mirror of
https://github.com/ENSL/NS.git
synced 2025-01-18 23:41:51 +00:00
1103 lines
48 KiB
Text
1103 lines
48 KiB
Text
|
$Id: libcurl-the-guide,v 1.20 2002/12/19 15:22:36 bagder Exp $
|
||
|
_ _ ____ _
|
||
|
___| | | | _ \| |
|
||
|
/ __| | | | |_) | |
|
||
|
| (__| |_| | _ <| |___
|
||
|
\___|\___/|_| \_\_____|
|
||
|
|
||
|
PROGRAMMING WITH LIBCURL
|
||
|
|
||
|
About this Document
|
||
|
|
||
|
This document attempts to describe the general principles and some basic
|
||
|
approaches to consider when programming with libcurl. The text will focus
|
||
|
mainly on the C interface but might apply fairly well on other interfaces as
|
||
|
well as they usually follow the C one pretty closely.
|
||
|
|
||
|
This document will refer to 'the user' as the person writing the source code
|
||
|
that uses libcurl. That would probably be you or someone in your position.
|
||
|
What will be generally refered to as 'the program' will be the collected
|
||
|
source code that you write that is using libcurl for transfers. The program
|
||
|
is outside libcurl and libcurl is outside of the program.
|
||
|
|
||
|
To get the more details on all options and functions described herein, please
|
||
|
refer to their respective man pages.
|
||
|
|
||
|
Building
|
||
|
|
||
|
There are many different ways to build C programs. This chapter will assume a
|
||
|
unix-style build process. If you use a different build system, you can still
|
||
|
read this to get general information that may apply to your environment as
|
||
|
well.
|
||
|
|
||
|
Compiling the Program
|
||
|
|
||
|
Your compiler needs to know where the libcurl headers are
|
||
|
located. Therefore you must set your compiler's include path to point to
|
||
|
the directory where you installed them. The 'curl-config'[3] tool can be
|
||
|
used to get this information:
|
||
|
|
||
|
$ curl-config --cflags
|
||
|
|
||
|
Linking the Program with libcurl
|
||
|
|
||
|
When having compiled the program, you need to link your object files to
|
||
|
create a single executable. For that to succeed, you need to link with
|
||
|
libcurl and possibly also with other libraries that libcurl itself depends
|
||
|
on. Like OpenSSL librararies, but even some standard OS libraries may be
|
||
|
needed on the command line. To figure out which flags to use, once again
|
||
|
the 'curl-config' tool comes to the rescue:
|
||
|
|
||
|
$ curl-config --libs
|
||
|
|
||
|
SSL or Not
|
||
|
|
||
|
libcurl can be built and customized in many ways. One of the things that
|
||
|
varies from different libraries and builds is the support for SSL-based
|
||
|
transfers, like HTTPS and FTPS. If OpenSSL was detected properly at
|
||
|
build-time, libcurl will be built with SSL support. To figure out if an
|
||
|
installed libcurl has been built with SSL support enabled, use
|
||
|
'curl-config' like this:
|
||
|
|
||
|
$ curl-config --feature
|
||
|
|
||
|
And if SSL is supported, the keyword 'SSL' will be written to stdout,
|
||
|
possibly together with a few other features that can be on and off on
|
||
|
different libcurls.
|
||
|
|
||
|
|
||
|
Portable Code in a Portable World
|
||
|
|
||
|
The people behind libcurl have put a considerable effort to make libcurl work
|
||
|
on a large amount of different operating systems and environments.
|
||
|
|
||
|
You program libcurl the same way on all platforms that libcurl runs on. There
|
||
|
are only very few minor considerations that differs. If you just make sure to
|
||
|
write your code portable enough, you may very well create yourself a very
|
||
|
portable program. libcurl shouldn't stop you from that.
|
||
|
|
||
|
|
||
|
Global Preparation
|
||
|
|
||
|
The program must initialize some of the libcurl functionality globally. That
|
||
|
means it should be done exactly once, no matter how many times you intend to
|
||
|
use the library. Once for your program's entire life time. This is done using
|
||
|
|
||
|
curl_global_init()
|
||
|
|
||
|
and it takes one parameter which is a bit pattern that tells libcurl what to
|
||
|
intialize. Using CURL_GLOBAL_ALL will make it initialize all known internal
|
||
|
sub modules, and might be a good default option. The current two bits that
|
||
|
are specified are:
|
||
|
|
||
|
CURL_GLOBAL_WIN32 which only does anything on Windows machines. When used on
|
||
|
a Windows machine, it'll make libcurl intialize the win32 socket
|
||
|
stuff. Without having that initialized properly, your program cannot use
|
||
|
sockets properly. You should only do this once for each application, so if
|
||
|
your program already does this or of another library in use does it, you
|
||
|
should not tell libcurl to do this as well.
|
||
|
|
||
|
CURL_GLOBAL_SSL which only does anything on libcurls compiled and built
|
||
|
SSL-enabled. On these systems, this will make libcurl init OpenSSL properly
|
||
|
for this application. This is only needed to do once for each application so
|
||
|
if your program or another library already does this, this bit should not be
|
||
|
needed.
|
||
|
|
||
|
libcurl has a default protection mechanism that detects if curl_global_init()
|
||
|
hasn't been called by the time curl_easy_perform() is called and if that is
|
||
|
the case, libcurl runs the function itself with a guessed bit pattern. Please
|
||
|
note that depending solely on this is not considered nice nor very good.
|
||
|
|
||
|
When the program no longer uses libcurl, it should call
|
||
|
curl_global_cleanup(), which is the opposite of the init call. It will then
|
||
|
do the reversed operations to cleanup the resources the curl_global_init()
|
||
|
call initialized.
|
||
|
|
||
|
Repeated calls to curl_global_init() and curl_global_cleanup() should be
|
||
|
avoided. They should only be called once each.
|
||
|
|
||
|
|
||
|
Handle the Easy libcurl
|
||
|
|
||
|
libcurl version 7 is oriented around the so called easy interface. All
|
||
|
operations in the easy interface are prefixed with 'curl_easy'.
|
||
|
|
||
|
Future libcurls will also offer the multi interface. More about that
|
||
|
interface, what it is targeted for and how to use it is still only debated on
|
||
|
the libcurl mailing list and developer web pages. Join up to discuss and
|
||
|
figure out!
|
||
|
|
||
|
To use the easy interface, you must first create yourself an easy handle. You
|
||
|
need one handle for each easy session you want to perform. Basicly, you
|
||
|
should use one handle for every thread you plan to use for transferring. You
|
||
|
must never share the same handle in multiple threads.
|
||
|
|
||
|
Get an easy handle with
|
||
|
|
||
|
easyhandle = curl_easy_init();
|
||
|
|
||
|
It returns an easy handle. Using that you proceed to the next step: setting
|
||
|
up your preferred actions. A handle is just a logic entity for the upcoming
|
||
|
transfer or series of transfers.
|
||
|
|
||
|
You set properties and options for this handle using curl_easy_setopt(). They
|
||
|
control how the subsequent transfer or transfers will be made. Options remain
|
||
|
set in the handle until set again to something different. Alas, multiple
|
||
|
requests using the same handle will use the same options.
|
||
|
|
||
|
Many of the informationals you set in libcurl are "strings", pointers to data
|
||
|
terminated with a zero byte. Keep in mind that when you set strings with
|
||
|
curl_easy_setopt(), libcurl will not copy the data. It will merely point to
|
||
|
the data. You MUST make sure that the data remains available for libcurl to
|
||
|
use until finished or until you use the same option again to point to
|
||
|
something else.
|
||
|
|
||
|
One of the most basic properties to set in the handle is the URL. You set
|
||
|
your preferred URL to transfer with CURLOPT_URL in a manner similar to:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_URL, "http://curl.haxx.se/");
|
||
|
|
||
|
Let's assume for a while that you want to receive data as the URL indentifies
|
||
|
a remote resource you want to get here. Since you write a sort of application
|
||
|
that needs this transfer, I assume that you would like to get the data passed
|
||
|
to you directly instead of simply getting it passed to stdout. So, you write
|
||
|
your own function that matches this prototype:
|
||
|
|
||
|
size_t write_data(void *buffer, size_t size, size_t nmemb, void *userp);
|
||
|
|
||
|
You tell libcurl to pass all data to this function by issuing a function
|
||
|
similar to this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_WRITEFUNCTION, write_data);
|
||
|
|
||
|
You can control what data your function get in the forth argument by setting
|
||
|
another property:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_FILE, &internal_struct);
|
||
|
|
||
|
Using that property, you can easily pass local data between your application
|
||
|
and the function that gets invoked by libcurl. libcurl itself won't touch the
|
||
|
data you pass with CURLOPT_FILE.
|
||
|
|
||
|
libcurl offers its own default internal callback that'll take care of the
|
||
|
data if you don't set the callback with CURLOPT_WRITEFUNCTION. It will then
|
||
|
simply output the received data to stdout. You can have the default callback
|
||
|
write the data to a different file handle by passing a 'FILE *' to a file
|
||
|
opened for writing with the CURLOPT_FILE option.
|
||
|
|
||
|
Now, we need to take a step back and have a deep breath. Here's one of those
|
||
|
rare platform-dependent nitpicks. Did you spot it? On some platforms[2],
|
||
|
libcurl won't be able to operate on files opened by the program. Thus, if you
|
||
|
use the default callback and pass in a an open file with CURLOPT_FILE, it
|
||
|
will crash. You should therefore avoid this to make your program run fine
|
||
|
virtually everywhere.
|
||
|
|
||
|
There are of course many more options you can set, and we'll get back to a
|
||
|
few of them later. Let's instead continue to the actual transfer:
|
||
|
|
||
|
success = curl_easy_perform(easyhandle);
|
||
|
|
||
|
The curl_easy_perform() will connect to the remote site, do the necessary
|
||
|
commands and receive the transfer. Whenever it receives data, it calls the
|
||
|
callback function we previously set. The function may get one byte at a time,
|
||
|
or it may get many kilobytes at once. libcurl delivers as much as possible as
|
||
|
often as possible. Your callback function should return the number of bytes
|
||
|
it "took care of". If that is not the exact same amount of bytes that was
|
||
|
passed to it, libcurl will abort the operation and return with an error code.
|
||
|
|
||
|
When the transfer is complete, the function returns a return code that
|
||
|
informs you if it succeeded in its mission or not. If a return code isn't
|
||
|
enough for you, you can use the CURLOPT_ERRORBUFFER to point libcurl to a
|
||
|
buffer of yours where it'll store a human readable error message as well.
|
||
|
|
||
|
If you then want to transfer another file, the handle is ready to be used
|
||
|
again. Mind you, it is even preferred that you re-use an existing handle if
|
||
|
you intend to make another transfer. libcurl will then attempt to re-use the
|
||
|
previous
|
||
|
|
||
|
|
||
|
Multi-threading issues
|
||
|
|
||
|
libcurl is completely thread safe, except for two issues: signals and alarm
|
||
|
handlers. Signals are needed for a SIGPIPE handler, and the alarm() syscall
|
||
|
is used to catch timeouts (mostly during DNS lookup).
|
||
|
|
||
|
So when using multiple threads you should first ignore SIGPIPE in your main
|
||
|
thread and set the CURLOPT_NOSIGNAL option to TRUE for all handles.
|
||
|
|
||
|
Everything will work fine except that timeouts are not honored during the DNS
|
||
|
lookup - this would require some sort of asynchronous DNS lookup (which is
|
||
|
planned for a future libcurl version).
|
||
|
|
||
|
For SIGPIPE info see the UNIX Socket FAQ at
|
||
|
http://www.unixguide.net/network/socketfaq/2.22.shtml
|
||
|
|
||
|
Also, note that CURLOPT_DNS_USE_GLOBAL_CACHE is not thread-safe.
|
||
|
|
||
|
When It Doesn't Work
|
||
|
|
||
|
There will always be times when the transfer fails for some reason. You might
|
||
|
have set the wrong libcurl option or misunderstood what the libcurl option
|
||
|
actually does, or the remote server might return non-standard replies that
|
||
|
confuse the library which then confuses your program.
|
||
|
|
||
|
There's one golden rule when these things occur: set the CURLOPT_VERBOSE
|
||
|
option to TRUE. It'll cause the library to spew out the entire protocol
|
||
|
details it sends, some internal info and some received protcol data as well
|
||
|
(especially when using FTP). If you're using HTTP, adding the headers in the
|
||
|
received output to study is also a clever way to get a better understanding
|
||
|
wht the server behaves the way it does. Include headers in the normal body
|
||
|
output with CURLOPT_HEADER set TRUE.
|
||
|
|
||
|
Of course there are bugs left. We need to get to know about them to be able
|
||
|
to fix them, so we're quite dependent on your bug reports! When you do report
|
||
|
suspected bugs in libcurl, please include as much details you possibly can: a
|
||
|
protocol dump that CURLOPT_VERBOSE produces, library version, as much as
|
||
|
possible of your code that uses libcurl, operating system name and version,
|
||
|
compiler name and version etc.
|
||
|
|
||
|
If CURLOPT_VERBOSE is not enough, you increase the level of debug data your
|
||
|
application receive by using the CURLOPT_DEBUGFUNCTION.
|
||
|
|
||
|
Getting some in-depth knowledge about the protocols involved is never wrong,
|
||
|
and if you're trying to do funny things, you might very well understand
|
||
|
libcurl and how to use it better if you study the appropriate RFC documents
|
||
|
at least briefly.
|
||
|
|
||
|
|
||
|
Upload Data to a Remote Site
|
||
|
|
||
|
libcurl tries to keep a protocol independent approach to most transfers, thus
|
||
|
uploading to a remote FTP site is very similar to uploading data to a HTTP
|
||
|
server with a PUT request.
|
||
|
|
||
|
Of course, first you either create an easy handle or you re-use one existing
|
||
|
one. Then you set the URL to operate on just like before. This is the remote
|
||
|
URL, that we now will upload.
|
||
|
|
||
|
Since we write an application, we most likely want libcurl to get the upload
|
||
|
data by asking us for it. To make it do that, we set the read callback and
|
||
|
the custom pointer libcurl will pass to our read callback. The read callback
|
||
|
should have a prototype similar to:
|
||
|
|
||
|
size_t function(char *bufptr, size_t size, size_t nitems, void *userp);
|
||
|
|
||
|
Where bufptr is the pointer to a buffer we fill in with data to upload and
|
||
|
size*nitems is the size of the buffer and therefore also the maximum amount
|
||
|
of data we can return to libcurl in this call. The 'userp' pointer is the
|
||
|
custom pointer we set to point to a struct of ours to pass private data
|
||
|
between the application and the callback.
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_READFUNCTION, read_function);
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_INFILE, &filedata);
|
||
|
|
||
|
Tell libcurl that we want to upload:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_UPLOAD, TRUE);
|
||
|
|
||
|
A few protocols won't behave properly when uploads are done without any prior
|
||
|
knowledge of the expected file size. So, set the upload file size using the
|
||
|
CURLOPT_INFILESIZE for all known file sizes like this[1]:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_INFILESIZE, file_size);
|
||
|
|
||
|
When you call curl_easy_perform() this time, it'll perform all the necessary
|
||
|
operations and when it has invoked the upload it'll call your supplied
|
||
|
callback to get the data to upload. The program should return as much data as
|
||
|
possible in every invoke, as that is likely to make the upload perform as
|
||
|
fast as possible. The callback should return the number of bytes it wrote in
|
||
|
the buffer. Returning 0 will signal the end of the upload.
|
||
|
|
||
|
|
||
|
Passwords
|
||
|
|
||
|
Many protocols use or even require that user name and password are provided
|
||
|
to be able to download or upload the data of your choice. libcurl offers
|
||
|
several ways to specify them.
|
||
|
|
||
|
Most protocols support that you specify the name and password in the URL
|
||
|
itself. libcurl will detect this and use them accordingly. This is written
|
||
|
like this:
|
||
|
|
||
|
protocol://user:password@example.com/path/
|
||
|
|
||
|
If you need any odd letters in your user name or password, you should enter
|
||
|
them URL encoded, as %XX where XX is a two-digit hexadecimal number.
|
||
|
|
||
|
libcurl also provides options to set various passwords. The user name and
|
||
|
password as shown embedded in the URL can instead get set with the
|
||
|
CURLOPT_USERPWD option. The argument passed to libcurl should be a char * to
|
||
|
a string in the format "user:password:". In a manner like this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_USERPWD, "myname:thesecret");
|
||
|
|
||
|
Another case where name and password might be needed at times, is for those
|
||
|
users who need to athenticate themselves to a proxy they use. libcurl offers
|
||
|
another option for this, the CURLOPT_PROXYUSERPWD. It is used quite similar
|
||
|
to the CURLOPT_USERPWD option like this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_PROXYUSERPWD, "myname:thesecret");
|
||
|
|
||
|
There's a long time unix "standard" way of storing ftp user names and
|
||
|
passwords, namely in the $HOME/.netrc file. The file should be made private
|
||
|
so that only the user may read it (see also the "Security Considerations"
|
||
|
chapter), as it might contain the password in plain text. libcurl has the
|
||
|
ability to use this file to figure out what set of user name and password to
|
||
|
use for a particular host. As an extension to the normal functionality,
|
||
|
libcurl also supports this file for non-FTP protocols such as HTTP. To make
|
||
|
curl use this file, use the CURLOPT_NETRC option:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_NETRC, TRUE);
|
||
|
|
||
|
And a very basic example of how such a .netrc file may look like:
|
||
|
|
||
|
machine myhost.mydomain.com
|
||
|
login userlogin
|
||
|
password secretword
|
||
|
|
||
|
All these examples have been cases where the password has been optional, or
|
||
|
at least you could leave it out and have libcurl attempt to do its job
|
||
|
without it. There are times when the password isn't optional, like when
|
||
|
you're using an SSL private key for secure transfers.
|
||
|
|
||
|
You can in this situation either pass a password to libcurl to use to unlock
|
||
|
the private key, or you can let libcurl prompt the user for it. If you prefer
|
||
|
to ask the user, then you can provide your own callback function that will be
|
||
|
called when libcurl wants the password. That way, you can control how the
|
||
|
question will appear to the user.
|
||
|
|
||
|
To pass the known private key password to libcurl:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_SSLKEYPASSWD, "keypassword");
|
||
|
|
||
|
To make a password callback:
|
||
|
|
||
|
int enter_passwd(void *ourp, const char *prompt, char *buffer, int len);
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_PASSWDFUNCTION, enter_passwd);
|
||
|
|
||
|
|
||
|
HTTP POSTing
|
||
|
|
||
|
We get many questions regarding how to issue HTTP POSTs with libcurl the
|
||
|
proper way. This chapter will thus include examples using both different
|
||
|
versions of HTTP POST that libcurl supports.
|
||
|
|
||
|
The first version is the simple POST, the most common version, that most HTML
|
||
|
pages using the <form> tag uses. We provide a pointer to the data and tell
|
||
|
libcurl to post it all to the remote site:
|
||
|
|
||
|
char *data="name=daniel&project=curl";
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, data);
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_URL, "http://posthere.com/");
|
||
|
|
||
|
curl_easy_perform(easyhandle); /* post away! */
|
||
|
|
||
|
Simple enough, huh? Since you set the POST options with the
|
||
|
CURLOPT_POSTFIELDS, this automaticly switches the handle to use POST in the
|
||
|
upcoming request.
|
||
|
|
||
|
Ok, so what if you want to post binary data that also requires you to set the
|
||
|
Content-Type: header of the post? Well, binary posts prevents libcurl from
|
||
|
being able to do strlen() on the data to figure out the size, so therefore we
|
||
|
must tell libcurl the size of the post data. Setting headers in libcurl
|
||
|
requests are done in a generic way, by building a list of our own headers and
|
||
|
then passing that list to libcurl.
|
||
|
|
||
|
struct curl_slist *headers=NULL;
|
||
|
headers = curl_slist_append(headers, "Content-Type: text/xml");
|
||
|
|
||
|
/* post binary data */
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, binaryptr);
|
||
|
|
||
|
/* set the size of the postfields data */
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDSIZE, 23);
|
||
|
|
||
|
/* pass our list of custom made headers */
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);
|
||
|
|
||
|
curl_easy_perform(easyhandle); /* post away! */
|
||
|
|
||
|
curl_slist_free_all(headers); /* free the header list */
|
||
|
|
||
|
While the simple examples above cover the majority of all cases where HTTP
|
||
|
POST operations are required, they don't do multipart formposts. Multipart
|
||
|
formposts were introduced as a better way to post (possibly large) binary
|
||
|
data and was first documented in the RFC1867. They're called multipart
|
||
|
because they're built by a chain of parts, each being a single unit. Each
|
||
|
part has its own name and contents. You can in fact create and post a
|
||
|
multipart formpost with the regular libcurl POST support described above, but
|
||
|
that would require that you build a formpost yourself and provide to
|
||
|
libcurl. To make that easier, libcurl provides curl_formadd(). Using this
|
||
|
function, you add parts to the form. When you're done adding parts, you post
|
||
|
the whole form.
|
||
|
|
||
|
The following example sets two simple text parts with plain textual contents,
|
||
|
and then a file with binary contents and upload the whole thing.
|
||
|
|
||
|
struct curl_httppost *post=NULL;
|
||
|
struct curl_httppost *last=NULL;
|
||
|
curl_formadd(&post, &last,
|
||
|
CURLFORM_COPYNAME, "name",
|
||
|
CURLFORM_COPYCONTENTS, "daniel", CURLFORM_END);
|
||
|
curl_formadd(&post, &last,
|
||
|
CURLFORM_COPYNAME, "project",
|
||
|
CURLFORM_COPYCONTENTS, "curl", CURLFORM_END);
|
||
|
curl_formadd(&post, &last,
|
||
|
CURLFORM_COPYNAME, "logotype-image",
|
||
|
CURLFORM_FILECONTENT, "curl.png", CURLFORM_END);
|
||
|
|
||
|
/* Set the form info */
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_HTTPPOST, post);
|
||
|
|
||
|
curl_easy_perform(easyhandle); /* post away! */
|
||
|
|
||
|
/* free the post data again */
|
||
|
curl_formfree(post);
|
||
|
|
||
|
Multipart formposts are chains of parts using MIME-style separators and
|
||
|
headers. It means that each one of these separate parts get a few headers set
|
||
|
that describe the individual content-type, size etc. To enable your
|
||
|
application to handicraft this formpost even more, libcurl allows you to
|
||
|
supply your own set of custom headers to such an individual form part. You
|
||
|
can of course supply headers to as many parts you like, but this little
|
||
|
example will show how you set headers to one specific part when you add that
|
||
|
to the post handle:
|
||
|
|
||
|
struct curl_slist *headers=NULL;
|
||
|
headers = curl_slist_append(headers, "Content-Type: text/xml");
|
||
|
|
||
|
curl_formadd(&post, &last,
|
||
|
CURLFORM_COPYNAME, "logotype-image",
|
||
|
CURLFORM_FILECONTENT, "curl.xml",
|
||
|
CURLFORM_CONTENTHEADER, headers,
|
||
|
CURLFORM_END);
|
||
|
|
||
|
curl_easy_perform(easyhandle); /* post away! */
|
||
|
|
||
|
curl_formfree(post); /* free post */
|
||
|
curl_slist_free_all(post); /* free custom header list */
|
||
|
|
||
|
Since all options on an easyhandle are "sticky", they remain the same until
|
||
|
changed even if you do call curl_easy_perform(), you may need to tell curl to
|
||
|
go back to a plain GET request if you intend to do such a one as your next
|
||
|
request. You force an easyhandle to back to GET by using the CURLOPT_HTTPGET
|
||
|
option:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_HTTPGET, TRUE);
|
||
|
|
||
|
Just setting CURLOPT_POSTFIELDS to "" or NULL will *not* stop libcurl from
|
||
|
doing a POST. It will just make it POST without any data to send!
|
||
|
|
||
|
|
||
|
Showing Progress
|
||
|
|
||
|
For historical and traditional reasons, libcurl has a built-in progress meter
|
||
|
that can be switched on and then makes it presents a progress meter in your
|
||
|
terminal.
|
||
|
|
||
|
Switch on the progress meter by, oddly enough, set CURLOPT_NOPROGRESS to
|
||
|
FALSE. This option is set to TRUE by default.
|
||
|
|
||
|
For most applications however, the built-in progress meter is useless and
|
||
|
what instead is interesting is the ability to specify a progress
|
||
|
callback. The function pointer you pass to libcurl will then be called on
|
||
|
irregular intervals with information about the current transfer.
|
||
|
|
||
|
Set the progress callback by using CURLOPT_PROGRESSFUNCTION. And pass a
|
||
|
pointer to a function that matches this prototype:
|
||
|
|
||
|
int progress_callback(void *clientp,
|
||
|
double dltotal,
|
||
|
double dlnow,
|
||
|
double ultotal,
|
||
|
double ulnow);
|
||
|
|
||
|
If any of the input arguments is unknown, a 0 will be passed. The first
|
||
|
argument, the 'clientp' is the pointer you pass to libcurl with
|
||
|
CURLOPT_PROGRESSDATA. libcurl won't touch it.
|
||
|
|
||
|
|
||
|
libcurl with C++
|
||
|
|
||
|
There's basicly only one thing to keep in mind when using C++ instead of C
|
||
|
when interfacing libcurl:
|
||
|
|
||
|
"The Callbacks Must Be Plain C"
|
||
|
|
||
|
So if you want a write callback set in libcurl, you should put it within
|
||
|
'extern'. Similar to this:
|
||
|
|
||
|
extern "C" {
|
||
|
size_t write_data(void *ptr, size_t size, size_t nmemb,
|
||
|
void *ourpointer)
|
||
|
{
|
||
|
/* do what you want with the data */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
This will of course effectively turn the callback code into C. There won't be
|
||
|
any "this" pointer available etc.
|
||
|
|
||
|
|
||
|
Proxies
|
||
|
|
||
|
What "proxy" means according to Merriam-Webster: "a person authorized to act
|
||
|
for another" but also "the agency, function, or office of a deputy who acts
|
||
|
as a substitute for another".
|
||
|
|
||
|
Proxies are exceedingly common these days. Companies often only offer
|
||
|
internet access to employees through their HTTP proxies. Network clients or
|
||
|
user-agents ask the proxy for docuements, the proxy does the actual request
|
||
|
and then it returns them.
|
||
|
|
||
|
libcurl has full support for HTTP proxies, so when a given URL is wanted,
|
||
|
libcurl will ask the proxy for it instead of trying to connect to the actual
|
||
|
host identified in the URL.
|
||
|
|
||
|
The fact that the proxy is a HTTP proxy puts certain restrictions on what can
|
||
|
actually happen. A requested URL that might not be a HTTP URL will be still
|
||
|
be passed to the HTTP proxy to deliver back to libcurl. This happens
|
||
|
transparantly, and an application may not need to know. I say "may", because
|
||
|
at times it is very important to understand that all operations over a HTTP
|
||
|
proxy is using the HTTP protocol. For example, you can't invoke your own
|
||
|
custom FTP commands or even proper FTP directory listings.
|
||
|
|
||
|
Proxy Options
|
||
|
|
||
|
To tell libcurl to use a proxy at a given port number:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_PROXY, "proxy-host.com:8080");
|
||
|
|
||
|
Some proxies require user authentication before allowing a request, and
|
||
|
you pass that information similar to this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_PROXYUSERPWD, "user:password");
|
||
|
|
||
|
If you want to, you can specify the host name only in the CURLOPT_PROXY
|
||
|
option, and set the port number separately with CURLOPT_PROXYPORT.
|
||
|
|
||
|
Environment Variables
|
||
|
|
||
|
libcurl automaticly checks and uses a set of environment variables to know
|
||
|
what proxies to use for certain protocols. The names of the variables are
|
||
|
following an ancient de facto standard and are built up as
|
||
|
"[protocol]_proxy" (note the lower casing). Which makes the variable
|
||
|
'http_proxy' checked for a name of a proxy to use when the input URL is
|
||
|
HTTP. Following the same rule, the variable named 'ftp_proxy' is checked
|
||
|
for FTP URLs. Again, the proxies are always HTTP proxies, the different
|
||
|
names of the variables simply allows different HTTP proxies to be used.
|
||
|
|
||
|
The proxy environment variable contents should be in the format
|
||
|
"[protocol://]machine[:port]". Where the protocol:// part is simply
|
||
|
ignored if present (so http://proxy and bluerk://proxy will do the same)
|
||
|
and the optional port number specifies on which port the proxy operates on
|
||
|
the host. If not specified, the internal default port number will be used
|
||
|
and that is most likely *not* the one you would like it to be.
|
||
|
|
||
|
There are two special environment variables. 'all_proxy' is what sets
|
||
|
proxy for any URL in case the protocol specific variable wasn't set, and
|
||
|
'no_proxy' defines a list of hosts that should not use a proxy even though
|
||
|
a variable may say so. If 'no_proxy' is a plain asterisk ("*") it matches
|
||
|
all hosts.
|
||
|
|
||
|
SSL and Proxies
|
||
|
|
||
|
SSL is for secure point-to-point connections. This involves strong
|
||
|
encryption and similar things, which effectivly makes it impossible for a
|
||
|
proxy to operate as a "man in between" which the proxy's task is, as
|
||
|
previously discussed. Instead, the only way to have SSL work over a HTTP
|
||
|
proxy is to ask the proxy to tunnel trough everything without being able
|
||
|
to check or fiddle with the traffic.
|
||
|
|
||
|
Opening an SSL connection over a HTTP proxy is therefor a matter of asking
|
||
|
the proxy for a straight connection to the target host on a specified
|
||
|
port. This is made with the HTTP request CONNECT. ("please mr proxy,
|
||
|
connect me to that remote host").
|
||
|
|
||
|
Because of the nature of this operation, where the proxy has no idea what
|
||
|
kind of data that is passed in and out through this tunnel, this breaks
|
||
|
some of the very few advantages that come from using a proxy, such as
|
||
|
caching. Many organizations prevent this kind of tunneling to other
|
||
|
destination port numbers than 443 (which is the default HTTPS port
|
||
|
number).
|
||
|
|
||
|
Tunneling Through Proxy
|
||
|
|
||
|
As explained above, tunneling is required for SSL to work and often even
|
||
|
restricted to the operation intended for SSL; HTTPS.
|
||
|
|
||
|
This is however not the only time proxy-tunneling might offer benefits to
|
||
|
you or your application.
|
||
|
|
||
|
As tunneling opens a direct connection from your application to the remote
|
||
|
machine, it suddenly also re-introduces the ability to do non-HTTP
|
||
|
operations over a HTTP proxy. You can in fact use things such as FTP
|
||
|
upload or FTP custom commands this way.
|
||
|
|
||
|
Again, this is often prevented by the adminstrators of proxies and is
|
||
|
rarely allowed.
|
||
|
|
||
|
Tell libcurl to use proxy tunneling like this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_HTTPPROXYTUNNEL, TRUE);
|
||
|
|
||
|
In fact, there might even be times when you want to do plain HTTP
|
||
|
operations using a tunnel like this, as it then enables you to operate on
|
||
|
the remote server instead of asking the proxy to do so. libcurl will not
|
||
|
stand in the way for such innovative actions either!
|
||
|
|
||
|
Proxy Auto-Config
|
||
|
|
||
|
Netscape first came up with this. It is basicly a web page (usually using
|
||
|
a .pac extension) with a javascript that when executed by the browser with
|
||
|
the requested URL as input, returns information to the browser on how to
|
||
|
connect to the URL. The returned information might be "DIRECT" (which
|
||
|
means no proxy should be used), "PROXY host:port" (to tell the browser
|
||
|
where the proxy for this particular URL is) or "SOCKS host:port" (to
|
||
|
direct the brower to a SOCKS proxy).
|
||
|
|
||
|
libcurl has no means to interpret or evaluate javascript and thus it
|
||
|
doesn't support this. If you get yourself in a position where you face
|
||
|
this nasty invention, the following advice have been mentioned and used in
|
||
|
the past:
|
||
|
|
||
|
- Depending on the javascript complexity, write up a script that
|
||
|
translates it to another language and execute that.
|
||
|
|
||
|
- Read the javascript code and rewrite the same logic in another language.
|
||
|
|
||
|
- Implement a javascript interpreted, people have successfully used the
|
||
|
Mozilla javascript engine in the past.
|
||
|
|
||
|
- Ask your admins to stop this, for a static proxy setup or similar.
|
||
|
|
||
|
|
||
|
Persistancy Is The Way to Happiness
|
||
|
|
||
|
Re-cycling the same easy handle several times when doing multiple requests is
|
||
|
the way to go.
|
||
|
|
||
|
After each single curl_easy_perform() operation, libcurl will keep the
|
||
|
connection alive and open. A subsequent request using the same easy handle to
|
||
|
the same host might just be able to use the already open connection! This
|
||
|
reduces network impact a lot.
|
||
|
|
||
|
Even if the connection is dropped, all connections involving SSL to the same
|
||
|
host again, will benefit from libcurl's session ID cache that drasticly
|
||
|
reduces re-connection time.
|
||
|
|
||
|
FTP connections that are kept alive saves a lot of time, as the command-
|
||
|
response roundtrips are skipped, and also you don't risk getting blocked
|
||
|
without permission to login again like on many FTP servers only allowing N
|
||
|
persons to be logged in at the same time.
|
||
|
|
||
|
libcurl caches DNS name resolving results, to make lookups of a previously
|
||
|
looked up name a lot faster.
|
||
|
|
||
|
Other interesting details that improve performance for subsequent requests
|
||
|
may also be added in the future.
|
||
|
|
||
|
Each easy handle will attempt to keep the last few connections alive for a
|
||
|
while in case they are to be used again. You can set the size of this "cache"
|
||
|
with the CURLOPT_MAXCONNECTS option. Default is 5. It is very seldom any
|
||
|
point in changing this value, and if you think of changing this it is often
|
||
|
just a matter of thinking again.
|
||
|
|
||
|
When the connection cache gets filled, libcurl must close an existing
|
||
|
connection in order to get room for the new one. To know which connection to
|
||
|
close, libcurl uses a "close policy" that you can affect with the
|
||
|
CURLOPT_CLOSEPOLICY option. There's only two polices implemented as of this
|
||
|
writing (libcurl 7.9.4) and they are:
|
||
|
|
||
|
CURLCLOSEPOLICY_LEAST_RECENTLY_USED simply close the one that hasn't been
|
||
|
used for the longest time. This is the default behavior.
|
||
|
|
||
|
CURLCLOSEPOLICY_OLDEST closes the oldest connection, the one that was
|
||
|
createst the longest time ago.
|
||
|
|
||
|
There are, or at least were, plans to support a close policy that would call
|
||
|
a user-specified callback to let the user be able to decide which connection
|
||
|
to dump when this is necessary and therefor is the CURLOPT_CLOSEFUNCTION an
|
||
|
existing option still today. Nothing ever uses this though and this will not
|
||
|
be used within the forseeable future either.
|
||
|
|
||
|
To force your upcoming request to not use an already existing connection (it
|
||
|
will even close one first if there happens to be one alive to the same host
|
||
|
you're about to operate on), you can do that by setting CURLOPT_FRESH_CONNECT
|
||
|
to TRUE. In a similar spirit, you can also forbid the upcoming request to be
|
||
|
"lying" around and possibly get re-used after the request by setting
|
||
|
CURLOPT_FORBID_REUSE to TRUE.
|
||
|
|
||
|
|
||
|
HTTP Headers Used by libcurl
|
||
|
|
||
|
When you use libcurl to do HTTP requeests, it'll pass along a series of
|
||
|
headers automaticly. It might be good for you to know and understand these
|
||
|
ones.
|
||
|
|
||
|
Host
|
||
|
|
||
|
This header is required by HTTP 1.1 and even many 1.0 servers and should
|
||
|
be the name of the server we want to talk to. This includes the port
|
||
|
number if anything but default.
|
||
|
|
||
|
Pragma
|
||
|
|
||
|
"no-cache". Tells a possible proxy to not grap a copy from the cache but
|
||
|
to fetch a fresh one.
|
||
|
|
||
|
Accept:
|
||
|
|
||
|
"image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*". Cloned from a
|
||
|
browser once a hundred years ago.
|
||
|
|
||
|
Expect:
|
||
|
|
||
|
When doing multi-part formposts, libcurl will set this header to
|
||
|
"100-continue" to ask the server for an "OK" message before it proceeds
|
||
|
with sending the data part of the post.
|
||
|
|
||
|
|
||
|
Customizing Operations
|
||
|
|
||
|
There is an ongoing development today where more and more protocols are built
|
||
|
upon HTTP for transport. This has obvious benefits as HTTP is a tested and
|
||
|
reliable protocol that is widely deployed and have excellent proxy-support.
|
||
|
|
||
|
When you use one of these protocols, and even when doing other kinds of
|
||
|
programming you may need to change the traditional HTTP (or FTP or...)
|
||
|
manners. You may need to change words, headers or various data.
|
||
|
|
||
|
libcurl is your friend here too.
|
||
|
|
||
|
CUSTOMREQUEST
|
||
|
|
||
|
If just changing the actual HTTP request keyword is what you want, like
|
||
|
when GET, HEAD or POST is not good enough for you, CURLOPT_CUSTOMREQUEST
|
||
|
is there for you. It is very simple to use:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_CUSTOMREQUEST, "MYOWNRUQUEST");
|
||
|
|
||
|
When using the custom request, you change the request keyword of the
|
||
|
actual request you are performing. Thus, by default you make GET request
|
||
|
but you can also make a POST operation (as described before) and then
|
||
|
replace the POST keyword if you want to. You're the boss.
|
||
|
|
||
|
Modify Headers
|
||
|
|
||
|
HTTP-like protocols pass a series of headers to the server when doing the
|
||
|
request, and you're free to pass any amount of extra headers that you
|
||
|
think fit. Adding headers are this easy:
|
||
|
|
||
|
struct curl_slist *headers=NULL; /* init to NULL is important */
|
||
|
|
||
|
headers = curl_slist_append(headers, "Hey-server-hey: how are you?");
|
||
|
headers = curl_slist_append(headers, "X-silly-content: yes");
|
||
|
|
||
|
/* pass our list of custom made headers */
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);
|
||
|
|
||
|
curl_easy_perform(easyhandle); /* transfer http */
|
||
|
|
||
|
curl_slist_free_all(headers); /* free the header list */
|
||
|
|
||
|
... and if you think some of the internally generated headers, such as
|
||
|
Accept: or Host: don't contain the data you want them to contain, you can
|
||
|
replace them by simply setting them too:
|
||
|
|
||
|
headers = curl_slist_append(headers, "Accept: Agent-007");
|
||
|
headers = curl_slist_append(headers, "Host: munged.host.line");
|
||
|
|
||
|
Delete Headers
|
||
|
|
||
|
If you replace an existing header with one with no contents, you will
|
||
|
prevent the header from being sent. Like if you want to completely prevent
|
||
|
the "Accept:" header to be sent, you can disable it with code similar to
|
||
|
this:
|
||
|
|
||
|
headers = curl_slist_append(headers, "Accept:");
|
||
|
|
||
|
Both replacing and cancelling internal headers should be done with careful
|
||
|
consideration and you should be aware that you may violate the HTTP
|
||
|
protocol when doing so.
|
||
|
|
||
|
Enforcing chunked transfer-encoding
|
||
|
|
||
|
By making sure a request uses the custom header "Transfer-Encoding:
|
||
|
chunked" when doing a non-GET HTTP operation, libcurl will switch over to
|
||
|
"chunked" upload, even though the size of the data to upload might be
|
||
|
known. By default, libcurl usually switches over to chunked upload
|
||
|
automaticly if the upload data size is unknown.
|
||
|
|
||
|
HTTP Version
|
||
|
|
||
|
There's only one aspect left in the HTTP requests that we haven't yet
|
||
|
mentioned how to modify: the version field. All HTTP requests includes the
|
||
|
version number to tell the server which version we support. libcurl speak
|
||
|
HTTP 1.1 by default. Some very old servers don't like getting 1.1-requests
|
||
|
and when dealing with stubborn old things like that, you can tell libcurl
|
||
|
to use 1.0 instead by doing something like this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_HTTP_VERSION,
|
||
|
CURLHTTP_VERSION_1_0);
|
||
|
|
||
|
FTP Custom Commands
|
||
|
|
||
|
Not all protocols are HTTP-like, and thus the above may not help you when
|
||
|
you want to make for example your FTP transfers to behave differently.
|
||
|
|
||
|
Sending custom commands to a FTP server means that you need to send the
|
||
|
comands exactly as the FTP server expects them (RFC959 is a good guide
|
||
|
here), and you can only use commands that work on the control-connection
|
||
|
alone. All kinds of commands that requires data interchange and thus needs
|
||
|
a data-connection must be left to libcurl's own judgement. Also be aware
|
||
|
that libcurl will do its very best to change directory to the target
|
||
|
directory before doing any transfer, so if you change directory (with CWD
|
||
|
or similar) you might confuse libcurl and then it might not attempt to
|
||
|
transfer the file in the correct remote directory.
|
||
|
|
||
|
A little example that deletes a given file before an operation:
|
||
|
|
||
|
headers = curl_slist_append(headers, "DELE file-to-remove");
|
||
|
|
||
|
/* pass the list of custom commands to the handle */
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_QUOTE, headers);
|
||
|
|
||
|
curl_easy_perform(easyhandle); /* transfer ftp data! */
|
||
|
|
||
|
curl_slist_free_all(headers); /* free the header list */
|
||
|
|
||
|
If you would instead want this operation (or chain of operations) to
|
||
|
happen _after_ the data transfer took place the option to
|
||
|
curl_easy_setopt() would instead be called CURLOPT_POSTQUOTE and used the
|
||
|
exact same way.
|
||
|
|
||
|
The custom FTP command will be issued to the server in the same order they
|
||
|
are added to the list, and if a command gets an error code returned back
|
||
|
from the server, no more commands will be issued and libcurl will bail out
|
||
|
with an error code (CURLE_FTP_QUOTE_ERROR). Note that if you use
|
||
|
CURLOPT_QUOTE to send commands before a transfer, no transfer will
|
||
|
actually take place when a quote command has failed.
|
||
|
|
||
|
If you set the CURLOPT_HEADER to true, you will tell libcurl to get
|
||
|
information about the target file and output "headers" about it. The
|
||
|
headers will be in "HTTP-style", looking like they do in HTTP.
|
||
|
|
||
|
The option to enable headers or to run custom FTP commands may be useful
|
||
|
to combine with CURLOPT_NOBODY. If this option is set, no actual file
|
||
|
content transfer will be performed.
|
||
|
|
||
|
FTP Custom CUSTOMREQUEST
|
||
|
|
||
|
If you do what list the contents of a FTP directory using your own defined
|
||
|
FTP command, CURLOPT_CUSTOMREQUEST will do just that. "NLST" is the
|
||
|
default one for listing directories but you're free to pass in your idea
|
||
|
of a good alternative.
|
||
|
|
||
|
|
||
|
Cookies Without Chocolate Chips
|
||
|
|
||
|
In the HTTP sense, a cookie is a name with an associated value. A server
|
||
|
sends the name and value to the client, and expects it to get sent back on
|
||
|
every subsequent request to the server that matches the particular conditions
|
||
|
set. The conditions include that the domain name and path match and that the
|
||
|
cookie hasn't become too old.
|
||
|
|
||
|
In real-world cases, servers send new cookies to replace existing one to
|
||
|
update them. Server use cookies to "track" users and to keep "sessions".
|
||
|
|
||
|
Cookies are sent from server to clients with the header Set-Cookie: and
|
||
|
they're sent from clients to servers with the Cookie: header.
|
||
|
|
||
|
To just send whatever cookie you want to a server, you can use CURLOPT_COOKIE
|
||
|
to set a cookie string like this:
|
||
|
|
||
|
curl_easy_setopt(easyhandle, CURLOPT_COOKIE, "name1=var1; name2=var2;");
|
||
|
|
||
|
In many cases, that is not enough. You might want to dynamicly save whatever
|
||
|
cookies the remote server passes to you, and make sure those cookies are then
|
||
|
use accordingly on later requests.
|
||
|
|
||
|
One way to do this, is to save all headers you receive in a plain file and
|
||
|
when you make a request, you tell libcurl to read the previous headers to
|
||
|
figure out which cookies to use. Set header file to read cookies from with
|
||
|
CURLOPT_COOKIEFILE.
|
||
|
|
||
|
The CURLOPT_COOKIEFILE option also automaticly enables the cookie parser in
|
||
|
libcurl. Until the cookie parser is enabled, libcurl will not parse or
|
||
|
understand incoming cookies and they will just be ignored. However, when the
|
||
|
parser is enabled the cookies will be understood and the cookies will be kept
|
||
|
in memory and used properly in subsequent requests when the same handle is
|
||
|
used. Many times this is enough, and you may not have to save the cookies to
|
||
|
disk at all. Note that the file you specify to CURLOPT_COOKIEFILE doesn't
|
||
|
have to exist to enable the parser, so a common way to just enable the parser
|
||
|
and not read able might be to use a file name you know doesn't exist.
|
||
|
|
||
|
If you rather use existing cookies that you've previously received with your
|
||
|
Netscape or Mozilla browsers, you can make libcurl use that cookie file as
|
||
|
input. The CURLOPT_COOKIEFILE is used for that too, as libcurl will
|
||
|
automaticly find out what kind of file it is and act accordingly.
|
||
|
|
||
|
The perhaps most advanced cookie operation libcurl offers, is saving the
|
||
|
entire internal cookie state back into a Netscape/Mozilla formatted cookie
|
||
|
file. We call that the cookie-jar. When you set a file name with
|
||
|
CURLOPT_COOKIEJAR, that file name will be created and all received cookies
|
||
|
will be stored in it when curl_easy_cleanup() is called. This enabled cookies
|
||
|
to get passed on properly between multiple handles without any information
|
||
|
getting lost.
|
||
|
|
||
|
|
||
|
FTP Peculiarities We Need
|
||
|
|
||
|
FTP transfers use a second TCP/IP connection for the data transfer. This is
|
||
|
usually a fact you can forget and ignore but at times this fact will come
|
||
|
back to haunt you. libcurl offers several different ways to custom how the
|
||
|
second connection is being made.
|
||
|
|
||
|
libcurl can either connect to the server a second time or tell the server to
|
||
|
connect back to it. The first option is the default and it is also what works
|
||
|
best for all the people behind firewalls, NATs or IP-masquarading setups.
|
||
|
libcurl then tells the server to open up a new port and wait for a second
|
||
|
connection. This is by default attempted with EPSV first, and if that doesn't
|
||
|
work it tries PASV instead. (EPSV is an extension to the original FTP spec
|
||
|
and does not exist nor work on all FTP servers.)
|
||
|
|
||
|
You can prevent libcurl from first trying the EPSV command by setting
|
||
|
CURLOPT_FTP_USE_EPSV to FALSE.
|
||
|
|
||
|
In some cases, you will prefer to have the server connect back to you for the
|
||
|
second connection. This might be when the server is perhaps behind a firewall
|
||
|
or something and only allows connections on a single port. libcurl then
|
||
|
informs the remote server which IP address and port number to connect to.
|
||
|
This is made with the CURLOPT_FTPPORT option. If you set it to "-", libcurl
|
||
|
will use your system's "default IP address". If you want to use a particular
|
||
|
IP, you can set the full IP address, a host name to resolve to an IP address
|
||
|
or even a local network interface name that libcurl will get the IP address
|
||
|
from.
|
||
|
|
||
|
|
||
|
Headers Equal Fun
|
||
|
|
||
|
Some protocols provide "headers", meta-data separated from the normal
|
||
|
data. These headers are by default not included in the normal data stream,
|
||
|
but you can make them appear in the data stream by setting CURLOPT_HEADER to
|
||
|
TRUE.
|
||
|
|
||
|
What might be even more useful, is libcurl's ability to separate the headers
|
||
|
from the data and thus make the callbacks differ. You can for example set a
|
||
|
different pointer to pass to the ordinary write callback by setting
|
||
|
CURLOPT_WRITEHEADER.
|
||
|
|
||
|
Or, you can set an entirely separate function to receive the headers, by
|
||
|
using CURLOPT_HEADERFUNCTION.
|
||
|
|
||
|
The headers are passed to the callback function one by one, and you can
|
||
|
depend on that fact. It makes it easier for you to add custom header parsers
|
||
|
etc.
|
||
|
|
||
|
"Headers" for FTP transfers equal all the FTP server responses. They aren't
|
||
|
actually true headers, but in this case we pretend they are! ;-)
|
||
|
|
||
|
|
||
|
Post Transfer Information
|
||
|
|
||
|
[ curl_easy_getinfo ]
|
||
|
|
||
|
|
||
|
Security Considerations
|
||
|
|
||
|
libcurl is in itself not insecure. If used the right way, you can use libcurl
|
||
|
to transfer data pretty safely.
|
||
|
|
||
|
There are of course many things to consider that may loosen up this
|
||
|
situation:
|
||
|
|
||
|
Command Lines
|
||
|
|
||
|
If you use a command line tool (such as curl) that uses libcurl, and you
|
||
|
give option to the tool on the command line those options can very likely
|
||
|
get read by other users of your system when they use 'ps' or other tools
|
||
|
to list currently running processes.
|
||
|
|
||
|
To avoid this problem, never feed sensitive things to programs using
|
||
|
command line options.
|
||
|
|
||
|
.netrc
|
||
|
|
||
|
.netrc is a pretty handy file/feature that allows you to login quickly and
|
||
|
automaticly to frequently visited sites. The file contains passwords in
|
||
|
clear text and is a real security risk. In some cases, your .netrc is also
|
||
|
stored in a home directory that is NFS mounted or used on another network
|
||
|
based file system, so the clear text password will fly through your
|
||
|
network every time anyone reads that file!
|
||
|
|
||
|
To avoid this problem, don't use .netrc files and never store passwords in
|
||
|
plain text anywhere.
|
||
|
|
||
|
Clear Text Passwords
|
||
|
|
||
|
Many of the protocols libcurl supports send name and password unencrypted
|
||
|
as clear text (HTTP Basic authentication, FTP, TELNET etc). It is very
|
||
|
easy for anyone on your network or a network nearby yours, to just fire up
|
||
|
a network analyzer tool and evesdrop on your passwords. Don't let the fact
|
||
|
that HTTP uses base64 encoded passwords fool you. They may not look
|
||
|
readable at a first glance, but they very easily "deciphered" by anyone
|
||
|
within seconds.
|
||
|
|
||
|
To avoid this problem, use protocols that don't let snoopers see your
|
||
|
password: HTTPS, FTPS and FTP-kerberos are a few examples. HTTP Digest
|
||
|
authentication allows this too, but isn't supported by libcurl as of this
|
||
|
writing.
|
||
|
|
||
|
Showing What You Do
|
||
|
|
||
|
On a related issue, be aware that even in situations like when you have
|
||
|
problems with libcurl and ask somone for help, everything you reveal in
|
||
|
order to get best possible help might also impose certain security related
|
||
|
risks. Host names, user names, paths, operating system specifics etc (not
|
||
|
to mention passwords of course) may in fact be used by intruders to gain
|
||
|
additional information of a potential target.
|
||
|
|
||
|
To avoid this problem, you must of course use your common sense. Often,
|
||
|
you can just edit out the senstive data or just rearch/replace your true
|
||
|
information with faked data.
|
||
|
|
||
|
|
||
|
SSL, Certificates and Other Tricks
|
||
|
|
||
|
[ seeding, passwords, keys, certificates, ENGINE, ca certs ]
|
||
|
|
||
|
Multiple Transfers Using the multi Interface
|
||
|
|
||
|
The easy interface as described in detail in this document is a synchronous
|
||
|
interface that transfers one file at a time and doesn't return until its
|
||
|
done.
|
||
|
|
||
|
The multi interface on the other hand, allows your program to transfer
|
||
|
multiple files in both directions at the same time, without forcing you to
|
||
|
use multiple threads.
|
||
|
|
||
|
[fill in lots of more multi stuff here]
|
||
|
|
||
|
Future
|
||
|
|
||
|
[ sharing between handles, mutexes, pipelining ]
|
||
|
|
||
|
|
||
|
-----
|
||
|
Footnotes:
|
||
|
|
||
|
[1] = libcurl 7.10.3 and later have the ability to switch over to chunked
|
||
|
Tranfer-Encoding in cases were HTTP uploads are done with data of an
|
||
|
unknown size.
|
||
|
|
||
|
|
||
|
[2] = This happens on Windows machines when libcurl is built and used as a
|
||
|
DLL. However, you can still do this on Windows if you link with a static
|
||
|
library.
|
||
|
|
||
|
[3] = The curl-config tool is generated at build-time (on unix-like systems)
|
||
|
and should be installed with the 'make install' or similar instruction
|
||
|
that installs the library, header files, man pages etc.
|