etlegacy-libs/jpegturbo/jdct.h

209 lines
8.8 KiB
C
Raw Normal View History

2014-11-21 20:32:31 +00:00
/*
* jdct.h
*
2015-01-24 20:09:39 +00:00
* This file was part of the Independent JPEG Group's software:
2014-11-21 20:32:31 +00:00
* Copyright (C) 1994-1996, Thomas G. Lane.
2017-07-01 14:55:13 +00:00
* libjpeg-turbo Modifications:
* Copyright (C) 2015, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
2014-11-21 20:32:31 +00:00
*
* This include file contains common declarations for the forward and
* inverse DCT modules. These declarations are private to the DCT managers
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
2015-01-24 20:09:39 +00:00
* The individual DCT algorithms are kept in separate files to ease
2014-11-21 20:32:31 +00:00
* machine-dependent tuning (e.g., assembly coding).
*/
/*
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
2017-07-01 14:55:13 +00:00
* for 8-bit samples, JLONG for 12-bit samples. (NOTE: Floating-point DCT
2014-11-21 20:32:31 +00:00
* implementations use an array of type FAST_FLOAT, instead.)
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
* The DCT outputs are returned scaled up by a factor of 8; they therefore
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
* convention improves accuracy in integer implementations and saves some
* work in floating-point ones.
* Quantization of the output coefficients is done by jcdctmgr.c. This
* step requires an unsigned type and also one with twice the bits.
*/
#if BITS_IN_JSAMPLE == 8
#ifndef WITH_SIMD
2015-01-24 20:09:39 +00:00
typedef int DCTELEM; /* 16 or 32 bits is fine */
2014-11-21 20:32:31 +00:00
typedef unsigned int UDCTELEM;
typedef unsigned long long UDCTELEM2;
#else
typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */
2014-11-21 20:32:31 +00:00
typedef unsigned short UDCTELEM;
typedef unsigned int UDCTELEM2;
#endif
#else
2017-07-01 14:55:13 +00:00
typedef JLONG DCTELEM; /* must have 32 bits */
2014-11-21 20:32:31 +00:00
typedef unsigned long long UDCTELEM2;
#endif
/*
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
* to an output sample array. The routine must dequantize the input data as
* well as perform the IDCT; for dequantization, it uses the multiplier table
* pointed to by compptr->dct_table. The output data is to be placed into the
* sample array starting at a specified column. (Any row offset needed will
* be applied to the array pointer before it is passed to the IDCT code.)
* Note that the number of samples emitted by the IDCT routine is
* DCT_scaled_size * DCT_scaled_size.
*/
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
/*
* Each IDCT routine has its own ideas about the best dct_table element type.
*/
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
2014-11-21 20:32:31 +00:00
#if BITS_IN_JSAMPLE == 8
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
2014-11-21 20:32:31 +00:00
#else
typedef JLONG IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
2014-11-21 20:32:31 +00:00
#endif
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
2014-11-21 20:32:31 +00:00
/*
* Each IDCT routine is responsible for range-limiting its results and
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
* be quite far out of range if the input data is corrupt, so a bulletproof
* range-limiting step is required. We use a mask-and-table-lookup method
* to do the combined operations quickly. See the comments with
* prepare_range_limit_table (in jdmaster.c) for more info.
*/
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
/* Extern declarations for the forward and inverse DCT routines. */
EXTERN(void) jpeg_fdct_islow (DCTELEM *data);
EXTERN(void) jpeg_fdct_ifast (DCTELEM *data);
EXTERN(void) jpeg_fdct_float (FAST_FLOAT *data);
EXTERN(void) jpeg_idct_islow
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_ifast
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_float
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_7x7
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_6x6
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_5x5
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_4x4
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_3x3
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_2x2
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_1x1
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_9x9
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_10x10
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_11x11
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_12x12
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_13x13
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_14x14
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_15x15
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
EXTERN(void) jpeg_idct_16x16
(j_decompress_ptr cinfo, jpeg_component_info *compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col);
2014-11-21 20:32:31 +00:00
/*
* Macros for handling fixed-point arithmetic; these are used by many
* but not all of the DCT/IDCT modules.
*
2017-07-01 14:55:13 +00:00
* All values are expected to be of type JLONG.
2014-11-21 20:32:31 +00:00
* Fractional constants are scaled left by CONST_BITS bits.
* CONST_BITS is defined within each module using these macros,
* and may differ from one module to the next.
*/
#define ONE ((JLONG) 1)
#define CONST_SCALE (ONE << CONST_BITS)
2014-11-21 20:32:31 +00:00
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
* thus causing a lot of useless floating-point operations at run time.
*/
#define FIX(x) ((JLONG) ((x) * CONST_SCALE + 0.5))
2014-11-21 20:32:31 +00:00
2017-07-01 14:55:13 +00:00
/* Descale and correctly round a JLONG value that's scaled by N bits.
2014-11-21 20:32:31 +00:00
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
2014-11-21 20:32:31 +00:00
2017-07-01 14:55:13 +00:00
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
2014-11-21 20:32:31 +00:00
* This macro is used only when the two inputs will actually be no more than
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
* full 32x32 multiply. This provides a useful speedup on many machines.
* Unfortunately there is no way to specify a 16x16->32 multiply portably
* in C, but some C compilers will do the right thing if you provide the
* correct combination of casts.
*/
2015-01-24 20:09:39 +00:00
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
2014-11-21 20:32:31 +00:00
#endif
2015-01-24 20:09:39 +00:00
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((JLONG) (const)))
2014-11-21 20:32:31 +00:00
#endif
2015-01-24 20:09:39 +00:00
#ifndef MULTIPLY16C16 /* default definition */
#define MULTIPLY16C16(var,const) ((var) * (const))
2014-11-21 20:32:31 +00:00
#endif
/* Same except both inputs are variables. */
2015-01-24 20:09:39 +00:00
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
2014-11-21 20:32:31 +00:00
#endif
2015-01-24 20:09:39 +00:00
#ifndef MULTIPLY16V16 /* default definition */
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
2014-11-21 20:32:31 +00:00
#endif