etlegacy-libs/openal/Alc/mixvoice.c
2019-01-03 16:00:15 +01:00

762 lines
28 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "sample_cvt.h"
#include "alu.h"
#include "alconfig.h"
#include "ringbuffer.h"
#include "cpu_caps.h"
#include "mixer/defs.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
extern inline void InitiatePositionArrays(ALsizei frac, ALint increment, ALsizei *restrict frac_arr, ALsizei *restrict pos_arr, ALsizei size);
/* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */
static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!");
enum Resampler ResamplerDefault = LinearResampler;
MixerFunc MixSamples = Mix_C;
RowMixerFunc MixRowSamples = MixRow_C;
static HrtfMixerFunc MixHrtfSamples = MixHrtf_C;
static HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_C;
static MixerFunc SelectMixer(void)
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_Neon;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_SSE;
#endif
return Mix_C;
}
static RowMixerFunc SelectRowMixer(void)
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixRow_Neon;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixRow_SSE;
#endif
return MixRow_C;
}
static inline HrtfMixerFunc SelectHrtfMixer(void)
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_Neon;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_SSE;
#endif
return MixHrtf_C;
}
static inline HrtfMixerBlendFunc SelectHrtfBlendMixer(void)
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtfBlend_Neon;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtfBlend_SSE;
#endif
return MixHrtfBlend_C;
}
ResamplerFunc SelectResampler(enum Resampler resampler)
{
switch(resampler)
{
case PointResampler:
return Resample_point_C;
case LinearResampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_lerp_Neon;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_lerp_SSE41;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_lerp_SSE2;
#endif
return Resample_lerp_C;
case FIR4Resampler:
return Resample_cubic_C;
case BSinc12Resampler:
case BSinc24Resampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_bsinc_Neon;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_bsinc_SSE;
#endif
return Resample_bsinc_C;
}
return Resample_point_C;
}
void aluInitMixer(void)
{
const char *str;
if(ConfigValueStr(NULL, NULL, "resampler", &str))
{
if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0)
ResamplerDefault = PointResampler;
else if(strcasecmp(str, "linear") == 0)
ResamplerDefault = LinearResampler;
else if(strcasecmp(str, "cubic") == 0)
ResamplerDefault = FIR4Resampler;
else if(strcasecmp(str, "bsinc12") == 0)
ResamplerDefault = BSinc12Resampler;
else if(strcasecmp(str, "bsinc24") == 0)
ResamplerDefault = BSinc24Resampler;
else if(strcasecmp(str, "bsinc") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
ResamplerDefault = BSinc12Resampler;
}
else if(strcasecmp(str, "sinc4") == 0 || strcasecmp(str, "sinc8") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
ResamplerDefault = FIR4Resampler;
}
else
{
char *end;
long n = strtol(str, &end, 0);
if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler))
ResamplerDefault = n;
else
WARN("Invalid resampler: %s\n", str);
}
}
MixHrtfBlendSamples = SelectHrtfBlendMixer();
MixHrtfSamples = SelectHrtfMixer();
MixSamples = SelectMixer();
MixRowSamples = SelectRowMixer();
}
static void SendAsyncEvent(ALCcontext *context, ALuint enumtype, ALenum type,
ALuint objid, ALuint param, const char *msg)
{
AsyncEvent evt = ASYNC_EVENT(enumtype);
evt.u.user.type = type;
evt.u.user.id = objid;
evt.u.user.param = param;
strcpy(evt.u.user.msg, msg);
if(ll_ringbuffer_write(context->AsyncEvents, (const char*)&evt, 1) == 1)
alsem_post(&context->EventSem);
}
static inline ALfloat Sample_ALubyte(ALubyte val)
{ return (val-128) * (1.0f/128.0f); }
static inline ALfloat Sample_ALshort(ALshort val)
{ return val * (1.0f/32768.0f); }
static inline ALfloat Sample_ALfloat(ALfloat val)
{ return val; }
static inline ALfloat Sample_ALdouble(ALdouble val)
{ return (ALfloat)val; }
typedef ALubyte ALmulaw;
static inline ALfloat Sample_ALmulaw(ALmulaw val)
{ return muLawDecompressionTable[val] * (1.0f/32768.0f); }
typedef ALubyte ALalaw;
static inline ALfloat Sample_ALalaw(ALalaw val)
{ return aLawDecompressionTable[val] * (1.0f/32768.0f); }
#define DECL_TEMPLATE(T) \
static inline void Load_##T(ALfloat *restrict dst, const T *restrict src, \
ALint srcstep, ALsizei samples) \
{ \
ALsizei i; \
for(i = 0;i < samples;i++) \
dst[i] += Sample_##T(src[i*srcstep]); \
}
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALfloat)
DECL_TEMPLATE(ALdouble)
DECL_TEMPLATE(ALmulaw)
DECL_TEMPLATE(ALalaw)
#undef DECL_TEMPLATE
static void LoadSamples(ALfloat *restrict dst, const ALvoid *restrict src, ALint srcstep,
enum FmtType srctype, ALsizei samples)
{
#define HANDLE_FMT(ET, ST) case ET: Load_##ST(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(FmtUByte, ALubyte);
HANDLE_FMT(FmtShort, ALshort);
HANDLE_FMT(FmtFloat, ALfloat);
HANDLE_FMT(FmtDouble, ALdouble);
HANDLE_FMT(FmtMulaw, ALmulaw);
HANDLE_FMT(FmtAlaw, ALalaw);
}
#undef HANDLE_FMT
}
static const ALfloat *DoFilters(BiquadFilter *lpfilter, BiquadFilter *hpfilter,
ALfloat *restrict dst, const ALfloat *restrict src,
ALsizei numsamples, enum ActiveFilters type)
{
ALsizei i;
switch(type)
{
case AF_None:
BiquadFilter_passthru(lpfilter, numsamples);
BiquadFilter_passthru(hpfilter, numsamples);
break;
case AF_LowPass:
BiquadFilter_process(lpfilter, dst, src, numsamples);
BiquadFilter_passthru(hpfilter, numsamples);
return dst;
case AF_HighPass:
BiquadFilter_passthru(lpfilter, numsamples);
BiquadFilter_process(hpfilter, dst, src, numsamples);
return dst;
case AF_BandPass:
for(i = 0;i < numsamples;)
{
ALfloat temp[256];
ALsizei todo = mini(256, numsamples-i);
BiquadFilter_process(lpfilter, temp, src+i, todo);
BiquadFilter_process(hpfilter, dst+i, temp, todo);
i += todo;
}
return dst;
}
return src;
}
/* This function uses these device temp buffers. */
#define SOURCE_DATA_BUF 0
#define RESAMPLED_BUF 1
#define FILTERED_BUF 2
#define NFC_DATA_BUF 3
ALboolean MixSource(ALvoice *voice, ALuint SourceID, ALCcontext *Context, ALsizei SamplesToDo)
{
ALCdevice *Device = Context->Device;
ALbufferlistitem *BufferListItem;
ALbufferlistitem *BufferLoopItem;
ALsizei NumChannels, SampleSize;
ALbitfieldSOFT enabledevt;
ALsizei buffers_done = 0;
ResamplerFunc Resample;
ALsizei DataPosInt;
ALsizei DataPosFrac;
ALint64 DataSize64;
ALint increment;
ALsizei Counter;
ALsizei OutPos;
ALsizei IrSize;
bool isplaying;
bool firstpass;
bool isstatic;
ALsizei chan;
ALsizei send;
/* Get source info */
isplaying = true; /* Will only be called while playing. */
isstatic = !!(voice->Flags&VOICE_IS_STATIC);
DataPosInt = ATOMIC_LOAD(&voice->position, almemory_order_acquire);
DataPosFrac = ATOMIC_LOAD(&voice->position_fraction, almemory_order_relaxed);
BufferListItem = ATOMIC_LOAD(&voice->current_buffer, almemory_order_relaxed);
BufferLoopItem = ATOMIC_LOAD(&voice->loop_buffer, almemory_order_relaxed);
NumChannels = voice->NumChannels;
SampleSize = voice->SampleSize;
increment = voice->Step;
IrSize = (Device->HrtfHandle ? Device->HrtfHandle->irSize : 0);
Resample = ((increment == FRACTIONONE && DataPosFrac == 0) ?
Resample_copy_C : voice->Resampler);
Counter = (voice->Flags&VOICE_IS_FADING) ? SamplesToDo : 0;
firstpass = true;
OutPos = 0;
do {
ALsizei SrcBufferSize, DstBufferSize;
/* Figure out how many buffer samples will be needed */
DataSize64 = SamplesToDo-OutPos;
DataSize64 *= increment;
DataSize64 += DataPosFrac+FRACTIONMASK;
DataSize64 >>= FRACTIONBITS;
DataSize64 += MAX_RESAMPLE_PADDING*2;
SrcBufferSize = (ALsizei)mini64(DataSize64, BUFFERSIZE);
/* Figure out how many samples we can actually mix from this. */
DataSize64 = SrcBufferSize;
DataSize64 -= MAX_RESAMPLE_PADDING*2;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
DstBufferSize = (ALsizei)mini64((DataSize64+(increment-1)) / increment,
SamplesToDo - OutPos);
/* Some mixers like having a multiple of 4, so try to give that unless
* this is the last update. */
if(DstBufferSize < SamplesToDo-OutPos)
DstBufferSize &= ~3;
/* It's impossible to have a buffer list item with no entries. */
assert(BufferListItem->num_buffers > 0);
for(chan = 0;chan < NumChannels;chan++)
{
const ALfloat *ResampledData;
ALfloat *SrcData = Device->TempBuffer[SOURCE_DATA_BUF];
ALsizei FilledAmt;
/* Load the previous samples into the source data first, and clear the rest. */
memcpy(SrcData, voice->PrevSamples[chan], MAX_RESAMPLE_PADDING*sizeof(ALfloat));
memset(SrcData+MAX_RESAMPLE_PADDING, 0, (BUFFERSIZE-MAX_RESAMPLE_PADDING)*
sizeof(ALfloat));
FilledAmt = MAX_RESAMPLE_PADDING;
if(isstatic)
{
/* TODO: For static sources, loop points are taken from the
* first buffer (should be adjusted by any buffer offset, to
* possibly be added later).
*/
const ALbuffer *Buffer0 = BufferListItem->buffers[0];
const ALsizei LoopStart = Buffer0->LoopStart;
const ALsizei LoopEnd = Buffer0->LoopEnd;
const ALsizei LoopSize = LoopEnd - LoopStart;
/* If current pos is beyond the loop range, do not loop */
if(!BufferLoopItem || DataPosInt >= LoopEnd)
{
ALsizei SizeToDo = SrcBufferSize - FilledAmt;
ALsizei CompLen = 0;
ALsizei i;
BufferLoopItem = NULL;
for(i = 0;i < BufferListItem->num_buffers;i++)
{
const ALbuffer *buffer = BufferListItem->buffers[i];
const ALubyte *Data = buffer->data;
ALsizei DataSize;
if(DataPosInt >= buffer->SampleLen)
continue;
/* Load what's left to play from the buffer */
DataSize = mini(SizeToDo, buffer->SampleLen - DataPosInt);
CompLen = maxi(CompLen, DataSize);
LoadSamples(&SrcData[FilledAmt],
&Data[(DataPosInt*NumChannels + chan)*SampleSize],
NumChannels, buffer->FmtType, DataSize
);
}
FilledAmt += CompLen;
}
else
{
ALsizei SizeToDo = mini(SrcBufferSize - FilledAmt, LoopEnd - DataPosInt);
ALsizei CompLen = 0;
ALsizei i;
for(i = 0;i < BufferListItem->num_buffers;i++)
{
const ALbuffer *buffer = BufferListItem->buffers[i];
const ALubyte *Data = buffer->data;
ALsizei DataSize;
if(DataPosInt >= buffer->SampleLen)
continue;
/* Load what's left of this loop iteration */
DataSize = mini(SizeToDo, buffer->SampleLen - DataPosInt);
CompLen = maxi(CompLen, DataSize);
LoadSamples(&SrcData[FilledAmt],
&Data[(DataPosInt*NumChannels + chan)*SampleSize],
NumChannels, buffer->FmtType, DataSize
);
}
FilledAmt += CompLen;
while(SrcBufferSize > FilledAmt)
{
const ALsizei SizeToDo = mini(SrcBufferSize - FilledAmt, LoopSize);
CompLen = 0;
for(i = 0;i < BufferListItem->num_buffers;i++)
{
const ALbuffer *buffer = BufferListItem->buffers[i];
const ALubyte *Data = buffer->data;
ALsizei DataSize;
if(LoopStart >= buffer->SampleLen)
continue;
DataSize = mini(SizeToDo, buffer->SampleLen - LoopStart);
CompLen = maxi(CompLen, DataSize);
LoadSamples(&SrcData[FilledAmt],
&Data[(LoopStart*NumChannels + chan)*SampleSize],
NumChannels, buffer->FmtType, DataSize
);
}
FilledAmt += CompLen;
}
}
}
else
{
/* Crawl the buffer queue to fill in the temp buffer */
ALbufferlistitem *tmpiter = BufferListItem;
ALsizei pos = DataPosInt;
while(tmpiter && SrcBufferSize > FilledAmt)
{
ALsizei SizeToDo = SrcBufferSize - FilledAmt;
ALsizei CompLen = 0;
ALsizei i;
for(i = 0;i < tmpiter->num_buffers;i++)
{
const ALbuffer *ALBuffer = tmpiter->buffers[i];
ALsizei DataSize = ALBuffer ? ALBuffer->SampleLen : 0;
if(DataSize > pos)
{
const ALubyte *Data = ALBuffer->data;
Data += (pos*NumChannels + chan)*SampleSize;
DataSize = mini(SizeToDo, DataSize - pos);
CompLen = maxi(CompLen, DataSize);
LoadSamples(&SrcData[FilledAmt], Data, NumChannels,
ALBuffer->FmtType, DataSize);
}
}
if(UNLIKELY(!CompLen))
pos -= tmpiter->max_samples;
else
{
FilledAmt += CompLen;
if(SrcBufferSize <= FilledAmt)
break;
pos = 0;
}
tmpiter = ATOMIC_LOAD(&tmpiter->next, almemory_order_acquire);
if(!tmpiter) tmpiter = BufferLoopItem;
}
}
/* Store the last source samples used for next time. */
memcpy(voice->PrevSamples[chan],
&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
MAX_RESAMPLE_PADDING*sizeof(ALfloat)
);
/* Now resample, then filter and mix to the appropriate outputs. */
ResampledData = Resample(&voice->ResampleState,
&SrcData[MAX_RESAMPLE_PADDING], DataPosFrac, increment,
Device->TempBuffer[RESAMPLED_BUF], DstBufferSize
);
{
DirectParams *parms = &voice->Direct.Params[chan];
const ALfloat *samples;
samples = DoFilters(
&parms->LowPass, &parms->HighPass, Device->TempBuffer[FILTERED_BUF],
ResampledData, DstBufferSize, voice->Direct.FilterType
);
if(!(voice->Flags&VOICE_HAS_HRTF))
{
if(!Counter)
memcpy(parms->Gains.Current, parms->Gains.Target,
sizeof(parms->Gains.Current));
if(!(voice->Flags&VOICE_HAS_NFC))
MixSamples(samples, voice->Direct.Channels, voice->Direct.Buffer,
parms->Gains.Current, parms->Gains.Target, Counter, OutPos,
DstBufferSize
);
else
{
ALfloat *nfcsamples = Device->TempBuffer[NFC_DATA_BUF];
ALsizei chanoffset = 0;
MixSamples(samples,
voice->Direct.ChannelsPerOrder[0], voice->Direct.Buffer,
parms->Gains.Current, parms->Gains.Target, Counter, OutPos,
DstBufferSize
);
chanoffset += voice->Direct.ChannelsPerOrder[0];
#define APPLY_NFC_MIX(order) \
if(voice->Direct.ChannelsPerOrder[order] > 0) \
{ \
NfcFilterProcess##order(&parms->NFCtrlFilter, nfcsamples, samples, \
DstBufferSize); \
MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[order], \
voice->Direct.Buffer+chanoffset, parms->Gains.Current+chanoffset, \
parms->Gains.Target+chanoffset, Counter, OutPos, DstBufferSize \
); \
chanoffset += voice->Direct.ChannelsPerOrder[order]; \
}
APPLY_NFC_MIX(1)
APPLY_NFC_MIX(2)
APPLY_NFC_MIX(3)
#undef APPLY_NFC_MIX
}
}
else
{
MixHrtfParams hrtfparams;
ALsizei fademix = 0;
int lidx, ridx;
lidx = GetChannelIdxByName(&Device->RealOut, FrontLeft);
ridx = GetChannelIdxByName(&Device->RealOut, FrontRight);
assert(lidx != -1 && ridx != -1);
if(!Counter)
{
/* No fading, just overwrite the old HRTF params. */
parms->Hrtf.Old = parms->Hrtf.Target;
}
else if(!(parms->Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD))
{
/* The old HRTF params are silent, so overwrite the old
* coefficients with the new, and reset the old gain to
* 0. The future mix will then fade from silence.
*/
parms->Hrtf.Old = parms->Hrtf.Target;
parms->Hrtf.Old.Gain = 0.0f;
}
else if(firstpass)
{
ALfloat gain;
/* Fade between the coefficients over 128 samples. */
fademix = mini(DstBufferSize, 128);
/* The new coefficients need to fade in completely
* since they're replacing the old ones. To keep the
* gain fading consistent, interpolate between the old
* and new target gains given how much of the fade time
* this mix handles.
*/
gain = lerp(parms->Hrtf.Old.Gain, parms->Hrtf.Target.Gain,
minf(1.0f, (ALfloat)fademix/Counter));
hrtfparams.Coeffs = parms->Hrtf.Target.Coeffs;
hrtfparams.Delay[0] = parms->Hrtf.Target.Delay[0];
hrtfparams.Delay[1] = parms->Hrtf.Target.Delay[1];
hrtfparams.Gain = 0.0f;
hrtfparams.GainStep = gain / (ALfloat)fademix;
MixHrtfBlendSamples(
voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx],
samples, voice->Offset, OutPos, IrSize, &parms->Hrtf.Old,
&hrtfparams, &parms->Hrtf.State, fademix
);
/* Update the old parameters with the result. */
parms->Hrtf.Old = parms->Hrtf.Target;
if(fademix < Counter)
parms->Hrtf.Old.Gain = hrtfparams.Gain;
}
if(fademix < DstBufferSize)
{
ALsizei todo = DstBufferSize - fademix;
ALfloat gain = parms->Hrtf.Target.Gain;
/* Interpolate the target gain if the gain fading lasts
* longer than this mix.
*/
if(Counter > DstBufferSize)
gain = lerp(parms->Hrtf.Old.Gain, gain,
(ALfloat)todo/(Counter-fademix));
hrtfparams.Coeffs = parms->Hrtf.Target.Coeffs;
hrtfparams.Delay[0] = parms->Hrtf.Target.Delay[0];
hrtfparams.Delay[1] = parms->Hrtf.Target.Delay[1];
hrtfparams.Gain = parms->Hrtf.Old.Gain;
hrtfparams.GainStep = (gain - parms->Hrtf.Old.Gain) / (ALfloat)todo;
MixHrtfSamples(
voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx],
samples+fademix, voice->Offset+fademix, OutPos+fademix, IrSize,
&hrtfparams, &parms->Hrtf.State, todo
);
/* Store the interpolated gain or the final target gain
* depending if the fade is done.
*/
if(DstBufferSize < Counter)
parms->Hrtf.Old.Gain = gain;
else
parms->Hrtf.Old.Gain = parms->Hrtf.Target.Gain;
}
}
}
for(send = 0;send < Device->NumAuxSends;send++)
{
SendParams *parms = &voice->Send[send].Params[chan];
const ALfloat *samples;
if(!voice->Send[send].Buffer)
continue;
samples = DoFilters(
&parms->LowPass, &parms->HighPass, Device->TempBuffer[FILTERED_BUF],
ResampledData, DstBufferSize, voice->Send[send].FilterType
);
if(!Counter)
memcpy(parms->Gains.Current, parms->Gains.Target,
sizeof(parms->Gains.Current));
MixSamples(samples, voice->Send[send].Channels, voice->Send[send].Buffer,
parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize
);
}
}
/* Update positions */
DataPosFrac += increment*DstBufferSize;
DataPosInt += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
OutPos += DstBufferSize;
voice->Offset += DstBufferSize;
Counter = maxi(DstBufferSize, Counter) - DstBufferSize;
firstpass = false;
if(isstatic)
{
if(BufferLoopItem)
{
/* Handle looping static source */
const ALbuffer *Buffer = BufferListItem->buffers[0];
ALsizei LoopStart = Buffer->LoopStart;
ALsizei LoopEnd = Buffer->LoopEnd;
if(DataPosInt >= LoopEnd)
{
assert(LoopEnd > LoopStart);
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
}
}
else
{
/* Handle non-looping static source */
if(DataPosInt >= BufferListItem->max_samples)
{
isplaying = false;
BufferListItem = NULL;
DataPosInt = 0;
DataPosFrac = 0;
break;
}
}
}
else while(1)
{
/* Handle streaming source */
if(BufferListItem->max_samples > DataPosInt)
break;
DataPosInt -= BufferListItem->max_samples;
buffers_done += BufferListItem->num_buffers;
BufferListItem = ATOMIC_LOAD(&BufferListItem->next, almemory_order_relaxed);
if(!BufferListItem && !(BufferListItem=BufferLoopItem))
{
isplaying = false;
DataPosInt = 0;
DataPosFrac = 0;
break;
}
}
} while(isplaying && OutPos < SamplesToDo);
voice->Flags |= VOICE_IS_FADING;
/* Update source info */
ATOMIC_STORE(&voice->position, DataPosInt, almemory_order_relaxed);
ATOMIC_STORE(&voice->position_fraction, DataPosFrac, almemory_order_relaxed);
ATOMIC_STORE(&voice->current_buffer, BufferListItem, almemory_order_release);
/* Send any events now, after the position/buffer info was updated. */
enabledevt = ATOMIC_LOAD(&Context->EnabledEvts, almemory_order_acquire);
if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted))
SendAsyncEvent(Context, EventType_BufferCompleted,
AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, SourceID, buffers_done, "Buffer completed"
);
return isplaying;
}