mirror of
https://github.com/ENSL/NS.git
synced 2024-11-25 22:11:04 +00:00
eba41379e3
* Re-added the view frustum for bots * Hopefully stopped bots getting permanently stuck trying to evolve an upgrade in an invalid place * Bots will now leave the game after 2 hours if no humans playing (ignores human spectators)
856 lines
No EOL
23 KiB
C++
856 lines
No EOL
23 KiB
C++
//
|
|
// EvoBot - Neoptolemus' Natural Selection bot, based on Botman's HPB bot template
|
|
//
|
|
// bot_math.cpp
|
|
//
|
|
// Contains all useful math functions for bot stuff
|
|
//
|
|
|
|
#include "AvHAIMath.h"
|
|
#include "../dlls/util.h"
|
|
|
|
#include <time.h>
|
|
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
extern enginefuncs_t g_engfuncs;
|
|
|
|
bool isNumber(const char* line)
|
|
{
|
|
char* p;
|
|
strtol(line, &p, 10);
|
|
return *p == 0;
|
|
}
|
|
|
|
bool isFloat(const char* line)
|
|
{
|
|
std::string myString = line;
|
|
std::istringstream iss(myString);
|
|
float f;
|
|
iss >> std::noskipws >> f; // noskipws considers leading whitespace invalid
|
|
// Check the entire string was consumed and if either failbit or badbit is set
|
|
return iss.eof() && !iss.fail();
|
|
}
|
|
|
|
// Returns the normalized surface normal of a triangle defined by v1,v2,v3. Assumes clockwise indices.
|
|
Vector UTIL_GetSurfaceNormal(const Vector v1, const Vector v2, const Vector v3)
|
|
{
|
|
|
|
Vector normal(((v2.y - v1.y) * (v3.z - v1.z)) - ((v2.z - v1.z) * (v3.y - v1.y)),
|
|
((v2.z - v1.z) * (v3.x - v1.x)) - ((v2.x - v1.x) * (v3.z - v1.z)),
|
|
((v2.x - v1.x) * (v3.y - v1.y)) - ((v2.y - v1.y) * (v3.x - v1.x)));
|
|
|
|
UTIL_NormalizeVector(&normal);
|
|
|
|
return normal;
|
|
}
|
|
|
|
bool vPointOverlaps3D(const Vector Point, const Vector MinBB, const Vector MaxBB)
|
|
{
|
|
return (Point.x >= MinBB.x && Point.x <= MaxBB.x
|
|
&& Point.y >= MinBB.y && Point.y <= MaxBB.y
|
|
&& Point.z >= MinBB.z && Point.z <= MaxBB.z);
|
|
}
|
|
|
|
bool vPointOverlaps2D(const Vector Point, const Vector MinBB, const Vector MaxBB)
|
|
{
|
|
return (Point.x >= MinBB.x && Point.x <= MaxBB.x
|
|
&& Point.y >= MinBB.y && Point.y <= MaxBB.y);
|
|
}
|
|
|
|
bool vBBOverlaps2D(const Vector MinBBA, const Vector MaxBBA, const Vector MinBBB, const Vector MaxBBB)
|
|
{
|
|
return ( (MinBBA.x < MaxBBB.x && MaxBBA.x > MinBBB.x)
|
|
&& (MinBBA.y < MaxBBB.y && MaxBBA.y > MinBBB.y));
|
|
}
|
|
|
|
// Given three collinear points p, q, r, the function checks if
|
|
// point q lies on line segment 'pr'
|
|
bool onSegment(Vector p, Vector q, Vector r)
|
|
{
|
|
if (q.x <= fmaxf(p.x, r.x) && q.x >= fminf(p.x, r.x) &&
|
|
q.y <= fmaxf(p.y, r.y) && q.y >= fminf(p.y, r.y))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// To find orientation of ordered triplet (p, q, r).
|
|
// The function returns following values
|
|
// 0 --> p, q and r are collinear
|
|
// 1 --> Clockwise
|
|
// 2 --> Counterclockwise
|
|
int orientation(Vector p, Vector q, Vector r)
|
|
{
|
|
// See https://www.geeksforgeeks.org/orientation-3-ordered-points/
|
|
// for details of below formula.
|
|
int val = (q.y - p.y) * (r.x - q.x) -
|
|
(q.x - p.x) * (r.y - q.y);
|
|
|
|
if (val == 0) return 0; // collinear
|
|
|
|
return (val > 0) ? 1 : 2; // clock or counterclock wise
|
|
}
|
|
|
|
bool vIntersects2D(const Vector LineAStart, const Vector LineAEnd, const Vector LineBStart, const Vector LineBEnd)
|
|
{
|
|
int o1 = orientation(LineAStart, LineAEnd, LineBStart);
|
|
int o2 = orientation(LineAStart, LineAEnd, LineBEnd);
|
|
int o3 = orientation(LineBStart, LineBEnd, LineAStart);
|
|
int o4 = orientation(LineBStart, LineBEnd, LineAEnd);
|
|
|
|
// General case
|
|
if (o1 != o2 && o3 != o4)
|
|
return true;
|
|
|
|
// Special Cases
|
|
// p1, q1 and p2 are collinear and p2 lies on segment p1q1
|
|
if (o1 == 0 && onSegment(LineAStart, LineBStart, LineAEnd)) return true;
|
|
|
|
// p1, q1 and q2 are collinear and q2 lies on segment p1q1
|
|
if (o2 == 0 && onSegment(LineAStart, LineBEnd, LineAEnd)) return true;
|
|
|
|
// p2, q2 and p1 are collinear and p1 lies on segment p2q2
|
|
if (o3 == 0 && onSegment(LineBStart, LineAStart, LineBEnd)) return true;
|
|
|
|
// p2, q2 and q1 are collinear and q1 lies on segment p2q2
|
|
if (o4 == 0 && onSegment(LineBStart, LineAEnd, LineBEnd)) return true;
|
|
|
|
return false; // Doesn't fall in any of the above cases
|
|
}
|
|
|
|
Vector vClosestPointOnBB(const Vector Point, const Vector MinBB, const Vector MaxBB)
|
|
{
|
|
return Vector(clampf(Point.x, MinBB.x, MaxBB.x), clampf(Point.y, MinBB.y, MaxBB.y), clampf(Point.z, MinBB.z, MaxBB.z));
|
|
}
|
|
|
|
void vScaleBB(Vector& MinBB, Vector& MaxBB, const float Scale)
|
|
{
|
|
Vector Centre = MinBB + ((MaxBB - MinBB) * 0.5f);
|
|
|
|
float SizeX = MaxBB.x - MinBB.x;
|
|
float SizeY = MaxBB.y - MinBB.y;
|
|
float SizeZ = MaxBB.z - MinBB.z;
|
|
|
|
MinBB.x = Centre.x - (SizeX * Scale);
|
|
MinBB.y = Centre.y - (SizeY * Scale);
|
|
MinBB.z = Centre.z - (SizeZ * Scale);
|
|
|
|
MaxBB.x = Centre.x + (SizeX * Scale);
|
|
MaxBB.y = Centre.y + (SizeY * Scale);
|
|
MaxBB.z = Centre.z + (SizeZ * Scale);
|
|
}
|
|
|
|
// Returns the 3D distance of point from a line defined between lineFrom and lineTo
|
|
float vDistanceFromLine3D(const Vector lineFrom, const Vector lineTo, const Vector CheckPoint)
|
|
{
|
|
Vector nearestToLine = vClosestPointOnLine(lineFrom, lineTo, CheckPoint);
|
|
return vDist3D(CheckPoint, nearestToLine);
|
|
}
|
|
|
|
// Returns the 2D distance (Z axis ignored) of point from a line defined between lineFrom and lineTo
|
|
float vDistanceFromLine2D(const Vector lineFrom, const Vector lineTo, const Vector CheckPoint)
|
|
{
|
|
Vector nearestToLine = vClosestPointOnLine2D(lineFrom, lineTo, CheckPoint);
|
|
return vDist2D(CheckPoint, nearestToLine);
|
|
}
|
|
|
|
// Returns the 2D distance (Z axis ignored) of point from a line defined between lineFrom and lineTo
|
|
float vDistanceFromLine2DSq(const Vector lineFrom, const Vector lineTo, const Vector CheckPoint)
|
|
{
|
|
Vector nearestToLine = vClosestPointOnLine2D(lineFrom, lineTo, CheckPoint);
|
|
return vDist2DSq(CheckPoint, nearestToLine);
|
|
}
|
|
|
|
Vector vClosestPointOnInfiniteLine3D(const Vector PointOnLine, const Vector NormalisedLineDir, const Vector TestPoint)
|
|
{
|
|
Vector DirectionToPoint = UTIL_GetVectorNormal(PointOnLine - TestPoint);
|
|
|
|
float DirectionDot = UTIL_GetDotProduct(DirectionToPoint, NormalisedLineDir);
|
|
|
|
return TestPoint + (NormalisedLineDir * DirectionDot);
|
|
}
|
|
|
|
Vector vClosestPointOnInfiniteLine2D(const Vector PointOnLine, const Vector NormalisedLineDir, const Vector TestPoint)
|
|
{
|
|
Vector NormalisedLineDir2D = UTIL_GetVectorNormal2D(NormalisedLineDir);
|
|
Vector DirectionToPoint = UTIL_GetVectorNormal2D(PointOnLine - TestPoint);
|
|
|
|
float DirectionDot = UTIL_GetDotProduct2D(DirectionToPoint, NormalisedLineDir2D);
|
|
|
|
return TestPoint + (NormalisedLineDir * DirectionDot);
|
|
}
|
|
|
|
// Returns 0 if point sits right on the line defined by lineFrom and lineTo, -1 if it sits to the left, 1 if it sits to the right. Ignores Z axis
|
|
int vPointOnLine(const Vector lineFrom, const Vector lineTo, const Vector point)
|
|
{
|
|
float value = ((lineTo.x - lineFrom.x) * (point.y - lineFrom.y)) - ((point.x - lineFrom.x) * (lineTo.y - lineFrom.y));
|
|
|
|
if (value > 1.0f)
|
|
return 1;
|
|
|
|
if (value < -1.0f)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// For given line lineFrom -> lineTo, returns the point along that line closest to point
|
|
Vector vClosestPointOnLine(const Vector lineFrom, const Vector lineTo, const Vector point)
|
|
{
|
|
Vector vVector1 = point - lineFrom;
|
|
Vector vVector2 = UTIL_GetVectorNormal(lineTo - lineFrom);
|
|
|
|
float d = vDist3D(lineFrom, lineTo);
|
|
float t = UTIL_GetDotProduct(vVector2, vVector1);
|
|
|
|
if (t <= 0)
|
|
return lineFrom;
|
|
|
|
if (t >= d)
|
|
return lineTo;
|
|
|
|
Vector vVector3 = vVector2 * t;
|
|
|
|
Vector vClosestPoint = lineFrom + vVector3;
|
|
|
|
return vClosestPoint;
|
|
}
|
|
|
|
// For given line lineFrom -> lineTo, returns the 2D point (Z axis ignored) along that line closest to point
|
|
Vector vClosestPointOnLine2D(const Vector lineFrom, const Vector lineTo, const Vector point)
|
|
{
|
|
Vector lineFrom2D = Vector(lineFrom.x, lineFrom.y, 0.0f);
|
|
Vector lineTo2D = Vector(lineTo.x, lineTo.y, 0.0f);
|
|
Vector point2D = Vector(point.x, point.y, 0.0f);
|
|
|
|
Vector vVector1 = point2D - lineFrom2D;
|
|
Vector vVector2 = UTIL_GetVectorNormal2D(lineTo2D - lineFrom2D);
|
|
|
|
float d = vDist2D(lineFrom2D, lineTo2D);
|
|
float t = UTIL_GetDotProduct2D(vVector2, vVector1);
|
|
|
|
if (t <= 0)
|
|
return lineFrom2D;
|
|
|
|
if (t >= d)
|
|
return lineTo2D;
|
|
|
|
Vector vVector3 = vVector2 * t;
|
|
|
|
Vector vClosestPoint = lineFrom2D + vVector3;
|
|
|
|
return vClosestPoint;
|
|
}
|
|
|
|
// Normalizes the supplied vector, overwriting it with the normalized value in the process
|
|
void UTIL_NormalizeVector(Vector* vec)
|
|
{
|
|
float len = sqrt((vec->x * vec->x) + (vec->y * vec->y) + (vec->z * vec->z));
|
|
|
|
float div = 1.0f / len;
|
|
|
|
vec->x *= div;
|
|
vec->y *= div;
|
|
vec->z *= div;
|
|
}
|
|
|
|
void UTIL_NormalizeVector2D(Vector* vec)
|
|
{
|
|
float len = sqrt((vec->x * vec->x) + (vec->y * vec->y));
|
|
|
|
float div = 1.0f / len;
|
|
|
|
vec->x *= div;
|
|
vec->y *= div;
|
|
vec->z = 0.0f;
|
|
}
|
|
|
|
// Returns a normalized copy of the supplied Vector. Original value is unmodified
|
|
Vector UTIL_GetVectorNormal(const Vector vec)
|
|
{
|
|
return vec.Normalize();
|
|
}
|
|
|
|
// Returns a 2D (Z axis is 0) normalized copy of the supplied Vector. Original value is unmodified
|
|
Vector UTIL_GetVectorNormal2D(const Vector vec)
|
|
{
|
|
if (vec.x == 0.0f && vec.y == 0.0f) { return ZERO_VECTOR; }
|
|
|
|
Vector result;
|
|
float len = sqrt((vec.x * vec.x) + (vec.y * vec.y));
|
|
|
|
float div = 1.0f / len;
|
|
|
|
result.x = vec.x * div;
|
|
result.y = vec.y * div;
|
|
result.z = 0.0f;
|
|
|
|
return result;
|
|
}
|
|
|
|
// Returns the cross product of v1 and v2.
|
|
Vector UTIL_GetCrossProduct(const Vector v1, const Vector v2)
|
|
{
|
|
Vector result;
|
|
|
|
result.x = v1.y * v2.z - v1.z * v2.y;
|
|
result.y = v1.z * v2.x - v1.x * v2.z;
|
|
result.z = v1.x * v2.y - v1.y * v2.x;
|
|
|
|
return result;
|
|
}
|
|
|
|
// Returns the 2D (ignoring Z axis) distance between the two vectors
|
|
float vDist2D(const Vector v1, const Vector v2)
|
|
{
|
|
return (float)sqrt((v2.x - v1.x) * (v2.x - v1.x)
|
|
+ (v2.y - v1.y) * (v2.y - v1.y));
|
|
}
|
|
|
|
// Returns the 3D distance between the two vectors
|
|
float vDist3D(const Vector v1, const Vector v2)
|
|
{
|
|
return (float)sqrt((v2.x - v1.x) * (v2.x - v1.x)
|
|
+ (v2.y - v1.y) * (v2.y - v1.y)
|
|
+ (v2.z - v1.z) * (v2.z - v1.z));
|
|
}
|
|
|
|
// Returns the 2D (ignoring Z axis) squared distance between the two vectors
|
|
float vDist2DSq(const Vector v1, const Vector v2)
|
|
{
|
|
return ((v2.x - v1.x) * (v2.x - v1.x)
|
|
+ (v2.y - v1.y) * (v2.y - v1.y));
|
|
}
|
|
|
|
// Returns the 3D squared distance between the two vectors
|
|
float vDist3DSq(const Vector v1, const Vector v2)
|
|
{
|
|
return ((v2.x - v1.x) * (v2.x - v1.x)
|
|
+ (v2.y - v1.y) * (v2.y - v1.y)
|
|
+ (v2.z - v1.z) * (v2.z - v1.z));
|
|
}
|
|
|
|
float vSize3DSq(const Vector V)
|
|
{
|
|
return (V.x * V.x) + (V.y * V.y) + (V.z * V.z);
|
|
}
|
|
|
|
float vSize2DSq(const Vector V)
|
|
{
|
|
return (V.x * V.x) + (V.y * V.y);
|
|
}
|
|
|
|
float vSize3D(const Vector V)
|
|
{
|
|
return sqrtf((V.x * V.x) + (V.y * V.y) + (V.z * V.z));
|
|
}
|
|
|
|
float vSize2D(const Vector V)
|
|
{
|
|
return sqrtf((V.x * V.x) + (V.y * V.y));
|
|
}
|
|
|
|
// Returns true if the two vectors are the same (all components are within 0.0001f of each other)
|
|
bool vEquals(const Vector v1, const Vector v2)
|
|
{
|
|
return fabsf(v1.x - v2.x) <= 0.0001f && fabsf(v1.y - v2.y) <= 0.0001f && fabsf(v1.z - v2.z) <= 0.0001f;
|
|
}
|
|
|
|
bool vEquals2D(const Vector v1, const Vector v2)
|
|
{
|
|
return fabsf(v1.x - v2.x) <= 0.01f && fabsf(v1.y - v2.y) <= 0.01f;
|
|
}
|
|
|
|
// Returns true if the two vectors are the same (all components are within epsilon of each other)
|
|
bool vEquals(const Vector v1, const Vector v2, const float epsilon)
|
|
{
|
|
return fabsf(v1.x - v2.x) <= epsilon && fabsf(v1.y - v2.y) <= epsilon && fabsf(v1.z - v2.z) <= epsilon;
|
|
}
|
|
|
|
bool vEquals2D(const Vector v1, const Vector v2, const float epsilon)
|
|
{
|
|
return fabsf(v1.x - v2.x) <= epsilon && fabsf(v1.y - v2.y) <= epsilon;
|
|
}
|
|
|
|
bool vIsZero(const Vector v1)
|
|
{
|
|
return (fabsf(v1.x) < 0.0001f && fabsf(v1.y) < 0.0001f && fabsf(v1.z) < 0.0001f);
|
|
}
|
|
|
|
bool fNearlyEqual(const float f1, const float f2)
|
|
{
|
|
return fabsf(f1 - f2) < 0.001f;
|
|
}
|
|
|
|
|
|
// Returns the dot product of two vectors (1.0f if both vectors pointing exactly the same direction, -1.0f if opposites, 0.0f if perpendicular)
|
|
//float UTIL_GetDotProduct(const Vector v1, const Vector v2)
|
|
//{
|
|
// return ((v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z));
|
|
//}
|
|
|
|
// Returns the 2D dot product (Z axis ignored) of two vectors (1.0f if both vectors pointing exactly the same direction, -1.0f if opposites, 0.0f if perpendicular)
|
|
float UTIL_GetDotProduct2D(const Vector v1, const Vector v2)
|
|
{
|
|
return ((v1.x * v2.x) + (v1.y * v2.y));
|
|
}
|
|
|
|
// Returns a random point along the circumference of a circle defined with the supplied origin and radius
|
|
Vector UTIL_RandomPointOnCircle(const Vector origin, const float radius)
|
|
{
|
|
Vector result;
|
|
|
|
float random = ((float)rand()) / (float)RAND_MAX;
|
|
|
|
float a = random * (MATH_PI * 2);
|
|
result.x = origin.x + (radius * cos(a));
|
|
result.y = origin.y + (radius * sin(a));
|
|
result.z = origin.z;
|
|
|
|
return result;
|
|
}
|
|
|
|
// For given plane, determine if the given point sits within the plane or not
|
|
bool UTIL_PointInsidePlane(const frustum_plane_t* plane, const Vector point)
|
|
{
|
|
float distance = plane->d + (plane->normal.x * point.x + plane->normal.y * point.y + plane->normal.z * point.z);
|
|
return distance >= 0.0f;
|
|
}
|
|
|
|
bool UTIL_CylinderInsidePlane(const frustum_plane_t* plane, const Vector centre, float height, float radius)
|
|
{
|
|
Vector testNormal = plane->normal;
|
|
testNormal.z = 0;
|
|
|
|
Vector topPoint = centre + Vector(0.0f, 0.0f, height * 0.5f) + (testNormal * radius);
|
|
Vector bottomPoint = centre - Vector(0.0f, 0.0f, height * 0.5f) + (testNormal * radius);
|
|
|
|
return (UTIL_PointInsidePlane(plane, topPoint) || UTIL_PointInsidePlane(plane, bottomPoint));
|
|
}
|
|
|
|
void UTIL_SetFrustumPlane(frustum_plane_t* plane, Vector v1, Vector v2, Vector v3)
|
|
{
|
|
|
|
Vector normal = UTIL_GetSurfaceNormal(v1, v2, v3);
|
|
|
|
plane->normal.x = normal.x;
|
|
plane->normal.y = normal.y;
|
|
plane->normal.z = normal.z;
|
|
|
|
plane->point.x = v2.x;
|
|
plane->point.y = v2.y;
|
|
plane->point.z = v2.z;
|
|
|
|
plane->d = -(plane->normal.x * plane->point.x + plane->normal.y * plane->point.y + plane->normal.z * plane->point.z);
|
|
}
|
|
|
|
float UTIL_MetresToGoldSrcUnits(const float Metres)
|
|
{
|
|
return Metres * 52.4934f;
|
|
}
|
|
|
|
float UTIL_GoldSrcUnitsToMetres(const float GoldSrcUnits)
|
|
{
|
|
return GoldSrcUnits * 0.01905f;
|
|
}
|
|
|
|
float sqrf(float input)
|
|
{
|
|
return (input * input);
|
|
}
|
|
|
|
int imaxi(const int a, const int b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
int imini(const int a, const int b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
float clampf(float input, float inMin, float inMax)
|
|
{
|
|
return fmaxf(fminf(input, inMax), inMin);
|
|
}
|
|
|
|
float clampi(int input, int inMin, int inMax)
|
|
{
|
|
return imaxi(imini(input, inMax), inMin);
|
|
}
|
|
|
|
Vector GetPitchForProjectile(Vector LaunchPoint, Vector TargetPoint, const float ProjectileSpeed, const float Gravity)
|
|
{
|
|
double start_x = LaunchPoint.x;
|
|
double start_y = LaunchPoint.y;
|
|
double start_z = LaunchPoint.z;
|
|
double target_x = TargetPoint.x;
|
|
double target_y = TargetPoint.y;
|
|
double target_z = TargetPoint.z;
|
|
|
|
double x = target_x - start_x;
|
|
double y = target_y - start_y;
|
|
double z = target_z - start_z;
|
|
|
|
double range = sqrt(x * x + y * y);
|
|
|
|
double discriminant = pow(ProjectileSpeed, 4) - Gravity * (Gravity * pow(range, 2) + 2 * z * pow(ProjectileSpeed, 2));
|
|
|
|
if (discriminant < 0)
|
|
{
|
|
return ZERO_VECTOR;
|
|
}
|
|
|
|
double launch_angle = atan((pow(ProjectileSpeed, 2) - sqrt(discriminant)) / (Gravity * range));
|
|
|
|
// Calculate the components of the unit vector
|
|
double unit_vector_x = cos(launch_angle) * cos(atan2(y, x));
|
|
double unit_vector_y = cos(launch_angle) * sin(atan2(y, x));
|
|
double unit_vector_z = sin(launch_angle);
|
|
|
|
Vector LaunchVector = Vector(unit_vector_x, unit_vector_y, unit_vector_z);
|
|
return LaunchVector;
|
|
|
|
}
|
|
|
|
void UTIL_AnglesToVector(const Vector angles, Vector* fwd, Vector* right, Vector* up)
|
|
{
|
|
g_engfuncs.pfnAngleVectors(angles, (float*)fwd, (float*)right, (float*)up);
|
|
}
|
|
|
|
float UTIL_WrapAngle(float angle)
|
|
{
|
|
// check for wraparound of angle
|
|
if (angle > 180)
|
|
angle -= 360;
|
|
else if (angle < -180)
|
|
angle += 360;
|
|
|
|
return (angle);
|
|
}
|
|
|
|
Vector UTIL_WrapAngles(Vector angles)
|
|
{
|
|
// check for wraparound of angles
|
|
if (angles.x > 180)
|
|
angles.x -= 360;
|
|
else if (angles.x < -180)
|
|
angles.x += 360;
|
|
|
|
if (angles.y > 180)
|
|
angles.y -= 360;
|
|
else if (angles.y < -180)
|
|
angles.y += 360;
|
|
|
|
if (angles.z > 180)
|
|
angles.z -= 360;
|
|
else if (angles.z < -180)
|
|
angles.z += 360;
|
|
|
|
return (angles);
|
|
}
|
|
|
|
float signf(float input)
|
|
{
|
|
return (input == 0.0f) ? 0.0f : ((input > 0.0f) ? 1.0f : -1.0f);
|
|
}
|
|
|
|
Vector ViewInterpTo(const Vector CurrentViewAngles, const Vector& TargetDirection, const float DeltaTime, const float InterpSpeed)
|
|
{
|
|
if (DeltaTime == 0.f)
|
|
{
|
|
return CurrentViewAngles;
|
|
}
|
|
|
|
// If no interp speed, jump to target value
|
|
if (InterpSpeed <= 0.f)
|
|
{
|
|
return UTIL_VecToAngles(TargetDirection);
|
|
}
|
|
|
|
Vector TargetAngles = UTIL_VecToAngles(TargetDirection);
|
|
|
|
const float DeltaInterpSpeed = InterpSpeed * DeltaTime;
|
|
|
|
const Vector Delta = UTIL_GetVectorNormal(TargetAngles - CurrentViewAngles);
|
|
|
|
// If steps are too small, just return Target and assume we have reached our destination.
|
|
if (vEquals(CurrentViewAngles, TargetAngles))
|
|
{
|
|
return TargetAngles;
|
|
}
|
|
|
|
// Delta Move, Clamp so we do not over shoot.
|
|
const Vector DeltaMove = Delta * clampf(DeltaInterpSpeed, 0.f, 1.f);
|
|
Vector NewAngle = (CurrentViewAngles + DeltaMove);
|
|
|
|
if (NewAngle.y > 180)
|
|
NewAngle.y -= 360;
|
|
|
|
// Paulo-La-Frite - START bot aiming bug fix
|
|
if (NewAngle.x > 180)
|
|
NewAngle.x -= 360;
|
|
|
|
NewAngle.z = 0.0f;
|
|
|
|
return NewAngle;
|
|
}
|
|
|
|
float fInterpTo(float start, float end, float DeltaTime, float InterpSpeed)
|
|
{
|
|
// If no interp speed, jump to target value
|
|
if (InterpSpeed <= 0.f)
|
|
{
|
|
return end;
|
|
}
|
|
|
|
// Distance to reach
|
|
float Dist = end - start;
|
|
|
|
// If distance is too small, just set the desired location
|
|
if (fabsf(sqrf(Dist)) < 0.0001f)
|
|
{
|
|
return end;
|
|
}
|
|
|
|
// Delta Move, Clamp so we do not over shoot.
|
|
float DeltaMove = Dist * clampf((DeltaTime * InterpSpeed), 0.f, 1.f);
|
|
|
|
float NewVal = start + DeltaMove;
|
|
|
|
return NewVal;
|
|
}
|
|
|
|
float fInterpConstantTo(float start, float end, float DeltaTime, float InterpSpeed)
|
|
{
|
|
float Dist = end - start;
|
|
|
|
// If distance is too small, just set the desired location
|
|
if (fabsf(sqrf(Dist)) < 0.0001f)
|
|
{
|
|
return end;
|
|
}
|
|
|
|
const float Step = InterpSpeed * DeltaTime;
|
|
float NewVal = start + clampf(Dist, -Step, Step);
|
|
|
|
return NewVal;
|
|
}
|
|
|
|
float frandrange(float MinValue, float MaxValue)
|
|
{
|
|
return ((float(rand()) / float(RAND_MAX)) * (MaxValue - MinValue)) + MinValue;
|
|
}
|
|
|
|
int irandrange(int MinValue, int MaxValue)
|
|
{
|
|
if (MinValue == MaxValue) { return MinValue; }
|
|
|
|
return MinValue + rand() / (RAND_MAX / (MaxValue - MinValue + 1) + 1);
|
|
}
|
|
|
|
bool randbool()
|
|
{
|
|
return (rand() & 1);
|
|
}
|
|
|
|
Vector random_unit_vector_within_cone(const Vector Direction, double cone_half_angle)
|
|
{
|
|
Vector Result = ZERO_VECTOR;
|
|
|
|
double u = ((double)rand() / RAND_MAX) * 2 - 1; // random number in [-1, 1]
|
|
double phi = ((double)rand() / RAND_MAX) * 2 * M_PI; // random number in [0, 2*pi]
|
|
double r = sqrt(1 - u * u);
|
|
double x = r * cos(phi);
|
|
double y = r * sin(phi);
|
|
double z = u;
|
|
|
|
// Rotate the random point to the cone direction using a quaternion.
|
|
// First, compute the quaternion that rotates the z-axis to the cone direction.
|
|
double cos_half_angle = cos(cone_half_angle / 2);
|
|
double sin_half_angle = sin(cone_half_angle / 2);
|
|
double qx = Direction.x * sin_half_angle;
|
|
double qy = Direction.y * sin_half_angle;
|
|
double qz = Direction.z * sin_half_angle;
|
|
double qw = cos_half_angle;
|
|
// Then, apply the quaternion rotation to the random point.
|
|
double t = qw * z - qx * x - qy * y - qz * z;
|
|
Result.x = qx * z + qw * x - qz * y + qy * t;
|
|
Result.y = qy * z + qz * x + qw * y - qx * t;
|
|
Result.z = qz * z - qy * x + qx * y + qw * t;
|
|
|
|
return UTIL_GetVectorNormal(Result);
|
|
}
|
|
|
|
Vector UTIL_GetRandomUnitVectorInCone(const Vector ConeDirection, const float HalfAngleRadians)
|
|
{
|
|
Vector P = UTIL_GetVectorNormal(UTIL_GetCrossProduct(ConeDirection, UP_VECTOR));
|
|
Vector Q = UTIL_GetVectorNormal(UTIL_GetCrossProduct(ConeDirection, P));
|
|
|
|
float RMax = tanf(HalfAngleRadians);
|
|
float Theta = frandrange(0.0f, 2.0f) * MATH_PI;
|
|
float u = frandrange(cos(HalfAngleRadians), 1.0f);
|
|
float r = RMax * sqrt(1.0f - sqrf(u));
|
|
return UTIL_GetVectorNormal((r * (P * cos(Theta) + Q * sin(Theta))));
|
|
}
|
|
|
|
float fDegreesToRadians(const float Degrees)
|
|
{
|
|
return Degrees * DEGREES_RADIANS_CONV;
|
|
}
|
|
|
|
Vector UTIL_GetForwardVector(const Vector angles)
|
|
{
|
|
Vector fwd, right, up;
|
|
|
|
UTIL_AnglesToVector(angles, &fwd, &right, &up);
|
|
return fwd;
|
|
}
|
|
|
|
Vector UTIL_GetForwardVector2D(const Vector angles)
|
|
{
|
|
Vector fwd, right, up;
|
|
|
|
UTIL_AnglesToVector(angles, &fwd, &right, &up);
|
|
return UTIL_GetVectorNormal2D(fwd);
|
|
}
|
|
|
|
float UTIL_GetDistanceToPolygon2DSq(const Vector TestPoint, const Vector* Points, const int NumPoints)
|
|
{
|
|
float minDist = -1.0f;
|
|
|
|
for (int i = 0; i < NumPoints; i++)
|
|
{
|
|
Vector destPoint = (i <= (NumPoints - 2)) ? Points[i + 1] : Points[0];
|
|
float thisDist = vDistanceFromLine2DSq(Points[i], destPoint, TestPoint);
|
|
|
|
if (minDist < 0.0f)
|
|
{
|
|
minDist = thisDist;
|
|
}
|
|
else
|
|
{
|
|
minDist = fminf(minDist, thisDist);
|
|
}
|
|
}
|
|
|
|
return minDist;
|
|
}
|
|
|
|
Vector UTIL_GetAimLocationToLeadTarget(const Vector ShooterLocation, const Vector TargetLocation, const Vector TargetVelocity, const float ProjectileVelocity)
|
|
{
|
|
// We interpret a speed of 0.0f to mean hitscan, i.e. infinitely fast
|
|
if (ProjectileVelocity == 0.0f) { return TargetLocation; }
|
|
|
|
|
|
Vector totarget = TargetLocation - ShooterLocation;
|
|
|
|
|
|
float a = UTIL_GetDotProduct(TargetVelocity, TargetVelocity) - (ProjectileVelocity * ProjectileVelocity);
|
|
float b = 2.0f * UTIL_GetDotProduct(TargetVelocity, totarget);
|
|
float c = UTIL_GetDotProduct(totarget, totarget);
|
|
|
|
float p = -b / (2.0f * a);
|
|
float q = (float)sqrt((b * b) - 4.0f * a * c) / (2.0f * a);
|
|
|
|
float t1 = p - q;
|
|
float t2 = p + q;
|
|
float t;
|
|
|
|
if (t1 > t2 && t2 > 0)
|
|
{
|
|
t = t2;
|
|
}
|
|
else
|
|
{
|
|
t = t1;
|
|
}
|
|
|
|
return (TargetLocation + TargetVelocity * t);
|
|
}
|
|
|
|
float UTIL_GetVelocityRequiredToReachTarget(const Vector StartLocation, const Vector TargetLocation, float Gravity)
|
|
{
|
|
// Calculate the distance between the start and target positions
|
|
double distance = vDist3D(StartLocation, TargetLocation);
|
|
|
|
// Calculate the initial velocity required to reach the target with no air resistance
|
|
double velocity = sqrt(2.0f * Gravity * distance);
|
|
|
|
return velocity;
|
|
}
|
|
|
|
Vector UTIL_GetRandomPointInBoundingBox(const Vector BoxMin, const Vector BoxMax)
|
|
{
|
|
float RandX = frandrange(BoxMin.x, BoxMax.x);
|
|
float RandY = frandrange(BoxMin.y, BoxMax.y);
|
|
float RandZ = frandrange(BoxMin.z, BoxMax.z);
|
|
|
|
return Vector(RandX, RandY, RandZ);
|
|
}
|
|
|
|
/* Function to get no of set bits in binary
|
|
representation of positive integer n */
|
|
unsigned int UTIL_CountSetBitsInInteger(unsigned int n)
|
|
{
|
|
unsigned int count = 0;
|
|
while (n)
|
|
{
|
|
count += n & 1;
|
|
n >>= 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
float UTIL_CalculateSlopeAngleBetweenPoints(const Vector StartPoint, const Vector EndPoint)
|
|
{
|
|
float Run = vDist2DSq(StartPoint, EndPoint);
|
|
float Rise = fabsf(StartPoint.z - EndPoint.z);
|
|
|
|
return atanf(Rise / Run);
|
|
}
|
|
|
|
// Function to check if a finite line intersects with an AABB
|
|
bool vlineIntersectsAABB(Vector lineStart, Vector lineEnd, Vector BoxMinPosition, Vector BoxMaxPosition)
|
|
{
|
|
Vector RayDir = UTIL_GetVectorNormal(lineEnd - lineStart);
|
|
float LineLength = vDist3D(lineStart, lineEnd);
|
|
Vector dirfrac;
|
|
|
|
float t = FLT_MAX;
|
|
|
|
// r.dir is unit direction vector of ray
|
|
dirfrac.x = 1.0f / RayDir.x;
|
|
dirfrac.y = 1.0f / RayDir.y;
|
|
dirfrac.z = 1.0f / RayDir.z;
|
|
// lb is the corner of AABB with minimal coordinates - left bottom, rt is maximal corner
|
|
// r.org is origin of ray
|
|
float t1 = (BoxMinPosition.x - lineStart.x) * dirfrac.x;
|
|
float t2 = (BoxMaxPosition.x - lineStart.x) * dirfrac.x;
|
|
float t3 = (BoxMinPosition.y - lineStart.y) * dirfrac.y;
|
|
float t4 = (BoxMaxPosition.y - lineStart.y) * dirfrac.y;
|
|
float t5 = (BoxMinPosition.z - lineStart.z) * dirfrac.z;
|
|
float t6 = (BoxMaxPosition.z - lineStart.z) * dirfrac.z;
|
|
|
|
float tmin = max(max(min(t1, t2), min(t3, t4)), min(t5, t6));
|
|
float tmax = min(min(max(t1, t2), max(t3, t4)), max(t5, t6));
|
|
|
|
// if tmax < 0, ray (line) is intersecting AABB, but the whole AABB is behind us
|
|
if (tmax < 0)
|
|
{
|
|
t = tmax;
|
|
return false;
|
|
}
|
|
|
|
// if tmin > tmax, ray doesn't intersect AABB
|
|
if (tmin > tmax)
|
|
{
|
|
t = tmax;
|
|
return false;
|
|
}
|
|
|
|
t = tmin;
|
|
return t <= LineLength;
|
|
} |