etlegacy-libs/jpegturbo/simd/x86_64/jchuff-sse2.asm
2020-03-26 13:19:40 +01:00

346 lines
16 KiB
NASM

;
; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2)
;
; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
; Copyright (C) 2015, Matthieu Darbois.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains an SSE2 implementation for Huffman coding of one block.
; The following code is based directly on jchuff.c; see jchuff.c for more
; details.
%include "jsimdext.inc"
; --------------------------------------------------------------------------
SECTION SEG_CONST
alignz 32
GLOBAL_DATA(jconst_huff_encode_one_block)
EXTN(jconst_huff_encode_one_block):
%include "jpeg_nbits_table.inc"
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 64
; These macros perform the same task as the emit_bits() function in the
; original libjpeg code. In addition to reducing overhead by explicitly
; inlining the code, additional performance is achieved by taking into
; account the size of the bit buffer and waiting until it is almost full
; before emptying it. This mostly benefits 64-bit platforms, since 6
; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
%macro EMIT_BYTE 0
sub put_bits, 8 ; put_bits -= 8;
mov rdx, put_buffer
mov ecx, put_bits
shr rdx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
mov byte [buffer], dl ; *buffer++ = c;
add buffer, 1
cmp dl, 0xFF ; need to stuff a zero byte?
jne %%.EMIT_BYTE_END
mov byte [buffer], 0 ; *buffer++ = 0;
add buffer, 1
%%.EMIT_BYTE_END:
%endmacro
%macro PUT_BITS 1
add put_bits, ecx ; put_bits += size;
shl put_buffer, cl ; put_buffer = (put_buffer << size);
or put_buffer, %1
%endmacro
%macro CHECKBUF31 0
cmp put_bits, 32 ; if (put_bits > 31) {
jl %%.CHECKBUF31_END
EMIT_BYTE
EMIT_BYTE
EMIT_BYTE
EMIT_BYTE
%%.CHECKBUF31_END:
%endmacro
%macro CHECKBUF47 0
cmp put_bits, 48 ; if (put_bits > 47) {
jl %%.CHECKBUF47_END
EMIT_BYTE
EMIT_BYTE
EMIT_BYTE
EMIT_BYTE
EMIT_BYTE
EMIT_BYTE
%%.CHECKBUF47_END:
%endmacro
%macro EMIT_BITS 2
CHECKBUF47
mov ecx, %2
PUT_BITS %1
%endmacro
%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
pxor xmm8, xmm8 ; __m128i neg = _mm_setzero_si128();
pxor xmm9, xmm9 ; __m128i neg = _mm_setzero_si128();
pxor xmm10, xmm10 ; __m128i neg = _mm_setzero_si128();
pxor xmm11, xmm11 ; __m128i neg = _mm_setzero_si128();
pinsrw %34, word [r12 + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
pinsrw %34, word [r12 + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
pinsrw %34, word [r12 + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
pinsrw %34, word [r12 + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
pinsrw %34, word [r12 + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
pinsrw %34, word [r12 + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
pinsrw %34, word [r12 + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
pinsrw %34, word [r12 + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
%if %1 != 32
pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
%else
pinsrw %37, ebx, 7 ; xmm_shadow[31] = block[jno31];
%endif
pcmpgtw xmm8, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm9, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm10, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm11, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
paddw %34, xmm8 ; x1 = _mm_add_epi16(x1, neg);
paddw %35, xmm9 ; x1 = _mm_add_epi16(x1, neg);
paddw %36, xmm10 ; x1 = _mm_add_epi16(x1, neg);
paddw %37, xmm11 ; x1 = _mm_add_epi16(x1, neg);
pxor %34, xmm8 ; x1 = _mm_xor_si128(x1, neg);
pxor %35, xmm9 ; x1 = _mm_xor_si128(x1, neg);
pxor %36, xmm10 ; x1 = _mm_xor_si128(x1, neg);
pxor %37, xmm11 ; x1 = _mm_xor_si128(x1, neg);
pxor xmm8, %34 ; neg = _mm_xor_si128(neg, x1);
pxor xmm9, %35 ; neg = _mm_xor_si128(neg, x1);
pxor xmm10, %36 ; neg = _mm_xor_si128(neg, x1);
pxor xmm11, %37 ; neg = _mm_xor_si128(neg, x1);
movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
%endmacro
;
; Encode a single block's worth of coefficients.
;
; GLOBAL(JOCTET *)
; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
; JCOEFPTR block, int last_dc_val,
; c_derived_tbl *dctbl, c_derived_tbl *actbl)
;
; r10 = working_state *state
; r11 = JOCTET *buffer
; r12 = JCOEFPTR block
; r13d = int last_dc_val
; r14 = c_derived_tbl *dctbl
; r15 = c_derived_tbl *actbl
%define t1 rbp - (DCTSIZE2 * SIZEOF_WORD)
%define t2 t1 - (DCTSIZE2 * SIZEOF_WORD)
%define put_buffer r8
%define put_bits r9d
%define buffer rax
align 32
GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
EXTN(jsimd_huff_encode_one_block_sse2):
push rbp
mov rax, rsp ; rax = original rbp
sub rsp, byte 4
and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [rsp], rax
mov rbp, rsp ; rbp = aligned rbp
lea rsp, [t2]
push_xmm 4
collect_args 6
push rbx
mov buffer, r11 ; r11 is now sratch
mov put_buffer, MMWORD [r10+16] ; put_buffer = state->cur.put_buffer;
mov put_bits, dword [r10+24] ; put_bits = state->cur.put_bits;
push r10 ; r10 is now scratch
; Encode the DC coefficient difference per section F.1.2.1
movsx edi, word [r12] ; temp = temp2 = block[0] - last_dc_val;
sub edi, r13d ; r13 is not used anymore
mov ebx, edi
; This is a well-known technique for obtaining the absolute value
; without a branch. It is derived from an assembly language technique
; presented in "How to Optimize for the Pentium Processors",
; Copyright (c) 1996, 1997 by Agner Fog.
mov esi, edi
sar esi, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
xor edi, esi ; temp ^= temp3;
sub edi, esi ; temp -= temp3;
; For a negative input, want temp2 = bitwise complement of abs(input)
; This code assumes we are on a two's complement machine
add ebx, esi ; temp2 += temp3;
; Find the number of bits needed for the magnitude of the coefficient
lea r11, [rel jpeg_nbits_table]
movzx rdi, byte [r11 + rdi] ; nbits = JPEG_NBITS(temp);
; Emit the Huffman-coded symbol for the number of bits
mov r11d, INT [r14 + rdi * 4] ; code = dctbl->ehufco[nbits];
movzx esi, byte [r14 + rdi + 1024] ; size = dctbl->ehufsi[nbits];
EMIT_BITS r11, esi ; EMIT_BITS(code, size)
; Mask off any extra bits in code
mov esi, 1
mov ecx, edi
shl esi, cl
dec esi
and ebx, esi ; temp2 &= (((JLONG)1)<<nbits) - 1;
; Emit that number of bits of the value, if positive,
; or the complement of its magnitude, if negative.
EMIT_BITS rbx, edi ; EMIT_BITS(temp2, nbits)
; Prepare data
xor ebx, ebx
kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
27, 20, 13, 6, 7, 14, 21, 28, 35, \
xmm0, xmm1, xmm2, xmm3
kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
53, 60, 61, 54, 47, 55, 62, 63, 63, \
xmm4, xmm5, xmm6, xmm7
pxor xmm8, xmm8
pcmpeqw xmm0, xmm8 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
pcmpeqw xmm1, xmm8 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
pcmpeqw xmm2, xmm8 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
pcmpeqw xmm3, xmm8 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
pcmpeqw xmm4, xmm8 ; tmp4 = _mm_cmpeq_epi16(tmp4, zero);
pcmpeqw xmm5, xmm8 ; tmp5 = _mm_cmpeq_epi16(tmp5, zero);
pcmpeqw xmm6, xmm8 ; tmp6 = _mm_cmpeq_epi16(tmp6, zero);
pcmpeqw xmm7, xmm8 ; tmp7 = _mm_cmpeq_epi16(tmp7, zero);
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
packsswb xmm4, xmm5 ; tmp4 = _mm_packs_epi16(tmp4, tmp5);
packsswb xmm6, xmm7 ; tmp6 = _mm_packs_epi16(tmp6, tmp7);
pmovmskb r11d, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
pmovmskb r12d, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
pmovmskb r13d, xmm4 ; index = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32;
pmovmskb r14d, xmm6 ; index = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48;
shl r12, 16
shl r14, 16
or r11, r12
or r13, r14
shl r13, 32
or r11, r13
not r11 ; index = ~index;
;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11
;jmp .EFN
mov r13d, INT [r15 + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
movzx r14d, byte [r15 + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
lea rsi, [t1]
.BLOOP:
bsf r12, r11 ; r = __builtin_ctzl(index);
jz .ELOOP
mov rcx, r12
lea rsi, [rsi+r12*2] ; k += r;
shr r11, cl ; index >>= r;
movzx rdi, word [rsi] ; temp = t1[k];
lea rbx, [rel jpeg_nbits_table]
movzx rdi, byte [rbx + rdi] ; nbits = JPEG_NBITS(temp);
.BRLOOP:
cmp r12, 16 ; while (r > 15) {
jl .ERLOOP
EMIT_BITS r13, r14d ; EMIT_BITS(code_0xf0, size_0xf0)
sub r12, 16 ; r -= 16;
jmp .BRLOOP
.ERLOOP:
; Emit Huffman symbol for run length / number of bits
CHECKBUF31 ; uses rcx, rdx
shl r12, 4 ; temp3 = (r << 4) + nbits;
add r12, rdi
mov ebx, INT [r15 + r12 * 4] ; code = actbl->ehufco[temp3];
movzx ecx, byte [r15 + r12 + 1024] ; size = actbl->ehufsi[temp3];
PUT_BITS rbx
;EMIT_CODE(code, size)
movsx ebx, word [rsi-DCTSIZE2*2] ; temp2 = t2[k];
; Mask off any extra bits in code
mov rcx, rdi
mov rdx, 1
shl rdx, cl
dec rdx
and rbx, rdx ; temp2 &= (((JLONG)1)<<nbits) - 1;
PUT_BITS rbx ; PUT_BITS(temp2, nbits)
shr r11, 1 ; index >>= 1;
add rsi, 2 ; ++k;
jmp .BLOOP
.ELOOP:
; If the last coef(s) were zero, emit an end-of-block code
lea rdi, [t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
cmp rdi, rsi ; if (r > 0) {
je .EFN
mov ebx, INT [r15] ; code = actbl->ehufco[0];
movzx r12d, byte [r15 + 1024] ; size = actbl->ehufsi[0];
EMIT_BITS rbx, r12d
.EFN:
pop r10
; Save put_buffer & put_bits
mov MMWORD [r10+16], put_buffer ; state->cur.put_buffer = put_buffer;
mov dword [r10+24], put_bits ; state->cur.put_bits = put_bits;
pop rbx
uncollect_args 6
pop_xmm 4
mov rsp, rbp ; rsp <- aligned rbp
pop rsp ; rsp <- original rbp
pop rbp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32