesh->boneweights = ZG_Malloc(model->memgroup, sizeof(*mesh->boneweights)*uvertcount);
#if defined(RTLIGHTS)
mesh->snormals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->snormals_array)*uvertcount);
mesh->tnormals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->tnormals_array)*uvertcount);
#endif
mesh->numindexes = idx;
mesh->numvertexes = uvertcount;
for (body = 0; body < model->numgeomsets; body++)
{
hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body;
int bodyindex;
for (bodyindex = 0; bodyindex < bodypart->nummodels; bodyindex++)
{
hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex;
vec3_t *verts = (vec3_t *) ((qbyte *) model->header + amodel->vertindex);
qbyte *bone = ((qbyte *) model->header + amodel->vertinfoindex);
vec3_t *norms = (vec3_t *) ((qbyte *) model->header + amodel->normindex);
size_t iv, ov;
struct hlalternative_s *submodel = &model->geomset[body].alternatives[bodyindex];
for(m = 0; m < amodel->nummesh; m++)
{
submesh = &submodel->submesh[m];
submesh->indexes = mesh->indexes + submesh->vbofirstelement;
submesh->colors4b_array = mesh->colors4b_array + submesh->vbofirstvert;
submesh->st_array = mesh->st_array + submesh->vbofirstvert;
submesh->lmst_array[0] = mesh->lmst_array[0] + submesh->vbofirstvert;
submesh->xyz_array = mesh->xyz_array + submesh->vbofirstvert;
submesh->normals_array = mesh->normals_array + submesh->vbofirstvert;
submesh->bonenums = mesh->bonenums + submesh->vbofirstvert;
submesh->boneweights = mesh->boneweights + submesh->vbofirstvert;
//prepare the verticies now that we have the mappings
for(ov = 0, iv = submesh->vbofirstvert; ov < submesh->numvertexes; ov++, iv++)
{
submesh->bonenums[ov][0] = submesh->bonenums[ov][1] = submesh->bonenums[ov][2] = submesh->bonenums[ov][3] = bone[uvert[iv].vertidx];
Vector4Set(submesh->boneweights[ov], 1, 0, 0, 0);
Vector4Set(submesh->colors4b_array[ov], 255, 255, 255, 255); //why bytes? why not?
submesh->lmst_array[0][ov][0] = uvert[iv].scoord;
submesh->lmst_array[0][ov][1] = uvert[iv].tcoord;
VectorCopy(verts[uvert[iv].vertidx], submesh->xyz_array[ov]);
//Warning: these models use different tables for vertex and normals.
//this means they might be transformed by different bones. we ignore that and just assume that the normals will want the same bone.
VectorCopy(norms[uvert[iv].normalidx], submesh->normals_array[ov]);
}
#if defined(RTLIGHTS)
//treat this as the base pose, and calculate the sdir+tdir for bumpmaps.
submesh->snormals_array = mesh->snormals_array + submesh->vbofirstvert;
submesh->tnormals_array = mesh->tnormals_array + submesh->vbofirstvert;
// R_Generate_Mesh_ST_Vectors(submesh);
#endif
}
}
}
//scratch space...
mesh->indexes = ZG_Malloc(model->memgroup, sizeof(*mesh->indexes)*idx);
//don't need that mapping any more
free(uvert);
free(index);
}
#endif
/*
=======================================================================================================================
Mod_LoadHLModel - read in the model's constituent parts
=======================================================================================================================
*/
rewrote ban code, merging bans+nonbans+cuffs+mute+cripple+deaf+lagged+vip. added timeouts. new penalties have no dedicated command. use the addip command for it. maplist command now generates links. implemented skin objects for q3. added a csqc builtin for it. also supports compositing skins. playing demos inside zips/pk3s/paks should now work. bumped default rate cvar. added cl_transfer to attempt to connect to a new server without disconnecting first. rewrote fog command. alpha and mindist arguments are now supported. fog change also happens over a short time period. added new args to the showpic console command. can now create clickable items for touchscreen/absmouse users. fixed menus to properly support right-aligned text. this finally fixes variable-width fonts. rewrote console tab completion suggestions display. now clickable links. strings obtained from qc are now marked as const. this has required quite a few added consts all over the place. probably crappy attempt at adding joypad support to the sdl port. no idea if it works. changed key bind event code. buttons now track which event they should trigger when released, instead of being the same one the whole time. this allows +forward etc clickable buttons on screen. Also simplified modifier keys - they no longer trigger random events when pressing the modifier key itself. Right modifiers can now be bound separately from left modifiers. Right will use left's binding if not otherwise bound. Bind assumes left if there's no prefix. multiplayer->setup->network menu no longer crashes. added rgb colours to the translation view (but not to the colour-changing keys). added modelviewer command to view models. added menu_mods menu to switch mods in a more friendly way. will be shown by default if multiple manifests exist in the binarydir. clamped classic tracer density. scrag particles no longer look quite so buggy. added ifdefs to facilitate a potential winrt port. the engine should now have no extra dependencies, but still needs system code+audio drivers to be written. if it can't set a renderer, it'll now try to use *every* renderer until it finds one that works. added experimental mapcluster server mode (that console command). New maps will be started up as required. rewrote skeletal blending code a bit. added cylinder geomtypes. fix cfg_save writing to the wrong path bug. VFS_CLOSE now returns a boolean. false means there was some sort of fatal error (either crc when reading was bad, or the write got corrupted or something). Typically ignorable, depends how robust you want to be. win32 tls code now supports running as a server. added connect tls://address support, as well as equivalent sv_addport support. exposed basic model loading api to plugins. d3d11 backend now optionally supports tessellation hlsl. no suitable hlsl provided by default. !!tess to enable. attempted to add gamma ramp support for d3d11. added support for shader blobs to speed up load times. r_shaderblobs 1 to enable. almost vital for d3d11. added vid_srgb cvar. shadowless lights are no longer disabled if shadows are not supported. attempt to add support for touchscreens in win7/8. Wrote gimmicky lua support, using lua instead of ssqc. define VM_LUA to enable. updated saved game code. can again load saved games from vanilla-like engines. changed scale clamping. 0.0001 should no longer appear as 1. changed default mintic from 0.03 to 0.013 to match vanilla qw. I don't know why it was at 0.03. probably a typo. git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4623 fc73d0e0-1445-4013-8a0c-d673dee63da5
2014-03-30 08:55:06 +00:00
qboolean QDECL Mod_LoadHLModel (model_t *mod, void *buffer, size_t fsize)
{
#ifndef SERVERONLY
int i, j;
struct hlmodelshaders_s *shaders;
hlmdl_tex_t *tex;
lmalloc_t atlas;
char texname[MAX_QPATH];
#endif
hlmodel_t *model;
hlmdl_header_t *header;
hlmdl_header_t *texheader;
hlmdl_bone_t *bones;
hlmdl_bonecontroller_t *bonectls;
void *texmem = NULL;
//load the model into hunk
model = ZG_Malloc(&mod->memgroup, sizeof(hlmodel_t));
model->memgroup = &mod->memgroup;
header = ZG_Malloc(&mod->memgroup, fsize);
memcpy(header, buffer, fsize);
#if defined(HLSERVER) && (defined(__powerpc__) || defined(__ppc__))
//this is to let anyone who tries porting it know that there is a serious issue. And I'm lazy.
#ifdef warningmsg
#pragma warningmsg("-----------------------------------------")
#pragma warningmsg("FIXME: No byteswapping on halflife models") //hah, yeah, good luck with that, you'll need it.
#pragma warningmsg("-----------------------------------------")
#endif
#endif
if (header->version != 10)
{
Con_Printf(CON_ERROR "Cannot load halflife model %s - unknown version %i\n", mod->name, header->version);
return false;
}
if (header->numcontrollers > MAX_BONE_CONTROLLERS)
{
Con_Printf(CON_ERROR "Cannot load model %s - too many controllers %i\n", mod->name, header->numcontrollers);
return false;
}
if (header->numbones > MAX_BONES)
{
Con_Printf(CON_ERROR "Cannot load model %s - too many bones %i\n", mod->name, header->numbones);
return false;
}
texheader = NULL;
if (!header->numtextures)
{
size_t fz;
char texmodelname[MAX_QPATH];
COM_StripExtension(mod->name, texmodelname, sizeof(texmodelname));
Q_strncatz(texmodelname, "t.mdl", sizeof(texmodelname));
//no textures? eesh. They must be stored externally.
texheader = texmem = (hlmdl_header_t*)FS_LoadMallocFile(texmodelname, &fz);
if (texheader)
{
if (texheader->version != 10)
texheader = NULL;
}
}
if (!texheader)
texheader = header;
else
header->numtextures = texheader->numtextures;
bones = (hlmdl_bone_t *) ((qbyte *) header + header->boneindex);
bonectls = (hlmdl_bonecontroller_t *) ((qbyte *) header + header->controllerindex);
model->header = header;
model->bones = bones;
model->bonectls = bonectls;
#ifndef SERVERONLY
tex = (hlmdl_tex_t *) ((qbyte *) texheader + texheader->textures);
shaders = ZG_Malloc(&mod->memgroup, texheader->numtextures*sizeof(shader_t));
model->shaders = shaders;
for(i = 0; i < texheader->numtextures; i++)
{
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "%s/%s", mod->name, COM_SkipPath(tex[i].name));
/* handle the special textures - eukara */
if (tex[i].flags)
{
char *shader;
if (tex[i].flags & HLMDLFL_FULLBRIGHT)
{
if (tex[i].flags & HLMDLFL_CHROME)
{
shader = HLSHADER_FULLBRIGHTCHROME;
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "common/hlmodel_fullbrightchrome");
}
else
{
shader = HLSHADER_FULLBRIGHT;
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "common/hlmodel_fullbright");
}
}
else if (tex[i].flags & HLMDLFL_CHROME)
{
shader = HLSHADER_CHROME;
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "common/hlmodel_chrome");
}
else
{
shader = "";
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "common/hlmodel_other");
}
shaders[i].defaultshadertext = shader;
}
else
{
shaders[i].defaultshadertext = NULL;
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "common/hlmodel");
}
memset(&shaders[i].defaulttex, 0, sizeof(shaders[i].defaulttex));
}
//figure out the preferred atlas size. hopefully it'll fit well enough...
if (texheader->numtextures == 1)
Mod_LightmapAllocInit(&atlas, false, tex[0].w, tex[0].h, 0);
else
{
int sz = 1;
for(i = 0; i < texheader->numtextures; i++)
while (sz < tex[i].w || sz < tex[i].h)
sz <<= 1;
openxr plugin: tweaked - inputs should be working properly now, and are visible to csqc. subject to further breaking changes, however. _pext_vrinputs: added cvar to enable vr inputs protocol extension allowing vr inputs to be networked to ssqc too. defaults to 0 for now, will be renamed when deemed final. updates menu: the prompt to enable sources is now more explicit instead of expecting the user to have a clue. updates menu: added a v3 sources format, which should be more maintainable. not final. updates menu: try to give reasons why sources might be failing (to help blame ISPs if they try fucking over TTH dns again). presets menu: no longer closes the instant a preset is chosen. some presets have a couple of modifiers listed. force the demo loop in the background to serve as a preview. prompts menus: now does word wrapping. ftemaster: support importing server lists from other master servers (requested by Eukara). server: try to detect when non-reply inbound packets are blocked by firewalls/nats/etc (using ftemaster to do so). qcvm: added pointcontentsmask builtin, allowing it to probe more than just world, with fte's full contentbit range instead of just q1 legacy. qcvm: memfill8 builtin now works on createbuffer() pointers. qcvm: add missing unsigned ops. Fixed double comparison ops. fixed bug with op_store_i64. added missing OP_LOADP_I64 qcc: added '#pragma framerate RATE' for overriding implicit nextthink durations. qcc: fixed '#pragma DONT_COMPILE_THIS_FILE' to not screw up comments. qcc: added __GITURL__ __GITHASH__ __GITDATE__ __GITDATETIME__ __GITDESC__ for any mods that might want to make use of that. qcc: fix up -Fhashonly a little setrenderer: support for vulkan gpu enumeration. rulesets: reworked to support custom rulesets (using hashes to catch haxxors, though still nothing prevents just changing the client to ignore rulesets) bspx: use our BIH code for the bspx BRUSHLIST lump instead of the older less efficient code. (static)iqm+obj: these model formats can now be used for the worldmodel (with a suitable .ent file). Also using BIH for much better collision performance. pmove: tried to optimise PM_NudgePosition, should boost fps in stress tests. wayland: fix a crash on startup. mousegrabs now works better. imagetool: uses sdl for previews. git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5813 fc73d0e0-1445-4013-8a0c-d673dee63da5
2021-04-14 05:21:04 +00:00
for (; sz < sh_config.texture2d_maxsize && sz <= LMBLOCK_SIZE_MAX; sz<<=1)
{
unsigned short x,y;
int atlasid;
Mod_LightmapAllocInit(&atlas, false, sz, sz, 0);
for(i = 0; i < texheader->numtextures; i++)
{
if ((tex[i].flags & HLMDLFL_CHROME) || !Q_strncasecmp(tex[i].name, "DM_Base", 7))
continue;
Mod_LightmapAllocBlock(&atlas, tex[i].w, tex[i].h, &x, &y, &atlasid);
}
if (i == texheader->numtextures && atlas.lmnum <= 0)
break; //okay, just go with it.
}
Mod_LightmapAllocInit(&atlas, false, sz, sz, 0);
}
for(i = 0; i < texheader->numtextures; i++)
{
if ((tex[i].flags & HLMDLFL_CHROME) || !Q_strncasecmp(tex[i].name, "DM_Base", 7))
{
shaders[i].x =
shaders[i].y = 0;
shaders[i].w = tex[i].w;
shaders[i].h = tex[i].h;
shaders[i].atlasid = -1;
continue;
}
shaders[i].w = tex[i].w;
shaders[i].h = tex[i].h;
Mod_LightmapAllocBlock(&atlas, shaders[i].w, shaders[i].h, &shaders[i].x, &shaders[i].y, &shaders[i].atlasid);
}
if (atlas.allocated[0])
atlas.lmnum++;
//now we know where the various textures will be, generate the atlas images.
for (j = 0; j < atlas.lmnum; j++)
{
texid_t basetex;
int y, x;
unsigned int *basepix = Z_Malloc(atlas.width * atlas.height * sizeof(*basepix));
for(i = 0; i < texheader->numtextures; i++)
{
if (shaders[i].atlasid == j)
{
unsigned *out = basepix + atlas.width*shaders[i].y + shaders[i].x;
qbyte *in = (qbyte *) texheader + tex[i].offset;
qbyte *pal = (qbyte *) texheader + tex[i].w * tex[i].h + tex[i].offset;
qbyte *rgb;
for(y = 0; y < tex[i].h; y++, out += atlas.width-shaders[i].w)
for(x = 0; x < tex[i].w; x++, in++)
{
rgb = pal + *in*3;
*out++ = 0xff000000 | (rgb[0]<<0) | (rgb[1]<<8) | (rgb[2]<<16);
}
}
}
Q_snprintfz(texname, sizeof(texname), "%s*%i", mod->name, j);
basetex = Image_GetTexture(texname, "", IF_NOALPHA|IF_NOREPLACE, basepix, NULL, atlas.width, atlas.height, PTI_RGBX8);
Z_Free(basepix);
for(i = 0; i < texheader->numtextures; i++)
{
if (shaders[i].atlasid == j)
shaders[i].defaulttex.base = basetex;
}
}
//and chrome textures need to preserve their texture coords to avoid weirdness.
for(i = 0; i < texheader->numtextures; i++)
{
if (!Q_strncasecmp(tex[i].name, "DM_Base", 7))
{
int y, x;
unsigned int *basepix = Z_Malloc(tex[i].w*tex[i].h*sizeof(*basepix) + tex[i].w*tex[i].h*2);
unsigned int *out = basepix;
qbyte *upper = (qbyte*)(basepix + tex[i].w * tex[i].h); //we use an L8 texture, because we can.
qbyte *lower = upper + tex[i].w * tex[i].h;
qbyte *in = (qbyte *) texheader + tex[i].offset;
qbyte *pal = (qbyte *) texheader + tex[i].w * tex[i].h + tex[i].offset;
qbyte *rgb;
for(y = 0; y < tex[i].h; y++)
for(x = 0; x < tex[i].w; x++, in++)
{
if (*in >= 256-96 && *in < 256-64)
{ //rows 11 and 12 are the player's upper colour (in the lower range)
*out++ = 0xff000000;
*upper++ = 255-(7+(*in-(256-96))*(256/32));
*lower++ = 0;
}
else if (*in >= 256-64 && *in < 256-32)
{ //rows 13 and 14 are the player's lower colour
*out++ = 0xff000000;
*upper++ = 0;
*lower++ = 255-(7+(*in-(256-64))*(256/32));
}
else
{ //regular and fullbright ranges... not that there is fullbrights on hlmdl
rgb = pal + *in*3;
*out++ = 0xff000000 | (rgb[0]<<0) | (rgb[1]<<8) | (rgb[2]<<16);
*upper++ = 0;
*lower++ = 0;
}
}
out = basepix;
upper = (qbyte*)(basepix + tex[i].w * tex[i].h); //we use an L8 texture, because we can.
lower = upper + tex[i].w * tex[i].h;
Q_snprintfz(texname, sizeof(texname), "%s*%s", mod->name, tex[i].name);
shaders[i].defaulttex.base = Image_GetTexture(texname, "", IF_NOALPHA|IF_NOREPLACE, out, NULL, tex[i].w, tex[i].h, PTI_RGBX8);
Q_snprintfz(texname, sizeof(texname), "%s*%s*upper", mod->name, tex[i].name);
shaders[i].defaulttex.upperoverlay = Image_GetTexture(texname, "", IF_NOALPHA|IF_NOREPLACE, upper, NULL, tex[i].w, tex[i].h, PTI_L8);
Q_snprintfz(texname, sizeof(texname), "%s*%s*lower", mod->name, tex[i].name);
shaders[i].defaulttex.loweroverlay = Image_GetTexture(texname, "", IF_NOALPHA|IF_NOREPLACE, lower, NULL, tex[i].w, tex[i].h, PTI_L8);
Z_Free(basepix);
}
else if (tex[i].flags & HLMDLFL_CHROME)
{
qbyte *in = (qbyte *) texheader + tex[i].offset;
qbyte *pal = (qbyte *) texheader + tex[i].w * tex[i].h + tex[i].offset;
shaders[i].atlasid = j++;
Q_snprintfz(texname, sizeof(texname), "%s*%i", mod->name, shaders[i].atlasid);
shaders[i].defaulttex.base = Image_GetTexture(texname, "", IF_NOALPHA|IF_NOREPLACE, in, pal, tex[i].w, tex[i].h, TF_8PAL24);
}
}
model->numskinrefs = texheader->skinrefs;
model->numskingroups = texheader->skingroups;
model->skinref = ZG_Malloc(&mod->memgroup, model->numskinrefs*model->numskingroups*sizeof(*model->skinref));
memcpy(model->skinref, (short *) ((qbyte *) texheader + texheader->skins), model->numskinrefs*model->numskingroups*sizeof(*model->skinref));
#endif
if (texmem)
Z_Free(texmem);
mod->funcs.NativeContents = HLMDL_Contents;
mod->funcs.NativeTrace = HLMDL_Trace;
mod->type = mod_halflife;
mod->numframes = model->header->numseq;
mod->meshinfo = model;
#ifndef SERVERONLY
model->numgeomsets = model->header->numbodyparts;
model->geomset = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset) * model->numgeomsets);
HLMDL_PrepareVerticies(mod, model);
//FIXME: No VBOs used.
#endif
return true;
}
#ifdef HLSERVER
void *Mod_GetHalfLifeModelData(model_t *mod)
{
hlmodelcache_t *mc;
if (!mod || mod->type != mod_halflife)
return NULL; //halflife models only, please
mc = Mod_Extradata(mod);
return (void*)mc->header;
}
#endif
int HLMDL_FrameForName(model_t *mod, const char *name)
{
int i;
hlmdl_header_t *h;
hlmdl_sequencelist_t *seqs;
hlmodel_t *mc;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
h = mc->header;
seqs = (hlmdl_sequencelist_t*)((char*)h+h->seqindex);
for (i = 0; i < h->numseq; i++)
{
if (!strcmp(seqs[i].name, name))
return i;
}
return -1;
}
int HLMDL_FrameForAction(model_t *mod, int actionid)
{
int i;
hlmdl_header_t *h;
hlmdl_sequencelist_t *seqs;
hlmodel_t *mc;
int weight = 0;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
h = mc->header;
seqs = (hlmdl_sequencelist_t*)((char*)h+h->seqindex);
//figure out the total weight.
for (i = 0; i < h->numseq; i++)
if (seqs[i].action == actionid)
weight += seqs[i].actionweight;
//pick a random number between 0 and the total weight...
weight *= frandom();
//now figure out which sequence that gives us.
for (i = 0; i < h->numseq; i++)
if (seqs[i].action == actionid)
{
if (weight <= seqs[i].actionweight)
return i;
weight -= seqs[i].actionweight;
}
return -1; //failed...
}
qboolean HLMDL_GetModelEvent(model_t *model, int animation, int eventidx, float *timestamp, int *eventcode, char **eventdata)
{
hlmodel_t *mc = Mod_Extradata(model);
hlmdl_header_t *h = mc->header;
hlmdl_event_t *ev;
hlmdl_sequencelist_t *seq = animation + (hlmdl_sequencelist_t*)((char*)h+h->seqindex);
if (animation < 0 || animation >= h->numseq || eventidx < 0 || eventidx >= seq->num_events)
return false;
ev = eventidx + (hlmdl_event_t*)((char*)h+seq->ofs_events);
*timestamp = ev->pose / seq->timing;
*eventcode = ev->code;
*eventdata = ev->data;
return true;
}
int HLMDL_BoneForName(model_t *mod, const char *name)
{
int i;
hlmdl_header_t *h;
hlmdl_bone_t *bones;
hlmodel_t *mc;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
h = mc->header;
bones = (hlmdl_bone_t*)((char*)h+h->boneindex);
for (i = 0; i < h->numbones; i++)
{
if (!strcmp(bones[i].name, name))
return i+1;
}
//FIXME: hlmdl has tags as well as bones.
return 0;
}
/*
=======================================================================================================================
HL_CalculateBones - calculate bone positions - quaternion+vector in one function
=======================================================================================================================
*/
void HL_CalculateBones
(
int frame,
vec4_t adjust,
hlmdl_bone_t *bone,
hlmdl_anim_t *animation,
float *organg
)
{
int i;
/* For each vector */
for(i = 0; i < 6; i++)
{
organg[i] = bone->value[i]; /* Take the bone value */
if(animation->offset[i] != 0)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int tempframe;
hlmdl_animvalue_t *animvalue = (hlmdl_animvalue_t *) ((qbyte *) animation + animation->offset[i]);
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* find values including the required frame */
tempframe = frame;
while(animvalue->num.total <= tempframe)
{
tempframe -= animvalue->num.total;
animvalue += animvalue->num.valid + 1;
}
if (tempframe >= animvalue->num.valid)
tempframe = animvalue->num.valid;
else
tempframe += 1;
organg[i] += animvalue[tempframe].value * bone->scale[i];
}
if(bone->bonecontroller[i] != -1)
{ /* Add the programmable offset. */
organg[i] += adjust[bone->bonecontroller[i]];
}
}
}
/*
=======================================================================================================================
HL_CalcBoneAdj - Calculate the adjustment values for the programmable controllers
=======================================================================================================================
*/
void HL_CalcBoneAdj(hlmodel_t *model)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int i;
float value;
hlmdl_bonecontroller_t *control = (hlmdl_bonecontroller_t *)
((qbyte *) model->header + model->header->controllerindex);
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
for(i = 0; i < model->header->numcontrollers; i++)
{
/*~~~~~~~~~~~~~~~~~~~~~*/
int j = control[i].index;
/*~~~~~~~~~~~~~~~~~~~~~*/
if(control[i].type & 0x8000)
{ //wraps normally
value = model->controller[j];// + control[i].start;
}
else
{
// value = (model->controller[j]+1)*0.5; //shifted to give a valid range between -1 and 1, with 0 being mid-range.
// if(value < 0)
// value = 0;
// else if(value > 1.0)
// value = 1.0;
// value = (1.0 - value) * control[i].start + value * control[i].end;
value = model->controller[j];
if (value < control[i].start)
value = control[i].start;
if (value > control[i].end)
value = control[i].end;
}
/* Rotational controllers need their values converted */
if(control[i].type >= 0x0008 && control[i].type <= 0x0020)
model->adjust[i] = M_PI * value / 180;
else
model->adjust[i] = value;
}
}
/*
=======================================================================================================================
HL_SetupBones - determine where vertex should be using bone movements
=======================================================================================================================
*/
void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt );
void HL_SetupBones(hlmodel_t *model, int seqnum, int firstbone, int lastbone, float subblendfrac1, float subblendfrac2, float frametime, float *matrix)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int i, j;
vec3_t organg1[2];
vec3_t organg2[2];
vec3_t organgb[2];
vec4_t quat1, quat2;
int frame1, frame2;
hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) +
((unsigned int)seqnum>=model->header->numseq?0:seqnum);
hlmdl_sequencedata_t *sequencedata = (hlmdl_sequencedata_t *)
((qbyte *) model->header + model->header->seqgroups) +
sequence->seqindex;
hlmdl_anim_t *animation;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
matrix += firstbone*12;
if (sequencedata->name[32])
{
size_t fz;
if (sequence->seqindex >= MAX_ANIM_GROUPS)
{
Sys_Error("Too many animation sequence cache groups\n");
return;
}
if (!model->animcache[sequence->seqindex])
model->animcache[sequence->seqindex] = FS_LoadMallocGroupFile(model->memgroup, sequencedata->name+32, &fz, true);
if (!model->animcache[sequence->seqindex] || model->animcache[sequence->seqindex]->magic != (('I'<<0)|('D'<<8)|('S'<<16)|('Q'<<24)) || model->animcache[sequence->seqindex]->version != 10)
{
Sys_Error("Unable to load %s\n", sequencedata->name+32);
return;
}
animation = (hlmdl_anim_t *)((qbyte*)model->animcache[sequence->seqindex] + sequence->index);
}
else
animation = (hlmdl_anim_t *) ((qbyte *) model->header + sequencedata->data + sequence->index);
frametime *= sequence->timing;
if (frametime < 0)
frametime = 0;
frame1 = (int)frametime;
frametime -= frame1;
frame2 = frame1+1;
if (!sequence->numframes)
return;
//halflife seems to dupe the last frame in looping animations, so don't use it.
if(frame1 >= sequence->numframes)
{
if (sequence->loop)
frame1 %= sequence->numframes;
else
frame1 = sequence->numframes-1;
}
if(frame2 >= sequence->numframes)
{
if (sequence->loop)
frame2 %= sequence->numframes;
else
frame2 = sequence->numframes-1;
}
if (frame2 < frame1)
{
i = frame2;
frame2 = frame1;
frame1 = i;
frametime = 1-frametime;
}
if (lastbone > model->header->numbones)
lastbone = model->header->numbones;
HL_CalcBoneAdj(model); /* Deal with programmable controllers */
/*FIXME:this is useless*/
/*
if(sequence->motiontype & 0x0001)
positions[sequence->motionbone][0] = 0.0;
if(sequence->motiontype & 0x0002)
positions[sequence->motionbone][1] = 0.0;
if(sequence->motiontype & 0x0004)
positions[sequence->motionbone][2] = 0.0;
*/
/*
this is hellish.
a hl model blends:
4 controllers (on a player, it seems each one of them twists a separate bone in the chest)
a mouth (not used on players)
its a sequence (to be smooth we need to blend between two frames in the sequence)
up to four source animations (ironically used to pitch up/down)
alternate sequence (walking+firing)
frame2 (quake expectations.)
this is madness, quite frankly.
luckily...
controllers and mouth control the entire thing. they should be interpolated outside, and have no affect on blending here
alternate sequences replace. we can just call this function twice (so long as bone ranges are incremental).
autoanimating sequence is handled inside HL_CalculateBones (sequences are weird and it has to be handled there anyway)
this means we only have sources and alternate frames left to cope with.
FIXME: we don't handle frame2.
*/
if (sequence->hasblendseq>1)
{
int bf0, bf1;
unsigned int bweights;
struct
{
int frame;
float weight;
hlmdl_anim_t *anim;
} blend[8];
//right, so, this stuff is annoying.
//we have two different blend factors.
//we have up to 9 blend weights. figure out which frames are what
switch(sequence->hasblendseq)
{
case 0: //erk?
return;
case 1: //no blending.
bf0 = bf1 = 1;
break;
default:
case 2: //mix(0, 1, weight0)
case 3: //mix(0, 1, 2, weight0);
case 8: //weight0 only...
bf0 = sequence->hasblendseq;
bf1 = 1;
break;
case 4: //mix(mix(0, 1, weight0), mix(2, 3, weight0), weight1)
bf0 = bf1 = 2;
break;
//case 6: //???
// bf[0] = 3; bf[1] = 2;
// break;
case 9: //mix(mix(0, 1, 2, weight0), mix(2, 3, 4, weight0), mix(5, 6, 7, weight0), weight1)
bf0 = bf1 = 3;
break;
}
subblendfrac1 = (subblendfrac1+1)/2;
subblendfrac2 = (subblendfrac2+1)/2;
bweights = 0;
if (bf0 > 1)
{
float frac = (bf0-1) * bound(0, subblendfrac1, 1);
int f1 = bound(0, frac, bf0-1);
int f2 = bound(0, f1+1, bf0-1);
frac = (frac-f1);
frac = bound(0, frac, 1);
if (bf1 > 1)
{
float frac2 = (bf1-1) * bound(0, subblendfrac2, 1);
int a1 = bound(0, frac2, bf1-1);
int a2 = bound(0, a1+1, bf1-1);
frac2 = (frac2-a1);
frac2 = bound(0, frac2, 1);
if (frac2)
{
if (frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f2 + a2*bf0);
blend[bweights++].weight = frac*frac2;
}
if (1-frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f1 + a2*bf0);
blend[bweights++].weight = (1-frac)*frac2;
}
}
if (1-frac2)
{
if (frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f2 + a1*bf0);
blend[bweights++].weight = frac*(1-frac2);
}
if (1-frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f1 + a1*bf0);
blend[bweights++].weight = (1-frac)*(1-frac2);
}
}
}
else
{
if (frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * f1;
blend[bweights++].weight = frac;
}
if (1-frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * f2;
blend[bweights++].weight = 1-frac;
}
}
}
else
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation;
blend[bweights++].weight = 1;
}
if (frame1 != frame2)
{
//bweights can be 0-4 here..
for (i = 0; i < bweights; i++)
{
blend[bweights+i].frame = frame2;
blend[bweights+i].anim = blend[i].anim;
blend[bweights+i].weight = blend[i].weight;
blend[i].weight *= 1-frametime;
blend[bweights+i].weight *= frametime;
}
bweights *= 2;
}
for(i = firstbone; i < lastbone; i++, matrix+=12)
{
vec3_t t;
float len;
HL_CalculateBones(blend[0].frame, model->adjust, model->bones + i, blend[0].anim + i, organgb[0]);
QuaternionGLAngle(organgb[1], quat2);
Vector4Scale(quat2, blend[0].weight, quat1);
VectorScale(organgb[0], blend[0].weight, t);
for (j = 1; j < bweights; j++)
{
HL_CalculateBones(blend[j].frame, model->adjust, model->bones + i, blend[j].anim + i, organgb[0]);
QuaternionGLAngle(organgb[1], quat2);
if (DotProduct4(quat2, quat1) < 0) //negative quats are annoying
Vector4MA(quat1, -blend[j].weight, quat2, quat1);
else
Vector4MA(quat1, blend[j].weight, quat2, quat1);
VectorMA(t, blend[j].weight, organgb[0], t);
}
//we were lame and didn't use slerp. boo hiss. now we need to normalise the things and hope we didn't hit any singularities
len = sqrt(DotProduct4(quat1,quat1));
if (len && len != 1)
{
len = 1/len;
quat1[0] *= len;
quat1[1] *= len;
quat1[2] *= len;
quat1[3] *= len;
}
QuaternionGLMatrix(quat1[0], quat1[1], quat1[2], quat1[3], (vec4_t*)matrix);
matrix[0*4+3] = t[0];
matrix[1*4+3] = t[1];
matrix[2*4+3] = t[2];
}
}
else
{
for(i = firstbone; i < lastbone; i++, matrix+=12)
{
HL_CalculateBones(frame1, model->adjust, model->bones + i, animation + i, organg1[0]);
QuaternionGLAngle(organg1[1], quat1); /* A quaternion */
if (frame1 != frame2)
{
HL_CalculateBones(frame2, model->adjust, model->bones + i, animation + i, organg2[0]);
QuaternionGLAngle(organg2[1], quat2); /* A quaternion */
//lerp the quats properly rather than poorly lerping eular angles.
QuaternionSlerp(quat1, quat2, frametime, quat1);
VectorInterpolate(organg1[0], frametime, organg2[0], organg1[0]);
}
//figure out the relative bone matrix.
//we probably ought to keep them as quats or something.
QuaternionGLMatrix(quat1[0], quat1[1], quat1[2], quat1[3], (vec4_t*)matrix);
matrix[0*4+3] = organg1[0][0];
matrix[1*4+3] = organg1[0][1];
matrix[2*4+3] = organg1[0][2];
}
}
}
int HLMDL_GetNumBones(model_t *mod, qboolean tags)
{
hlmodel_t *mc;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
if (tags)
return mc->header->numbones + mc->header->num_attachments;
return mc->header->numbones;
}
int HLMDL_GetBoneParent(model_t *mod, int bonenum)
{
hlmodel_t *model = Mod_Extradata(mod);
if (bonenum >= 0 && bonenum < model->header->numbones)
return model->bones[bonenum].parent;
bonenum -= model->header->numbones;
if (bonenum >= 0 && bonenum < model->header->num_attachments)
{
hlmdl_attachment_t *attachments = bonenum+(hlmdl_attachment_t*)((char*)model->header + model->header->ofs_attachments);
return attachments->bone;
}
return -1;
}
const char *HLMDL_GetBoneName(model_t *mod, int bonenum)
{
hlmodel_t *model = Mod_Extradata(mod);
if (bonenum >= 0 && bonenum < model->header->numbones)
return model->bones[bonenum].name;
bonenum -= model->header->numbones;
if (bonenum >= 0 && bonenum < model->header->num_attachments)
{
hlmdl_attachment_t *attachments = bonenum+(hlmdl_attachment_t*)((char*)model->header + model->header->ofs_attachments);
if (*attachments->name)
return attachments->name;
return "Unnamed Attachment";
}
return NULL;
}
int HLMDL_GetAttachment(model_t *mod, int tagnum, float *resultmatrix)
{
hlmodel_t *model = Mod_Extradata(mod);
if (tagnum >= 0 && tagnum < model->header->num_attachments)
{
hlmdl_attachment_t *attachments = tagnum+(hlmdl_attachment_t*)((char*)model->header + model->header->ofs_attachments);
resultmatrix[3] = attachments->org[0];
resultmatrix[7] = attachments->org[1];
resultmatrix[11] = attachments->org[2];
return attachments->bone;
}
return -1;
}
static int HLMDL_GetBoneData_Internal(hlmodel_t *model, int firstbone, int lastbone, const framestate_t *fstate, float *result)
{
int b, cbone, bgroup;
for (b = 0; b < MAX_BONE_CONTROLLERS; b++)
model->controller[b] = fstate->bonecontrols[b];
for (cbone = 0, bgroup = 0; bgroup < FS_COUNT; bgroup++)
{
lastbone = fstate->g[bgroup].endbone;
if (bgroup == FS_COUNT-1)
lastbone = model->header->numbones;
if (cbone >= lastbone)
continue;
HL_SetupBones(model, fstate->g[bgroup].frame[0], cbone, lastbone, fstate->g[bgroup].subblendfrac, fstate->g[bgroup].subblend2frac, fstate->g[bgroup].frametime[0], result); /* Setup the bones */
cbone = lastbone;
}
return cbone;
}
int HLMDL_GetBoneData(model_t *mod, int firstbone, int lastbone, const framestate_t *fstate, float *result)
{
return HLMDL_GetBoneData_Internal(Mod_Extradata(mod), firstbone, lastbone, fstate, result);
}
const char *HLMDL_FrameNameForNum(model_t *mod, int surfaceidx, int seqnum)
{
hlmodel_t *model = Mod_Extradata(mod);
hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) +
((unsigned int)seqnum>=model->header->numseq?0:seqnum);
return sequence->name;
}
qboolean HLMDL_FrameInfoForNum(model_t *mod, int surfaceidx, int seqnum, char **name, int *numframes, float *duration, qboolean *loop, int *act)
{
hlmodel_t *model = Mod_Extradata(mod);
hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) +
((unsigned int)seqnum>=model->header->numseq?0:seqnum);
*name = sequence->name;
*numframes = sequence->numframes;
*duration = (sequence->numframes-1)/sequence->timing;
*loop = sequence->loop;
*act = sequence->action;
return true;
}
qboolean HLMDL_Trace (model_t *model, int hulloverride, const framestate_t *framestate, const vec3_t axis[3], const vec3_t p1, const vec3_t p2, const vec3_t mins, const vec3_t maxs, qboolean capsule, unsigned int against, struct trace_s *trace)
{
hlmodel_t *hm = Mod_Extradata(model);
float *relbones;
float calcrelbones[MAX_BONES*12];
int bonecount;
int b, i;
vec3_t norm, p1l, p2l;
float inverse[12];
hlmdl_hitbox_t *hitbox = (hlmdl_hitbox_t*)((char*)hm->header+hm->header->ofs_hitboxes);
float dist, d1, d2, f, enterfrac, enterdist, exitfrac;
qboolean startout, endout;
int enterplane;
memset (trace, 0, sizeof(trace_t));
trace->fraction = trace->truefraction = 1;
if (!(against & FTECONTENTS_BODY) || !framestate)
return false;
if (framestate->bonestate && framestate->skeltype == SKEL_ABSOLUTE)
{
relbones = framestate->bonestate;
bonecount = framestate->bonecount;
if (axis)
{
for (b = 0; b < bonecount; b++)
R_ConcatTransformsAxis(axis, (void*)(relbones+b*12), transform_matrix[b]);
}
else
memcpy(transform_matrix, relbones, bonecount * 12 * sizeof(float));
}
else
{
//get relative bones from th emodel.
if (framestate->bonestate)
{
relbones = framestate->bonestate;
bonecount = framestate->bonecount;
}
else
{
relbones = calcrelbones;
bonecount = HLMDL_GetBoneData(model, 0, MAX_BONES, framestate, calcrelbones);
}
//convert relative to absolutes
for (b = 0; b < bonecount; b++)
{
/* If we have a parent, take the addition. Otherwise just copy the values */
if(hm->bones[b].parent>=0)
R_ConcatTransforms((void*)transform_matrix[hm->bones[b].parent], (void*)(relbones+b*12), transform_matrix[b]);
else if (axis)
R_ConcatTransformsAxis(axis, (void*)(relbones+b*12), transform_matrix[b]);
else
memcpy(transform_matrix[b], relbones+b*12, 12 * sizeof(float));
}
}
for (b = 0; b < hm->header->num_hitboxes; b++, hitbox++)
{
startout = false;
endout = false;
enterplane = 0;
enterfrac = -1;
exitfrac = 10;
enterdist = 0;
//fixme: would be nice to check if there's a possible collision a bit faster, without needing to do lots of excess maths.
//transform start+end into the bbox, so everything is axial and simple.
Matrix3x4_Invert_Simple((void*)transform_matrix[hitbox->bone], inverse);
Matrix3x4_RM_Transform3(inverse, p1, p1l);
Matrix3x4_RM_Transform3(inverse, p2, p2l);
//fixme: would it be faster to just generate the plane and transform that, colliding non-axially? would probably be better for sized impactors.
//clip against the 6 axial faces
for (i = 0; i < 6; i++)
{
if (i < 3)
{ //normal>0
dist = hitbox->maxs[i] - mins[i];
d1 = p1l[i] - dist;
d2 = p2l[i] - dist;
}
else
{//normal<0
dist = maxs[i-3] - hitbox->mins[i-3];
d1 = -p1l[i-3] - dist;
d2 = -p2l[i-3] - dist;
}
//FIXME: if the trace has size, we should insert 6 extra planes for the shape of the impactor
//FIXME: capsules
if (d1 >= 0)
startout = true;
if (d2 > 0)
endout = true;
//if we're fully outside any plane, then we cannot possibly enter the brush, skip to the next one
if (d1 > 0 && d2 >= 0)
goto nextbrush;
//if we're fully inside the plane, then whatever is happening is not relevent for this plane
if (d1 < 0 && d2 <= 0)
continue;
f = d1 / (d1-d2);
if (d1 > d2)
{
//entered the brush. favour the furthest fraction to avoid extended edges (yay for convex shapes)
if (enterfrac < f)
{
enterfrac = f;
enterplane = i;
enterdist = dist;
}
}
else
{
//left the brush, favour the nearest plane (smallest frac)
if (exitfrac > f)
{
exitfrac = f;
}
}
}
if (!startout)
{
trace->startsolid = true;
if (!endout)
trace->allsolid = true;
trace->contents = FTECONTENTS_BODY;
trace->brush_face = 0;
trace->bone_id = hitbox->bone+1;
trace->brush_id = b+1;
trace->surface_id = hitbox->body;
break;
}
if (enterfrac != -1 && enterfrac < exitfrac)
{
//impact!
if (enterfrac < trace->fraction)
{
trace->fraction = trace->truefraction = enterfrac;
trace->plane.dist = enterdist;
trace->contents = FTECONTENTS_BODY;
trace->brush_face = enterplane+1;
trace->bone_id = hitbox->bone+1;
trace->brush_id = b+1;
trace->surface_id = hitbox->body;
}
}
nextbrush:
;
}
if (trace->brush_face)
{
VectorClear(norm);
if (trace->brush_face < 4)
norm[trace->brush_face-1] = 1;
else
norm[trace->brush_face-4] = -1;
Matrix3x4_RM_Transform3x3((void*)transform_matrix[trace->bone_id-1], norm, trace->plane.normal);
}
else
VectorClear(trace->plane.normal);
VectorInterpolate(p1, trace->fraction, p2, trace->endpos);
return trace->truefraction != 1;
}
unsigned int HLMDL_Contents (model_t *model, int hulloverride, const framestate_t *framestate, const vec3_t axis[3], const vec3_t p, const vec3_t mins, const vec3_t maxs)
{
trace_t tr;
HLMDL_Trace(model, hulloverride, framestate, axis, p, p, mins, maxs, false, ~0, &tr);
return tr.contents;
}
#ifndef SERVERONLY
void R_HL_BuildFrame(hlmodel_t *model, int bodypart, int bodyidx, int meshidx, struct hlmodelshaders_s *texinfo, mesh_t *outmesh)
{
int v;
int w = texinfo->defaulttex.base->width;
int h = texinfo->defaulttex.base->height;
vec2_t texbase = {texinfo->x/(float)w, texinfo->y/(float)h};
vec2_t texscale = {1.0/w, 1.0/h};
mesh_t *srcmesh = &model->geomset[bodypart].alternatives[bodyidx].submesh[meshidx];
//copy out the indexes into the final mesh.
memcpy(outmesh->indexes+outmesh->numindexes, srcmesh->indexes, sizeof(index_t)*srcmesh->numindexes);
outmesh->numindexes += srcmesh->numindexes;
if (outmesh == &model->mesh)
{ //get the backend to do the skeletal stuff (read: glsl)
for(v = 0; v < srcmesh->numvertexes; v++)
{ //should really come up with a better way to deal with this, like rect textures.
srcmesh->st_array[v][0] = texbase[0] + srcmesh->lmst_array[0][v][0] * texscale[0];
srcmesh->st_array[v][1] = texbase[1] + srcmesh->lmst_array[0][v][1] * texscale[1];
}
}
else
{ //backend can't handle it, apparently. do it in software.
int fvert = srcmesh->vbofirstvert;
vecV_t *nxyz = outmesh->xyz_array+fvert;
vec3_t *nnorm = outmesh->normals_array+fvert;
for(v = 0; v < srcmesh->numvertexes; v++)
{ //should really come up with a better way to deal with this, like rect textures.
srcmesh->st_array[v][0] = texbase[0] + srcmesh->lmst_array[0][v][0] * texscale[0];
srcmesh->st_array[v][1] = texbase[1] + srcmesh->lmst_array[0][v][1] * texscale[1];
//transform to nxyz (a separate buffer from the srcmesh data)
VectorTransform(srcmesh->xyz_array[v], (void *)transform_matrix[srcmesh->bonenums[v][0]], nxyz[v]);
//transform to nnorm (a separate buffer from the srcmesh data)
nnorm[v][0] = DotProduct(srcmesh->normals_array[v], transform_matrix[srcmesh->bonenums[v][0]][0]);
nnorm[v][1] = DotProduct(srcmesh->normals_array[v], transform_matrix[srcmesh->bonenums[v][0]][1]);
nnorm[v][2] = DotProduct(srcmesh->normals_array[v], transform_matrix[srcmesh->bonenums[v][0]][2]);
//FIXME: svector, tvector!
}
}
}
static void R_HL_BuildMeshes(batch_t *b)
{
entity_t *rent = b->ent;
hlmodel_t *model = Mod_Extradata(rent->model);
int body, m;
static mesh_t *mptr[1], softbonemesh;
skinfile_t *sk = rent->customskin?Mod_LookupSkin(rent->customskin):NULL;
const unsigned int entity_body = 0/*rent->body*/;
int surf;
float *bones;
int numbones;
if (b->shader->prog && (b->shader->prog->supportedpermutations & PERMUTATION_SKELETAL) && model->header->numbones < sh_config.max_gpu_bones)
{ //okay, we can use gpu gones. yay.
b->mesh = mptr;
*b->mesh = &model->mesh;
}
else
{
static vecV_t nxyz_buffer[65536];
static vec3_t nnorm_buffer[65536];
//no gpu bone support. :(
softbonemesh = model->mesh;
b->mesh = mptr;
*b->mesh = &softbonemesh;
//this stuff will get recalculated
softbonemesh.xyz_array = nxyz_buffer;
softbonemesh.normals_array = nnorm_buffer;
//don't get confused.
softbonemesh.bonenums = NULL;
softbonemesh.boneweights = NULL;
softbonemesh.bones = NULL;
softbonemesh.numbones = 0;
}
(*b->mesh)->numindexes = 0;
//FIXME: cache this!
if (rent->framestate.bonecount >= model->header->numbones)
{ //skeletal object...
int b;
if (rent->framestate.skeltype == SKEL_RELATIVE)
{
numbones = model->header->numbones;
for (b = 0; b < numbones; b++)
{
/* If we have a parent, take the addition. Otherwise just copy the values */
if(model->bones[b].parent>=0)
{
R_ConcatTransforms((void*)transform_matrix[model->bones[b].parent], (void*)(rent->framestate.bonestate+b*12), transform_matrix[b]);
}
else
{
memcpy(transform_matrix[b], rent->framestate.bonestate+b*12, 12 * sizeof(float));
}
}
bones = transform_matrix[0][0];
}
else
{
bones = rent->framestate.bonestate;
numbones = rent->framestate.bonecount;
}
}
else
{ //lerp the bone data ourselves.
float relatives[12*MAX_BONES];
int cbone, b;
bones = transform_matrix[0][0];
numbones = model->header->numbones;
cbone = HLMDL_GetBoneData_Internal(model, 0, model->header->numbones, &rent->framestate, relatives);
//convert relative to absolutes
for (b = 0; b < cbone; b++)
{
/* If we have a parent, take the addition. Otherwise just copy the values */
if(model->bones[b].parent>=0)
{
R_ConcatTransforms((void*)transform_matrix[model->bones[b].parent], (void*)(relatives+b*12), transform_matrix[b]);
}
else
{
memcpy(transform_matrix[b], relatives+b*12, 12 * sizeof(float));
}
}
}
model->mesh.bones = bones;
model->mesh.numbones = numbones;
for (surf = 0; surf < b->meshes; surf++)
{
body = b->user.alias.surfrefs[surf] >> 8;
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body;
int bodyindex = ((sk && body < MAX_GEOMSETS && sk->geomset[body] >= 1)?sk->geomset[body]-1:(entity_body / bodypart->base)) % bodypart->nummodels;
hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* Draw each mesh */
m = b->user.alias.surfrefs[surf] & 0xff;
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
hlmdl_mesh_t *mesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m;
struct hlmodelshaders_s *texinfo;
int skinidx = mesh->skinindex;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
if (rent->skinnum < model->numskingroups)
skinidx += rent->skinnum * model->numskinrefs;
texinfo = &model->shaders[model->skinref[skinidx]];
R_HL_BuildFrame(model, body, bodyindex, m, texinfo, *b->mesh);
}
}
}
b->meshes = 1;
}
qboolean R_CalcModelLighting(entity_t *e, model_t *clmodel);
void R_HalfLife_TouchTextures(model_t *mod)
{
hlmodel_t *model = Mod_Extradata(mod);
unsigned int t;
for (t = 0; t < model->header->numtextures; t++)
Shader_TouchTexnums(&model->shaders[t].defaulttex);
}
void R_HalfLife_GenerateBatches(entity_t *rent, batch_t **batches)
{
hlmodel_t *model = Mod_Extradata(rent->model);
int body, m;
skinfile_t *sk = rent->customskin?Mod_LookupSkin(rent->customskin):NULL;
const unsigned int entity_body = 0/*rent->body*/;
batch_t *b = NULL;
unsigned int surfidx = 0;
R_CalcModelLighting(rent, rent->model); //make sure the ent's lighting is right.
/*if (!model->vbobuilt)
{
mesh_t *mesh = &model->mesh;
vbo_t *vbo = &model->vbo;
vbobctx_t ctx;
model->vbobuilt = true;
BE_VBO_Begin(&ctx, (sizeof(*mesh->xyz_array)+
sizeof(*mesh->colors4b_array)+
sizeof(*mesh->st_array)+
sizeof(*mesh->lmst_array[0])+
sizeof(*mesh->normals_array)+
sizeof(*mesh->bonenums)+
sizeof(*mesh->boneweights)+
sizeof(*mesh->snormals_array)+
sizeof(*mesh->tnormals_array))*mesh->numvertexes);
BE_VBO_Data(&ctx, mesh->xyz_array, sizeof(*mesh->xyz_array)*mesh->numvertexes, &vbo->coord);
BE_VBO_Data(&ctx, mesh->colors4b_array, sizeof(*mesh->colors4b_array)*mesh->numvertexes, &vbo->colours[0]);vbo->colours_bytes = true;
BE_VBO_Data(&ctx, mesh->st_array, sizeof(*mesh->st_array)*mesh->numvertexes, &vbo->texcoord);
BE_VBO_Data(&ctx, mesh->lmst_array[0], sizeof(*mesh->lmst_array[0])*mesh->numvertexes, &vbo->lmcoord[0]);
BE_VBO_Data(&ctx, mesh->normals_array, sizeof(*mesh->normals_array)*mesh->numvertexes, &vbo->normals);
BE_VBO_Data(&ctx, mesh->bonenums, sizeof(*mesh->bonenums)*mesh->numvertexes, &vbo->bonenums);
BE_VBO_Data(&ctx, mesh->boneweights, sizeof(*mesh->boneweights)*mesh->numvertexes, &vbo->boneweights);
#if defined(RTLIGHTS)
BE_VBO_Data(&ctx, mesh->snormals_array, sizeof(*mesh->snormals_array)*mesh->numvertexes, &vbo->tvector);
BE_VBO_Data(&ctx, mesh->tnormals_array, sizeof(*mesh->tnormals_array)*mesh->numvertexes, &vbo->svector);
#endif
BE_VBO_Finish(&ctx, mesh->indexes, mesh->numindexes, &vbo->indicies, &vbo->vbomem, &vbo->ebomem);
}*/
for (body = 0; body < model->numgeomsets; body++)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body;
int bodyindex = ((sk && body < MAX_GEOMSETS && sk->geomset[body] >= 1)?sk->geomset[body]-1:(entity_body / bodypart->base)) % bodypart->nummodels;
hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* Draw each mesh */
for(m = 0; m < amodel->nummesh; m++, surfidx++)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
hlmdl_mesh_t *mesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m;
struct hlmodelshaders_s *s;
int skinidx = mesh->skinindex;
texnums_t *skin;
shader_t *shader;
int sort, j;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
if (skinidx >= model->numskinrefs)
continue; //can happen from bad mesh/skin mixing
if (rent->skinnum < model->numskingroups)
skinidx += rent->skinnum * model->numskinrefs;
s = &model->shaders[model->skinref[skinidx]];
if (!s->shader)
{
if (s->defaultshadertext)
s->shader = R_RegisterShader(s->name, SUF_NONE, s->defaultshadertext);
else
s->shader = R_RegisterSkin(rent->model, s->name);
// R_BuildDefaultTexnums(&s->defaulttex, s->shader, 0);
}
skin = &s->defaulttex;
shader = s->shader;
if (sk)
{
int i;
for (i = 0; i < sk->nummappings; i++)
{
if (!strcmp(sk->mappings[i].surface, s->name))
{
skin = &sk->mappings[i].texnums;
shader = sk->mappings[i].shader;
break;
}
}
}
if ( rent->forcedshader ) {
shader = rent->forcedshader;
}
if (b && b->skin->base == skin->base && b->shader == shader && b->meshes < countof(b->user.alias.surfrefs))
; //merging it.
else
{
b = BE_GetTempBatch();
if (!b)
return;
b->skin = skin;
b->shader = shader;
b->buildmeshes = R_HL_BuildMeshes;
b->ent = rent;
b->mesh = NULL;
b->firstmesh = 0;
b->meshes = 0;
b->texture = NULL;
for (j = 0; j < MAXRLIGHTMAPS; j++)
{
b->lightmap[j] = -1;
b->lmlightstyle[j] = INVALID_LIGHTSTYLE;
}
b->flags = 0;
sort = shader->sort;
//fixme: we probably need to force some blend modes based on the surface flags.
if (rent->flags & RF_FORCECOLOURMOD)
b->flags |= BEF_FORCECOLOURMOD;
if (rent->flags & RF_ADDITIVE)
{
b->flags |= BEF_FORCEADDITIVE;
if (sort < SHADER_SORT_ADDITIVE)
sort = SHADER_SORT_ADDITIVE;
}
if (rent->flags & RF_TRANSLUCENT)
{
b->flags |= BEF_FORCETRANSPARENT;
if (SHADER_SORT_PORTAL < sort && sort < SHADER_SORT_BLEND)
sort = SHADER_SORT_BLEND;
}
if (rent->flags & RF_NODEPTHTEST)
{
b->flags |= BEF_FORCENODEPTH;
if (sort < SHADER_SORT_NEAREST)
sort = SHADER_SORT_NEAREST;
}
if (rent->flags & RF_NOSHADOW)
b->flags |= BEF_NOSHADOWS;
b->vbo = NULL;//&model->vbo;
b->next = batches[sort];
batches[sort] = b;
}
b->user.alias.surfrefs[b->meshes++] = (body<<8)|(m&0xff);
}
}
}
void HLMDL_DrawHitBoxes(entity_t *rent)
{
hlmodel_t *model = Mod_Extradata(rent->model);
hlmdl_hitbox_t *hitbox = (hlmdl_hitbox_t*)((char*)model->header+model->header->ofs_hitboxes);
matrix3x4 entitymatrix;
shader_t *shader = R_RegisterShader("hitbox_nodepth", SUF_NONE,
"{\n"
"polygonoffset\n"
"{\n"
"map $whiteimage\n"
"blendfunc gl_src_alpha gl_one\n"
"rgbgen vertex\n"
"alphagen vertex\n"
"nodepthtest\n"
"}\n"
"}\n");
float relbones[MAX_BONES*12];
int bonecount = HLMDL_GetBoneData(rent->model, 0, MAX_BONES, &rent->framestate, relbones);
int b;
entitymatrix[0][0] = rent->axis[0][0];
entitymatrix[0][1] = rent->axis[1][0];
entitymatrix[0][2] = rent->axis[2][0];
entitymatrix[1][0] = rent->axis[0][1];
entitymatrix[1][1] = rent->axis[1][1];
entitymatrix[1][2] = rent->axis[2][1];
entitymatrix[2][0] = rent->axis[0][2];
entitymatrix[2][1] = rent->axis[1][2];
entitymatrix[2][2] = rent->axis[2][2];
entitymatrix[0][3] = rent->origin[0];
entitymatrix[1][3] = rent->origin[1];
entitymatrix[2][3] = rent->origin[2];
//convert relative to absolutes
for (b = 0; b < bonecount; b++)
{
//If we have a parent, take the addition. Otherwise just copy the values
if(model->bones[b].parent>=0)
R_ConcatTransforms((void*)transform_matrix[model->bones[b].parent], (void*)(relbones+b*12), transform_matrix[b]);
else
R_ConcatTransforms((void*)entitymatrix, (void*)(relbones+b*12), transform_matrix[b]);
}
for (b = 0; b < model->header->num_hitboxes; b++, hitbox++)
CLQ1_AddOrientedCube(shader, hitbox->mins, hitbox->maxs, transform_matrix[hitbox->bone][0], 1, 1, 1, 0.2);
}
#endif
#endif