mirror of
https://github.com/etlegacy/etlegacy-libs.git
synced 2024-11-11 07:11:57 +00:00
639 lines
21 KiB
C
639 lines
21 KiB
C
|
/**
|
||
|
* OpenAL cross platform audio library
|
||
|
* Copyright (C) 1999-2007 by authors.
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Library General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Library General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Library General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc.,
|
||
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
||
|
*/
|
||
|
|
||
|
#include "config.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <ctype.h>
|
||
|
#include <assert.h>
|
||
|
|
||
|
#include "alMain.h"
|
||
|
#include "AL/al.h"
|
||
|
#include "AL/alc.h"
|
||
|
#include "alSource.h"
|
||
|
#include "alBuffer.h"
|
||
|
#include "alListener.h"
|
||
|
#include "alAuxEffectSlot.h"
|
||
|
#include "alu.h"
|
||
|
|
||
|
#include "mixer_defs.h"
|
||
|
|
||
|
|
||
|
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
|
||
|
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
|
||
|
|
||
|
extern inline void InitiatePositionArrays(ALuint frac, ALuint increment, ALuint *frac_arr, ALuint *pos_arr, ALuint size);
|
||
|
|
||
|
alignas(16) union ResamplerCoeffs ResampleCoeffs;
|
||
|
|
||
|
|
||
|
enum Resampler {
|
||
|
PointResampler,
|
||
|
LinearResampler,
|
||
|
FIR4Resampler,
|
||
|
FIR8Resampler,
|
||
|
BSincResampler,
|
||
|
|
||
|
ResamplerDefault = LinearResampler
|
||
|
};
|
||
|
|
||
|
/* FIR8 requires 3 extra samples before the current position, and 4 after. */
|
||
|
static_assert(MAX_PRE_SAMPLES >= 3, "MAX_PRE_SAMPLES must be at least 3!");
|
||
|
static_assert(MAX_POST_SAMPLES >= 4, "MAX_POST_SAMPLES must be at least 4!");
|
||
|
|
||
|
|
||
|
static HrtfMixerFunc MixHrtfSamples = MixHrtf_C;
|
||
|
static MixerFunc MixSamples = Mix_C;
|
||
|
static ResamplerFunc ResampleSamples = Resample_point32_C;
|
||
|
|
||
|
static inline HrtfMixerFunc SelectHrtfMixer(void)
|
||
|
{
|
||
|
#ifdef HAVE_SSE
|
||
|
if((CPUCapFlags&CPU_CAP_SSE))
|
||
|
return MixHrtf_SSE;
|
||
|
#endif
|
||
|
#ifdef HAVE_NEON
|
||
|
if((CPUCapFlags&CPU_CAP_NEON))
|
||
|
return MixHrtf_Neon;
|
||
|
#endif
|
||
|
|
||
|
return MixHrtf_C;
|
||
|
}
|
||
|
|
||
|
static inline MixerFunc SelectMixer(void)
|
||
|
{
|
||
|
#ifdef HAVE_SSE
|
||
|
if((CPUCapFlags&CPU_CAP_SSE))
|
||
|
return Mix_SSE;
|
||
|
#endif
|
||
|
#ifdef HAVE_NEON
|
||
|
if((CPUCapFlags&CPU_CAP_NEON))
|
||
|
return Mix_Neon;
|
||
|
#endif
|
||
|
|
||
|
return Mix_C;
|
||
|
}
|
||
|
|
||
|
static inline ResamplerFunc SelectResampler(enum Resampler resampler)
|
||
|
{
|
||
|
switch(resampler)
|
||
|
{
|
||
|
case PointResampler:
|
||
|
return Resample_point32_C;
|
||
|
case LinearResampler:
|
||
|
#ifdef HAVE_SSE4_1
|
||
|
if((CPUCapFlags&CPU_CAP_SSE4_1))
|
||
|
return Resample_lerp32_SSE41;
|
||
|
#endif
|
||
|
#ifdef HAVE_SSE2
|
||
|
if((CPUCapFlags&CPU_CAP_SSE2))
|
||
|
return Resample_lerp32_SSE2;
|
||
|
#endif
|
||
|
return Resample_lerp32_C;
|
||
|
case FIR4Resampler:
|
||
|
#ifdef HAVE_SSE4_1
|
||
|
if((CPUCapFlags&CPU_CAP_SSE4_1))
|
||
|
return Resample_fir4_32_SSE41;
|
||
|
#endif
|
||
|
#ifdef HAVE_SSE3
|
||
|
if((CPUCapFlags&CPU_CAP_SSE3))
|
||
|
return Resample_fir4_32_SSE3;
|
||
|
#endif
|
||
|
return Resample_fir4_32_C;
|
||
|
case FIR8Resampler:
|
||
|
#ifdef HAVE_SSE4_1
|
||
|
if((CPUCapFlags&CPU_CAP_SSE4_1))
|
||
|
return Resample_fir8_32_SSE41;
|
||
|
#endif
|
||
|
#ifdef HAVE_SSE3
|
||
|
if((CPUCapFlags&CPU_CAP_SSE3))
|
||
|
return Resample_fir8_32_SSE3;
|
||
|
#endif
|
||
|
return Resample_fir8_32_C;
|
||
|
case BSincResampler:
|
||
|
#ifdef HAVE_SSE
|
||
|
if((CPUCapFlags&CPU_CAP_SSE))
|
||
|
return Resample_bsinc32_SSE;
|
||
|
#endif
|
||
|
return Resample_bsinc32_C;
|
||
|
}
|
||
|
|
||
|
return Resample_point32_C;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* The sinc resampler makes use of a Kaiser window to limit the needed sample
|
||
|
* points to 4 and 8, respectively.
|
||
|
*/
|
||
|
|
||
|
#ifndef M_PI
|
||
|
#define M_PI (3.14159265358979323846)
|
||
|
#endif
|
||
|
static inline double Sinc(double x)
|
||
|
{
|
||
|
if(x == 0.0) return 1.0;
|
||
|
return sin(x*M_PI) / (x*M_PI);
|
||
|
}
|
||
|
|
||
|
/* The zero-order modified Bessel function of the first kind, used for the
|
||
|
* Kaiser window.
|
||
|
*
|
||
|
* I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
|
||
|
* = sum_{k=0}^inf ((x / 2)^k / k!)^2
|
||
|
*/
|
||
|
static double BesselI_0(double x)
|
||
|
{
|
||
|
double term, sum, x2, y, last_sum;
|
||
|
int k;
|
||
|
|
||
|
/* Start at k=1 since k=0 is trivial. */
|
||
|
term = 1.0;
|
||
|
sum = 1.0;
|
||
|
x2 = x / 2.0;
|
||
|
k = 1;
|
||
|
|
||
|
/* Let the integration converge until the term of the sum is no longer
|
||
|
* significant.
|
||
|
*/
|
||
|
do {
|
||
|
y = x2 / k;
|
||
|
k ++;
|
||
|
last_sum = sum;
|
||
|
term *= y * y;
|
||
|
sum += term;
|
||
|
} while(sum != last_sum);
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
/* Calculate a Kaiser window from the given beta value and a normalized k
|
||
|
* [-1, 1].
|
||
|
*
|
||
|
* w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
|
||
|
* { 0, elsewhere.
|
||
|
*
|
||
|
* Where k can be calculated as:
|
||
|
*
|
||
|
* k = i / l, where -l <= i <= l.
|
||
|
*
|
||
|
* or:
|
||
|
*
|
||
|
* k = 2 i / M - 1, where 0 <= i <= M.
|
||
|
*/
|
||
|
static inline double Kaiser(double b, double k)
|
||
|
{
|
||
|
if(k <= -1.0 || k >= 1.0) return 0.0;
|
||
|
return BesselI_0(b * sqrt(1.0 - (k*k))) / BesselI_0(b);
|
||
|
}
|
||
|
|
||
|
static inline double CalcKaiserBeta(double rejection)
|
||
|
{
|
||
|
if(rejection > 50.0)
|
||
|
return 0.1102 * (rejection - 8.7);
|
||
|
if(rejection >= 21.0)
|
||
|
return (0.5842 * pow(rejection - 21.0, 0.4)) +
|
||
|
(0.07886 * (rejection - 21.0));
|
||
|
return 0.0;
|
||
|
}
|
||
|
|
||
|
static float SincKaiser(double r, double x)
|
||
|
{
|
||
|
/* Limit rippling to -60dB. */
|
||
|
return (float)(Kaiser(CalcKaiserBeta(60.0), x / r) * Sinc(x));
|
||
|
}
|
||
|
|
||
|
|
||
|
void aluInitMixer(void)
|
||
|
{
|
||
|
enum Resampler resampler = ResamplerDefault;
|
||
|
const char *str;
|
||
|
ALuint i;
|
||
|
|
||
|
if(ConfigValueStr(NULL, NULL, "resampler", &str))
|
||
|
{
|
||
|
if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0)
|
||
|
resampler = PointResampler;
|
||
|
else if(strcasecmp(str, "linear") == 0)
|
||
|
resampler = LinearResampler;
|
||
|
else if(strcasecmp(str, "sinc4") == 0)
|
||
|
resampler = FIR4Resampler;
|
||
|
else if(strcasecmp(str, "sinc8") == 0)
|
||
|
resampler = FIR8Resampler;
|
||
|
else if(strcasecmp(str, "bsinc") == 0)
|
||
|
resampler = BSincResampler;
|
||
|
else if(strcasecmp(str, "cubic") == 0)
|
||
|
{
|
||
|
WARN("Resampler option \"cubic\" is deprecated, using sinc4\n");
|
||
|
resampler = FIR4Resampler;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
char *end;
|
||
|
long n = strtol(str, &end, 0);
|
||
|
if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler))
|
||
|
resampler = n;
|
||
|
else
|
||
|
WARN("Invalid resampler: %s\n", str);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(resampler == FIR8Resampler)
|
||
|
for(i = 0;i < FRACTIONONE;i++)
|
||
|
{
|
||
|
ALdouble mu = (ALdouble)i / FRACTIONONE;
|
||
|
ResampleCoeffs.FIR8[i][0] = SincKaiser(4.0, mu - -3.0);
|
||
|
ResampleCoeffs.FIR8[i][1] = SincKaiser(4.0, mu - -2.0);
|
||
|
ResampleCoeffs.FIR8[i][2] = SincKaiser(4.0, mu - -1.0);
|
||
|
ResampleCoeffs.FIR8[i][3] = SincKaiser(4.0, mu - 0.0);
|
||
|
ResampleCoeffs.FIR8[i][4] = SincKaiser(4.0, mu - 1.0);
|
||
|
ResampleCoeffs.FIR8[i][5] = SincKaiser(4.0, mu - 2.0);
|
||
|
ResampleCoeffs.FIR8[i][6] = SincKaiser(4.0, mu - 3.0);
|
||
|
ResampleCoeffs.FIR8[i][7] = SincKaiser(4.0, mu - 4.0);
|
||
|
}
|
||
|
else if(resampler == FIR4Resampler)
|
||
|
for(i = 0;i < FRACTIONONE;i++)
|
||
|
{
|
||
|
ALdouble mu = (ALdouble)i / FRACTIONONE;
|
||
|
ResampleCoeffs.FIR4[i][0] = SincKaiser(2.0, mu - -1.0);
|
||
|
ResampleCoeffs.FIR4[i][1] = SincKaiser(2.0, mu - 0.0);
|
||
|
ResampleCoeffs.FIR4[i][2] = SincKaiser(2.0, mu - 1.0);
|
||
|
ResampleCoeffs.FIR4[i][3] = SincKaiser(2.0, mu - 2.0);
|
||
|
}
|
||
|
|
||
|
MixHrtfSamples = SelectHrtfMixer();
|
||
|
MixSamples = SelectMixer();
|
||
|
ResampleSamples = SelectResampler(resampler);
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline ALfloat Sample_ALbyte(ALbyte val)
|
||
|
{ return val * (1.0f/127.0f); }
|
||
|
|
||
|
static inline ALfloat Sample_ALshort(ALshort val)
|
||
|
{ return val * (1.0f/32767.0f); }
|
||
|
|
||
|
static inline ALfloat Sample_ALfloat(ALfloat val)
|
||
|
{ return val; }
|
||
|
|
||
|
#define DECL_TEMPLATE(T) \
|
||
|
static inline void Load_##T(ALfloat *dst, const T *src, ALuint srcstep, ALuint samples)\
|
||
|
{ \
|
||
|
ALuint i; \
|
||
|
for(i = 0;i < samples;i++) \
|
||
|
dst[i] = Sample_##T(src[i*srcstep]); \
|
||
|
}
|
||
|
|
||
|
DECL_TEMPLATE(ALbyte)
|
||
|
DECL_TEMPLATE(ALshort)
|
||
|
DECL_TEMPLATE(ALfloat)
|
||
|
|
||
|
#undef DECL_TEMPLATE
|
||
|
|
||
|
static void LoadSamples(ALfloat *dst, const ALvoid *src, ALuint srcstep, enum FmtType srctype, ALuint samples)
|
||
|
{
|
||
|
switch(srctype)
|
||
|
{
|
||
|
case FmtByte:
|
||
|
Load_ALbyte(dst, src, srcstep, samples);
|
||
|
break;
|
||
|
case FmtShort:
|
||
|
Load_ALshort(dst, src, srcstep, samples);
|
||
|
break;
|
||
|
case FmtFloat:
|
||
|
Load_ALfloat(dst, src, srcstep, samples);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void SilenceSamples(ALfloat *dst, ALuint samples)
|
||
|
{
|
||
|
ALuint i;
|
||
|
for(i = 0;i < samples;i++)
|
||
|
dst[i] = 0.0f;
|
||
|
}
|
||
|
|
||
|
|
||
|
static const ALfloat *DoFilters(ALfilterState *lpfilter, ALfilterState *hpfilter,
|
||
|
ALfloat *restrict dst, const ALfloat *restrict src,
|
||
|
ALuint numsamples, enum ActiveFilters type)
|
||
|
{
|
||
|
ALuint i;
|
||
|
switch(type)
|
||
|
{
|
||
|
case AF_None:
|
||
|
ALfilterState_processPassthru(lpfilter, src, numsamples);
|
||
|
ALfilterState_processPassthru(hpfilter, src, numsamples);
|
||
|
break;
|
||
|
|
||
|
case AF_LowPass:
|
||
|
ALfilterState_process(lpfilter, dst, src, numsamples);
|
||
|
ALfilterState_processPassthru(hpfilter, dst, numsamples);
|
||
|
return dst;
|
||
|
case AF_HighPass:
|
||
|
ALfilterState_processPassthru(lpfilter, src, numsamples);
|
||
|
ALfilterState_process(hpfilter, dst, src, numsamples);
|
||
|
return dst;
|
||
|
|
||
|
case AF_BandPass:
|
||
|
for(i = 0;i < numsamples;)
|
||
|
{
|
||
|
ALfloat temp[256];
|
||
|
ALuint todo = minu(256, numsamples-i);
|
||
|
|
||
|
ALfilterState_process(lpfilter, temp, src+i, todo);
|
||
|
ALfilterState_process(hpfilter, dst+i, temp, todo);
|
||
|
i += todo;
|
||
|
}
|
||
|
return dst;
|
||
|
}
|
||
|
return src;
|
||
|
}
|
||
|
|
||
|
|
||
|
ALvoid MixSource(ALvoice *voice, ALsource *Source, ALCdevice *Device, ALuint SamplesToDo)
|
||
|
{
|
||
|
ResamplerFunc Resample;
|
||
|
ALbufferlistitem *BufferListItem;
|
||
|
ALuint DataPosInt, DataPosFrac;
|
||
|
ALboolean Looping;
|
||
|
ALuint increment;
|
||
|
ALenum State;
|
||
|
ALuint OutPos;
|
||
|
ALuint NumChannels;
|
||
|
ALuint SampleSize;
|
||
|
ALint64 DataSize64;
|
||
|
ALuint IrSize;
|
||
|
ALuint chan, j;
|
||
|
|
||
|
/* Get source info */
|
||
|
State = Source->state;
|
||
|
BufferListItem = ATOMIC_LOAD(&Source->current_buffer);
|
||
|
DataPosInt = Source->position;
|
||
|
DataPosFrac = Source->position_fraction;
|
||
|
Looping = Source->Looping;
|
||
|
NumChannels = Source->NumChannels;
|
||
|
SampleSize = Source->SampleSize;
|
||
|
increment = voice->Step;
|
||
|
|
||
|
IrSize = (Device->Hrtf ? GetHrtfIrSize(Device->Hrtf) : 0);
|
||
|
|
||
|
Resample = ((increment == FRACTIONONE && DataPosFrac == 0) ?
|
||
|
Resample_copy32_C : ResampleSamples);
|
||
|
|
||
|
OutPos = 0;
|
||
|
do {
|
||
|
ALuint SrcBufferSize, DstBufferSize;
|
||
|
|
||
|
/* Figure out how many buffer samples will be needed */
|
||
|
DataSize64 = SamplesToDo-OutPos;
|
||
|
DataSize64 *= increment;
|
||
|
DataSize64 += DataPosFrac+FRACTIONMASK;
|
||
|
DataSize64 >>= FRACTIONBITS;
|
||
|
DataSize64 += MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
|
||
|
|
||
|
SrcBufferSize = (ALuint)mini64(DataSize64, BUFFERSIZE);
|
||
|
|
||
|
/* Figure out how many samples we can actually mix from this. */
|
||
|
DataSize64 = SrcBufferSize;
|
||
|
DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
|
||
|
DataSize64 <<= FRACTIONBITS;
|
||
|
DataSize64 -= DataPosFrac;
|
||
|
|
||
|
DstBufferSize = (ALuint)((DataSize64+(increment-1)) / increment);
|
||
|
DstBufferSize = minu(DstBufferSize, (SamplesToDo-OutPos));
|
||
|
|
||
|
/* Some mixers like having a multiple of 4, so try to give that unless
|
||
|
* this is the last update. */
|
||
|
if(OutPos+DstBufferSize < SamplesToDo)
|
||
|
DstBufferSize &= ~3;
|
||
|
|
||
|
for(chan = 0;chan < NumChannels;chan++)
|
||
|
{
|
||
|
const ALfloat *ResampledData;
|
||
|
ALfloat *SrcData = Device->SourceData;
|
||
|
ALuint SrcDataSize;
|
||
|
|
||
|
/* Load the previous samples into the source data first. */
|
||
|
memcpy(SrcData, voice->PrevSamples[chan], MAX_PRE_SAMPLES*sizeof(ALfloat));
|
||
|
SrcDataSize = MAX_PRE_SAMPLES;
|
||
|
|
||
|
if(Source->SourceType == AL_STATIC)
|
||
|
{
|
||
|
const ALbuffer *ALBuffer = BufferListItem->buffer;
|
||
|
const ALubyte *Data = ALBuffer->data;
|
||
|
ALuint DataSize;
|
||
|
ALuint pos;
|
||
|
|
||
|
/* Offset buffer data to current channel */
|
||
|
Data += chan*SampleSize;
|
||
|
|
||
|
/* If current pos is beyond the loop range, do not loop */
|
||
|
if(Looping == AL_FALSE || DataPosInt >= (ALuint)ALBuffer->LoopEnd)
|
||
|
{
|
||
|
Looping = AL_FALSE;
|
||
|
|
||
|
/* Load what's left to play from the source buffer, and
|
||
|
* clear the rest of the temp buffer */
|
||
|
pos = DataPosInt;
|
||
|
DataSize = minu(SrcBufferSize - SrcDataSize, ALBuffer->SampleLen - pos);
|
||
|
|
||
|
LoadSamples(&SrcData[SrcDataSize], &Data[pos * NumChannels*SampleSize],
|
||
|
NumChannels, ALBuffer->FmtType, DataSize);
|
||
|
SrcDataSize += DataSize;
|
||
|
|
||
|
SilenceSamples(&SrcData[SrcDataSize], SrcBufferSize - SrcDataSize);
|
||
|
SrcDataSize += SrcBufferSize - SrcDataSize;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ALuint LoopStart = ALBuffer->LoopStart;
|
||
|
ALuint LoopEnd = ALBuffer->LoopEnd;
|
||
|
|
||
|
/* Load what's left of this loop iteration, then load
|
||
|
* repeats of the loop section */
|
||
|
pos = DataPosInt;
|
||
|
DataSize = LoopEnd - pos;
|
||
|
DataSize = minu(SrcBufferSize - SrcDataSize, DataSize);
|
||
|
|
||
|
LoadSamples(&SrcData[SrcDataSize], &Data[pos * NumChannels*SampleSize],
|
||
|
NumChannels, ALBuffer->FmtType, DataSize);
|
||
|
SrcDataSize += DataSize;
|
||
|
|
||
|
DataSize = LoopEnd-LoopStart;
|
||
|
while(SrcBufferSize > SrcDataSize)
|
||
|
{
|
||
|
DataSize = minu(SrcBufferSize - SrcDataSize, DataSize);
|
||
|
|
||
|
LoadSamples(&SrcData[SrcDataSize], &Data[LoopStart * NumChannels*SampleSize],
|
||
|
NumChannels, ALBuffer->FmtType, DataSize);
|
||
|
SrcDataSize += DataSize;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Crawl the buffer queue to fill in the temp buffer */
|
||
|
ALbufferlistitem *tmpiter = BufferListItem;
|
||
|
ALuint pos = DataPosInt;
|
||
|
|
||
|
while(tmpiter && SrcBufferSize > SrcDataSize)
|
||
|
{
|
||
|
const ALbuffer *ALBuffer;
|
||
|
if((ALBuffer=tmpiter->buffer) != NULL)
|
||
|
{
|
||
|
const ALubyte *Data = ALBuffer->data;
|
||
|
ALuint DataSize = ALBuffer->SampleLen;
|
||
|
|
||
|
/* Skip the data already played */
|
||
|
if(DataSize <= pos)
|
||
|
pos -= DataSize;
|
||
|
else
|
||
|
{
|
||
|
Data += (pos*NumChannels + chan)*SampleSize;
|
||
|
DataSize -= pos;
|
||
|
pos -= pos;
|
||
|
|
||
|
DataSize = minu(SrcBufferSize - SrcDataSize, DataSize);
|
||
|
LoadSamples(&SrcData[SrcDataSize], Data, NumChannels,
|
||
|
ALBuffer->FmtType, DataSize);
|
||
|
SrcDataSize += DataSize;
|
||
|
}
|
||
|
}
|
||
|
tmpiter = tmpiter->next;
|
||
|
if(!tmpiter && Looping)
|
||
|
tmpiter = ATOMIC_LOAD(&Source->queue);
|
||
|
else if(!tmpiter)
|
||
|
{
|
||
|
SilenceSamples(&SrcData[SrcDataSize], SrcBufferSize - SrcDataSize);
|
||
|
SrcDataSize += SrcBufferSize - SrcDataSize;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Store the last source samples used for next time. */
|
||
|
memcpy(voice->PrevSamples[chan],
|
||
|
&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
|
||
|
MAX_PRE_SAMPLES*sizeof(ALfloat)
|
||
|
);
|
||
|
|
||
|
/* Now resample, then filter and mix to the appropriate outputs. */
|
||
|
ResampledData = Resample(&voice->SincState,
|
||
|
&SrcData[MAX_PRE_SAMPLES], DataPosFrac, increment,
|
||
|
Device->ResampledData, DstBufferSize
|
||
|
);
|
||
|
{
|
||
|
DirectParams *parms = &voice->Direct;
|
||
|
const ALfloat *samples;
|
||
|
|
||
|
samples = DoFilters(
|
||
|
&parms->Filters[chan].LowPass, &parms->Filters[chan].HighPass,
|
||
|
Device->FilteredData, ResampledData, DstBufferSize,
|
||
|
parms->Filters[chan].ActiveType
|
||
|
);
|
||
|
if(!voice->IsHrtf)
|
||
|
MixSamples(samples, parms->OutChannels, parms->OutBuffer, parms->Gains[chan],
|
||
|
parms->Counter, OutPos, DstBufferSize);
|
||
|
else
|
||
|
MixHrtfSamples(parms->OutBuffer, samples, parms->Counter, voice->Offset,
|
||
|
OutPos, IrSize, &parms->Hrtf[chan].Params,
|
||
|
&parms->Hrtf[chan].State, DstBufferSize);
|
||
|
}
|
||
|
|
||
|
for(j = 0;j < Device->NumAuxSends;j++)
|
||
|
{
|
||
|
SendParams *parms = &voice->Send[j];
|
||
|
const ALfloat *samples;
|
||
|
|
||
|
if(!parms->OutBuffer)
|
||
|
continue;
|
||
|
|
||
|
samples = DoFilters(
|
||
|
&parms->Filters[chan].LowPass, &parms->Filters[chan].HighPass,
|
||
|
Device->FilteredData, ResampledData, DstBufferSize,
|
||
|
parms->Filters[chan].ActiveType
|
||
|
);
|
||
|
MixSamples(samples, 1, parms->OutBuffer, &parms->Gains[chan],
|
||
|
parms->Counter, OutPos, DstBufferSize);
|
||
|
}
|
||
|
}
|
||
|
/* Update positions */
|
||
|
DataPosFrac += increment*DstBufferSize;
|
||
|
DataPosInt += DataPosFrac>>FRACTIONBITS;
|
||
|
DataPosFrac &= FRACTIONMASK;
|
||
|
|
||
|
OutPos += DstBufferSize;
|
||
|
voice->Offset += DstBufferSize;
|
||
|
voice->Direct.Counter = maxu(voice->Direct.Counter, DstBufferSize) - DstBufferSize;
|
||
|
for(j = 0;j < Device->NumAuxSends;j++)
|
||
|
voice->Send[j].Counter = maxu(voice->Send[j].Counter, DstBufferSize) - DstBufferSize;
|
||
|
|
||
|
/* Handle looping sources */
|
||
|
while(1)
|
||
|
{
|
||
|
const ALbuffer *ALBuffer;
|
||
|
ALuint DataSize = 0;
|
||
|
ALuint LoopStart = 0;
|
||
|
ALuint LoopEnd = 0;
|
||
|
|
||
|
if((ALBuffer=BufferListItem->buffer) != NULL)
|
||
|
{
|
||
|
DataSize = ALBuffer->SampleLen;
|
||
|
LoopStart = ALBuffer->LoopStart;
|
||
|
LoopEnd = ALBuffer->LoopEnd;
|
||
|
if(LoopEnd > DataPosInt)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if(Looping && Source->SourceType == AL_STATIC)
|
||
|
{
|
||
|
assert(LoopEnd > LoopStart);
|
||
|
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if(DataSize > DataPosInt)
|
||
|
break;
|
||
|
|
||
|
if(!(BufferListItem=BufferListItem->next))
|
||
|
{
|
||
|
if(Looping)
|
||
|
BufferListItem = ATOMIC_LOAD(&Source->queue);
|
||
|
else
|
||
|
{
|
||
|
State = AL_STOPPED;
|
||
|
BufferListItem = NULL;
|
||
|
DataPosInt = 0;
|
||
|
DataPosFrac = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DataPosInt -= DataSize;
|
||
|
}
|
||
|
} while(State == AL_PLAYING && OutPos < SamplesToDo);
|
||
|
|
||
|
/* Update source info */
|
||
|
Source->state = State;
|
||
|
ATOMIC_STORE(&Source->current_buffer, BufferListItem);
|
||
|
Source->position = DataPosInt;
|
||
|
Source->position_fraction = DataPosFrac;
|
||
|
}
|