NS/main/source/particle/actions.cpp

1841 lines
47 KiB
C++
Raw Normal View History

// actions.cpp
//
// Copyright 1997-1998 by David K. McAllister
//
// I used code Copyright 1997 by Jonathan P. Leech
// as an example in implenting this.
//
// This file implements the dynamics of particle actions.
#include "general.h"
#include <float.h>
#include <iostream>
#define SQRT2PI 2.506628274631000502415765284811045253006
#define ONEOVERSQRT2PI (1. / SQRT2PI)
// To offset [0 .. 1] vectors to [-.5 .. .5]
static pVector vHalf(0.5, 0.5, 0.5);
static inline pVector RandVec()
{
return pVector(drand48(), drand48(), drand48());
}
// Return a random number with a normal distribution.
static inline float NRand(float sigma = 1.0f)
{
#define ONE_OVER_SIGMA_EXP (1.0f / 0.7975f)
if(sigma == 0) return 0;
float y;
do
{
y = -logf(drand48());
}
while(drand48() > expf(-fsqr(y - 1.0f)*0.5f));
if(rand() & 0x1)
return y * sigma * ONE_OVER_SIGMA_EXP;
else
return -y * sigma * ONE_OVER_SIGMA_EXP;
}
void PAAvoid::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
switch(position.type)
{
case PDPlane:
{
if(look_ahead < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float dist = m.pos * position.p2 + position.radius1;
if(dist < look_ahead)
{
float vm = m.vel.length();
pVector Vn = m.vel / vm;
// float dot = Vn * position.p2;
pVector tmp = (position.p2 * (magdt / (dist*dist+epsilon))) + Vn;
m.vel = tmp * (vm / tmp.length());
}
}
}
else
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float dist = m.pos * position.p2 + position.radius1;
float vm = m.vel.length();
pVector Vn = m.vel / vm;
// float dot = Vn * position.p2;
pVector tmp = (position.p2 * (magdt / (dist*dist+epsilon))) + Vn;
m.vel = tmp * (vm / tmp.length());
}
}
}
break;
case PDRectangle:
{
// Compute the inverse matrix of the plane basis.
pVector &u = position.u;
pVector &v = position.v;
// The normalized bases are needed inside the loop.
pVector un = u / position.radius1Sqr;
pVector vn = v / position.radius2Sqr;
// w = u cross v
float wx = u.y*v.z-u.z*v.y;
float wy = u.z*v.x-u.x*v.z;
float wz = u.x*v.y-u.y*v.x;
float det = 1/(wz*u.x*v.y-wz*u.y*v.x-u.z*wx*v.y-u.x*v.z*wy+v.z*wx*u.y+u.z*v.x*wy);
pVector s1((v.y*wz-v.z*wy), (v.z*wx-v.x*wz), (v.x*wy-v.y*wx));
s1 *= det;
pVector s2((u.y*wz-u.z*wy), (u.z*wx-u.x*wz), (u.x*wy-u.y*wx));
s2 *= -det;
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt * look_ahead);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float distold = m.pos * position.p2 + position.radius1;
float distnew = pnext * position.p2 + position.radius1;
// Opposite signs if product < 0
// There is no faster way to do this.
if(distold * distnew >= 0)
continue;
float nv = position.p2 * m.vel;
float t = -distold / nv;
// Actual intersection point p(t) = pos + vel t
pVector phit(m.pos + m.vel * t);
// Offset from origin in plane, p - origin
pVector offset(phit - position.p1);
// Dot product with basis vectors of old frame
// in terms of new frame gives position in uv frame.
float upos = offset * s1;
float vpos = offset * s2;
// Did it cross plane outside triangle?
if(upos < 0 || vpos < 0 || upos > 1 || vpos > 1)
continue;
// A hit! A most palpable hit!
// Compute distance to the three edges.
pVector uofs = (un * (un * offset)) - offset;
float udistSqr = uofs.length2();
pVector vofs = (vn * (vn * offset)) - offset;
float vdistSqr = vofs.length2();
pVector foffset((u + v) - offset);
pVector fofs = (un * (un * foffset)) - foffset;
float fdistSqr = fofs.length2();
pVector gofs = (un * (un * foffset)) - foffset;
float gdistSqr = gofs.length2();
pVector S;
if(udistSqr <= vdistSqr && udistSqr <= fdistSqr
&& udistSqr <= gdistSqr) S = uofs;
else if(vdistSqr <= fdistSqr && vdistSqr <= gdistSqr) S = vofs;
else if(fdistSqr <= gdistSqr) S = fofs;
else S = gofs;
S.normalize();
// We now have a vector to safety.
float vm = m.vel.length();
pVector Vn = m.vel / vm;
// Blend S into V.
pVector tmp = (S * (magdt / (t*t+epsilon))) + Vn;
m.vel = tmp * (vm / tmp.length());
}
}
break;
case PDTriangle:
{
// Compute the inverse matrix of the plane basis.
pVector &u = position.u;
pVector &v = position.v;
// The normalized bases are needed inside the loop.
pVector un = u / position.radius1Sqr;
pVector vn = v / position.radius2Sqr;
// f is the third (non-basis) triangle edge.
pVector f = v - u;
pVector fn(f);
fn.normalize();
// w = u cross v
float wx = u.y*v.z-u.z*v.y;
float wy = u.z*v.x-u.x*v.z;
float wz = u.x*v.y-u.y*v.x;
float det = 1/(wz*u.x*v.y-wz*u.y*v.x-u.z*wx*v.y-u.x*v.z*wy+v.z*wx*u.y+u.z*v.x*wy);
pVector s1((v.y*wz-v.z*wy), (v.z*wx-v.x*wz), (v.x*wy-v.y*wx));
s1 *= det;
pVector s2((u.y*wz-u.z*wy), (u.z*wx-u.x*wz), (u.x*wy-u.y*wx));
s2 *= -det;
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt * look_ahead);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float distold = m.pos * position.p2 + position.radius1;
float distnew = pnext * position.p2 + position.radius1;
// Opposite signs if product < 0
// Is there a faster way to do this?
if(distold * distnew >= 0)
continue;
float nv = position.p2 * m.vel;
float t = -distold / nv;
// Actual intersection point p(t) = pos + vel t
pVector phit(m.pos + m.vel * t);
// Offset from origin in plane, p - origin
pVector offset(phit - position.p1);
// Dot product with basis vectors of old frame
// in terms of new frame gives position in uv frame.
float upos = offset * s1;
float vpos = offset * s2;
// Did it cross plane outside triangle?
if(upos < 0 || vpos < 0 || (upos + vpos) > 1)
continue;
// A hit! A most palpable hit!
// Compute distance to the three edges.
pVector uofs = (un * (un * offset)) - offset;
float udistSqr = uofs.length2();
pVector vofs = (vn * (vn * offset)) - offset;
float vdistSqr = vofs.length2();
pVector foffset(offset - u);
pVector fofs = (fn * (fn * foffset)) - foffset;
float fdistSqr = fofs.length2();
pVector S;
if(udistSqr <= vdistSqr && udistSqr <= fdistSqr) S = uofs;
else if(vdistSqr <= fdistSqr) S = vofs;
else S = fofs;
S.normalize();
// We now have a vector to safety.
float vm = m.vel.length();
pVector Vn = m.vel / vm;
// Blend S into V.
pVector tmp = (S * (magdt / (t*t+epsilon))) + Vn;
m.vel = tmp * (vm / tmp.length());
}
}
break;
case PDDisc:
{
float r1Sqr = fsqr(position.radius1);
float r2Sqr = fsqr(position.radius2);
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt * look_ahead);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d. radius1Sqr stores d.
float distold = m.pos * position.p2 + position.radius1Sqr;
float distnew = pnext * position.p2 + position.radius1Sqr;
// Opposite signs if product < 0
// Is there a faster way to do this?
if(distold * distnew >= 0)
continue;
// Find position at the crossing point by parameterizing
// p(t) = pos + vel * t
// Solve dist(p(t),plane) = 0 e.g.
// n * p(t) + D = 0 ->
// n * p + t (n * v) + D = 0 ->
// t = -(n * p + D) / (n * v)
// Could factor n*v into distnew = distold + n*v and save a bit.
// Safe since n*v != 0 assured by quick rejection test.
// This calc is indep. of dt because we have established that it
// will hit before dt. We just want to know when.
float nv = position.p2 * m.vel;
float t = -distold / nv;
// Actual intersection point p(t) = pos + vel t
pVector phit(m.pos + m.vel * t);
// Offset from origin in plane, phit - origin
pVector offset(phit - position.p1);
float rad = offset.length2();
if(rad > r1Sqr || rad < r2Sqr)
continue;
// A hit! A most palpable hit!
pVector S = offset;
S.normalize();
// We now have a vector to safety.
float vm = m.vel.length();
pVector Vn = m.vel / vm;
// Blend S into V.
pVector tmp = (S * (magdt / (t*t+epsilon))) + Vn;
m.vel = tmp * (vm / tmp.length());
}
}
break;
case PDSphere:
{
float rSqr = position.radius1 * position.radius1;
// See which particles are aimed toward the sphere.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// First do a ray-sphere intersection test and
// see if it's soon enough.
// Can I do this faster without t?
float vm = m.vel.length();
pVector Vn = m.vel / vm;
pVector L = position.p1 - m.pos;
float v = L * Vn;
float disc = rSqr - (L * L) + v * v;
if(disc < 0)
continue; // I'm not heading toward it.
// Compute length for second rejection test.
float t = v - sqrtf(disc);
if(t < 0 || t > (vm * look_ahead))
continue;
// Get a vector to safety.
pVector C = Vn ^ L;
C.normalize();
pVector S = Vn ^ C;
// Blend S into V.
pVector tmp = (S * (magdt / (t*t+epsilon))) + Vn;
m.vel = tmp * (vm / tmp.length());
}
}
break;
}
}
void PABounce::Execute(ParticleGroup *group)
{
switch(position.type)
{
case PDTriangle:
{
// Compute the inverse matrix of the plane basis.
pVector &u = position.u;
pVector &v = position.v;
// w = u cross v
float wx = u.y*v.z-u.z*v.y;
float wy = u.z*v.x-u.x*v.z;
float wz = u.x*v.y-u.y*v.x;
float det = 1/(wz*u.x*v.y-wz*u.y*v.x-u.z*wx*v.y-u.x*v.z*wy+v.z*wx*u.y+u.z*v.x*wy);
pVector s1((v.y*wz-v.z*wy), (v.z*wx-v.x*wz), (v.x*wy-v.y*wx));
s1 *= det;
pVector s2((u.y*wz-u.z*wy), (u.z*wx-u.x*wz), (u.x*wy-u.y*wx));
s2 *= -det;
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float distold = m.pos * position.p2 + position.radius1;
float distnew = pnext * position.p2 + position.radius1;
// Opposite signs if product < 0
// Is there a faster way to do this?
if(distold * distnew >= 0)
continue;
// Find position at the crossing point by parameterizing
// p(t) = pos + vel * t
// Solve dist(p(t),plane) = 0 e.g.
// n * p(t) + D = 0 ->
// n * p + t (n * v) + D = 0 ->
// t = -(n * p + D) / (n * v)
// Could factor n*v into distnew = distold + n*v and save a bit.
// Safe since n*v != 0 assured by quick rejection test.
// This calc is indep. of dt because we have established that it
// will hit before dt. We just want to know when.
float nv = position.p2 * m.vel;
float t = -distold / nv;
// Actual intersection point p(t) = pos + vel t
pVector phit(m.pos + m.vel * t);
// Offset from origin in plane, p - origin
pVector offset(phit - position.p1);
// Dot product with basis vectors of old frame
// in terms of new frame gives position in uv frame.
float upos = offset * s1;
float vpos = offset * s2;
// Did it cross plane outside triangle?
if(upos < 0 || vpos < 0 || (upos + vpos) > 1)
continue;
// A hit! A most palpable hit!
// Compute tangential and normal components of velocity
pVector vn(position.p2 * nv); // Normal Vn = (V.N)N
pVector vt(m.vel - vn); // Tangent Vt = V - Vn
// Compute new velocity heading out:
// Don't apply friction if tangential velocity < cutoff
if(vt.length2() <= cutoffSqr)
m.vel = vt - vn * resilience;
else
m.vel = vt * oneMinusFriction - vn * resilience;
}
}
break;
case PDDisc:
{
float r1Sqr = fsqr(position.radius1);
float r2Sqr = fsqr(position.radius2);
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d. radius1Sqr stores d.
float distold = m.pos * position.p2 + position.radius1Sqr;
float distnew = pnext * position.p2 + position.radius1Sqr;
// Opposite signs if product < 0
// Is there a faster way to do this?
if(distold * distnew >= 0)
continue;
// Find position at the crossing point by parameterizing
// p(t) = pos + vel * t
// Solve dist(p(t),plane) = 0 e.g.
// n * p(t) + D = 0 ->
// n * p + t (n * v) + D = 0 ->
// t = -(n * p + D) / (n * v)
// Could factor n*v into distnew = distold + n*v and save a bit.
// Safe since n*v != 0 assured by quick rejection test.
// This calc is indep. of dt because we have established that it
// will hit before dt. We just want to know when.
float nv = position.p2 * m.vel;
float t = -distold / nv;
// Actual intersection point p(t) = pos + vel t
pVector phit(m.pos + m.vel * t);
// Offset from origin in plane, phit - origin
pVector offset(phit - position.p1);
float rad = offset.length2();
if(rad > r1Sqr || rad < r2Sqr)
continue;
// A hit! A most palpable hit!
// Compute tangential and normal components of velocity
pVector vn(position.p2 * nv); // Normal Vn = (V.N)N
pVector vt(m.vel - vn); // Tangent Vt = V - Vn
// Compute new velocity heading out:
// Don't apply friction if tangential velocity < cutoff
if(vt.length2() <= cutoffSqr)
m.vel = vt - vn * resilience;
else
m.vel = vt * oneMinusFriction - vn * resilience;
}
}
break;
case PDPlane:
{
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float distold = m.pos * position.p2 + position.radius1;
float distnew = pnext * position.p2 + position.radius1;
// Opposite signs if product < 0
if(distold * distnew >= 0)
continue;
// Compute tangential and normal components of velocity
float nmag = m.vel * position.p2;
pVector vn(position.p2 * nmag); // Normal Vn = (V.N)N
pVector vt(m.vel - vn); // Tangent Vt = V - Vn
// Compute new velocity heading out:
// Don't apply friction if tangential velocity < cutoff
if(vt.length2() <= cutoffSqr)
m.vel = vt - vn * resilience;
else
m.vel = vt * oneMinusFriction - vn * resilience;
}
}
break;
case PDRectangle:
{
// Compute the inverse matrix of the plane basis.
pVector &u = position.u;
pVector &v = position.v;
// w = u cross v
float wx = u.y*v.z-u.z*v.y;
float wy = u.z*v.x-u.x*v.z;
float wz = u.x*v.y-u.y*v.x;
float det = 1/(wz*u.x*v.y-wz*u.y*v.x-u.z*wx*v.y-u.x*v.z*wy+v.z*wx*u.y+u.z*v.x*wy);
pVector s1((v.y*wz-v.z*wy), (v.z*wx-v.x*wz), (v.x*wy-v.y*wx));
s1 *= det;
pVector s2((u.y*wz-u.z*wy), (u.z*wx-u.x*wz), (u.x*wy-u.y*wx));
s2 *= -det;
// See which particles bounce.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's current and next positions cross plane.
// If not, couldn't bounce, so keep going.
pVector pnext(m.pos + m.vel * dt);
// p2 stores the plane normal (the a,b,c of the plane eqn).
// Old and new distances: dist(p,plane) = n * p + d
// radius1 stores -n*p, which is d.
float distold = m.pos * position.p2 + position.radius1;
float distnew = pnext * position.p2 + position.radius1;
// Opposite signs if product < 0
if(distold * distnew >= 0)
continue;
// Find position at the crossing point by parameterizing
// p(t) = pos + vel * t
// Solve dist(p(t),plane) = 0 e.g.
// n * p(t) + D = 0 ->
// n * p + t (n * v) + D = 0 ->
// t = -(n * p + D) / (n * v)
float t = -distold / (position.p2 * m.vel);
// Actual intersection point p(t) = pos + vel t
pVector phit(m.pos + m.vel * t);
// Offset from origin in plane, p - origin
pVector offset(phit - position.p1);
// Dot product with basis vectors of old frame
// in terms of new frame gives position in uv frame.
float upos = offset * s1;
float vpos = offset * s2;
// Crossed plane outside bounce region if !(0<=[uv]pos<=1)
if(upos < 0 || upos > 1 || vpos < 0 || vpos > 1)
continue;
// A hit! A most palpable hit!
// Compute tangential and normal components of velocity
float nmag = m.vel * position.p2;
pVector vn(position.p2 * nmag); // Normal Vn = (V.N)N
pVector vt(m.vel - vn); // Tangent Vt = V - Vn
// Compute new velocity heading out:
// Don't apply friction if tangential velocity < cutoff
if(vt.length2() <= cutoffSqr)
m.vel = vt - vn * resilience;
else
m.vel = vt * oneMinusFriction - vn * resilience;
}
}
break;
case PDSphere:
{
// Sphere that particles bounce off
// The particles are always forced out of the sphere.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// See if particle's next position is inside domain.
// If so, bounce it.
pVector pnext(m.pos + m.vel * dt);
if(position.Within(pnext))
{
// See if we were inside on previous timestep.
bool pinside = position.Within(m.pos);
// Normal to surface. This works for a sphere. Isn't
// computed quite right, should extrapolate particle
// position to surface.
pVector n(m.pos - position.p1);
n.normalize();
// Compute tangential and normal components of velocity
float nmag = m.vel * n;
pVector vn(n * nmag); // Normal Vn = (V.N)N
pVector vt = m.vel - vn; // Tangent Vt = V - Vn
if(pinside)
{
// Previous position was inside. If normal component of
// velocity points in, reverse it. This effectively
// repels particles which would otherwise be trapped
// in the sphere.
if(nmag < 0)
m.vel = vt - vn;
}
else
{
// Previous position was outside -> particle will cross
// surface boundary. Reverse normal component of velocity,
// and apply friction (if Vt >= cutoff) and resilience.
// Compute new velocity heading out:
// Don't apply friction if tangential velocity < cutoff
if(vt.length2() <= cutoffSqr)
m.vel = vt - vn * resilience;
else
m.vel = vt * oneMinusFriction - vn * resilience;
}
}
}
}
}
}
// Set the secondary position of each particle to be its position.
void PACallActionList::Execute(ParticleGroup *group)
{
pCallActionList(action_list_num);
}
// Set the secondary position of each particle to be its position.
void PACopyVertexB::Execute(ParticleGroup *group)
{
int i;
if(copy_pos)
{
for(i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
m.posB = m.pos;
}
}
if(copy_vel)
{
for(i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
m.velB = m.vel;
}
}
}
// Dampen velocities
void PADamping::Execute(ParticleGroup *group)
{
// This is important if dt is != 1.
pVector one(1,1,1);
pVector scale(one - ((one - damping) * dt));
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
float vSqr = m.vel.length2();
if(vSqr >= vlowSqr && vSqr <= vhighSqr)
{
m.vel.x *= scale.x;
m.vel.y *= scale.y;
m.vel.z *= scale.z;
}
}
}
// Exert force on each particle away from explosion center
void PAExplosion::Execute(ParticleGroup *group)
{
float radius = velocity * age;
float magdt = magnitude * dt;
float oneOverSigma = 1.0f / stdev;
float inexp = -0.5f*fsqr(oneOverSigma);
float outexp = ONEOVERSQRT2PI * oneOverSigma;
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle.
pVector dir(m.pos - center);
float distSqr = dir.length2();
float dist = sqrtf(distSqr);
float DistFromWaveSqr = fsqr(radius - dist);
float Gd = exp(DistFromWaveSqr * inexp) * outexp;
m.vel += dir * (Gd * magdt / (dist * (distSqr + epsilon)));
}
age += dt;
}
// Follow the next particle in the list
void PAFollow::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count - 1; i++)
{
Particle &m = group->list[i];
// Accelerate toward the particle after me in the list.
pVector tohim(group->list[i+1].pos - m.pos); // tohim = p1 - p0
float tohimlenSqr = tohim.length2();
if(tohimlenSqr < max_radiusSqr)
{
// Compute force exerted between the two bodies
m.vel += tohim * (magdt / (sqrtf(tohimlenSqr) * (tohimlenSqr + epsilon)));
}
}
}
else
{
for(int i = 0; i < group->p_count - 1; i++)
{
Particle &m = group->list[i];
// Accelerate toward the particle after me in the list.
pVector tohim(group->list[i+1].pos - m.pos); // tohim = p1 - p0
float tohimlenSqr = tohim.length2();
// Compute force exerted between the two bodies
m.vel += tohim * (magdt / (sqrtf(tohimlenSqr) * (tohimlenSqr + epsilon)));
}
}
}
// Inter-particle gravitation
void PAGravitate::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Add interactions with other particles
for(int j = i + 1; j < group->p_count; j++)
{
Particle &mj = group->list[j];
pVector tohim(mj.pos - m.pos); // tohim = p1 - p0
float tohimlenSqr = tohim.length2();
if(tohimlenSqr < max_radiusSqr)
{
// Compute force exerted between the two bodies
pVector acc(tohim * (magdt / (sqrtf(tohimlenSqr) * (tohimlenSqr + epsilon))));
m.vel += acc;
mj.vel -= acc;
}
}
}
}
else
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Add interactions with other particles
for(int j = i + 1; j < group->p_count; j++)
{
Particle &mj = group->list[j];
pVector tohim(mj.pos - m.pos); // tohim = p1 - p0
float tohimlenSqr = tohim.length2();
// Compute force exerted between the two bodies
pVector acc(tohim * (magdt / (sqrtf(tohimlenSqr) * (tohimlenSqr + epsilon))));
m.vel += acc;
mj.vel -= acc;
}
}
}
}
// Acceleration in a constant direction
void PAGravity::Execute(ParticleGroup *group)
{
pVector ddir(direction * dt);
for(int i = 0; i < group->p_count; i++)
{
// Step velocity with acceleration
group->list[i].vel += ddir;
}
}
// Accelerate particles along a line
void PAJet::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle.
pVector dir(m.pos - center);
// Distance to jet (force drops as 1/r^2)
// Soften by epsilon to avoid tight encounters to infinity
float rSqr = dir.length2();
if(rSqr < max_radiusSqr)
{
pVector accel;
acc.Generate(accel);
// Step velocity with acceleration
m.vel += accel * (magdt / (rSqr + epsilon));
}
}
}
else
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle.
pVector dir(m.pos - center);
// Distance to jet (force drops as 1/r^2)
// Soften by epsilon to avoid tight encounters to infinity
float rSqr = dir.length2();
pVector accel;
acc.Generate(accel);
// Step velocity with acceleration
m.vel += accel * (magdt / (rSqr + epsilon));
}
}
}
// Get rid of older particles
void PAKillOld::Execute(ParticleGroup *group)
{
// Must traverse list in reverse order so Remove will work
for(int i = group->p_count-1; i >= 0; i--)
{
Particle &m = group->list[i];
if(!((m.age < age_limit) ^ kill_less_than))
group->Remove(i);
}
}
// Match velocity to near neighbors
void PAMatchVelocity::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Add interactions with other particles
for(int j = i + 1; j < group->p_count; j++)
{
Particle &mj = group->list[j];
pVector tohim(mj.pos - m.pos); // tohim = p1 - p0
float tohimlenSqr = tohim.length2();
if(tohimlenSqr < max_radiusSqr)
{
// Compute force exerted between the two bodies
pVector acc(mj.vel * (magdt / (tohimlenSqr + epsilon)));
m.vel += acc;
mj.vel -= acc;
}
}
}
}
else
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Add interactions with other particles
for(int j = i + 1; j < group->p_count; j++)
{
Particle &mj = group->list[j];
pVector tohim(mj.pos - m.pos); // tohim = p1 - p0
float tohimlenSqr = tohim.length2();
// Compute force exerted between the two bodies
pVector acc(mj.vel * (magdt / (tohimlenSqr + epsilon)));
m.vel += acc;
mj.vel -= acc;
}
}
}
}
void PAMove::Execute(ParticleGroup *group)
{
// Step particle positions forward by dt, and age the particles.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
m.age += dt;
m.pos += m.vel * dt;
}
}
// Accelerate particles towards a line
void PAOrbitLine::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle from base of line.
pVector f(m.pos - p);
pVector w(axis * (f * axis));
// Direction from particle to nearest point on line.
pVector into = w - f;
// Distance to line (force drops as 1/r^2, normalize by 1/r)
// Soften by epsilon to avoid tight encounters to infinity
float rSqr = into.length2();
if(rSqr < max_radiusSqr)
// Step velocity with acceleration
m.vel += into * (magdt / (sqrtf(rSqr) + (rSqr + epsilon)));
}
}
else
{
// Removed because it causes pipeline stalls.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle from base of line.
pVector f(m.pos - p);
pVector w(axis * (f * axis));
// Direction from particle to nearest point on line.
pVector into = w - f;
// Distance to line (force drops as 1/r^2, normalize by 1/r)
// Soften by epsilon to avoid tight encounters to infinity
float rSqr = into.length2();
// Step velocity with acceleration
m.vel += into * (magdt / (sqrtf(rSqr) + (rSqr + epsilon)));
}
}
}
// Accelerate particles towards a point
void PAOrbitPoint::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle.
pVector dir(center - m.pos);
// Distance to gravity well (force drops as 1/r^2, normalize by 1/r)
// Soften by epsilon to avoid tight encounters to infinity
float rSqr = dir.length2();
// Step velocity with acceleration
if(rSqr < max_radiusSqr)
m.vel += dir * (magdt / (sqrtf(rSqr) + (rSqr + epsilon)));
}
}
else
{
// Avoids pipeline stalls.
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Figure direction to particle.
pVector dir(center - m.pos);
// Distance to gravity well (force drops as 1/r^2, normalize by 1/r)
// Soften by epsilon to avoid tight encounters to infinity
float rSqr = dir.length2();
// Step velocity with acceleration
m.vel += dir * (magdt / (sqrtf(rSqr) + (rSqr + epsilon)));
}
}
}
// Accelerate in random direction each time step
void PARandomAccel::Execute(ParticleGroup *group)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
pVector acceleration;
gen_acc.Generate(acceleration);
// dt will affect this by making a higher probability of
// being near the original velocity after unit time. Smaller
// dt approach a normal distribution instead of a square wave.
m.vel += acceleration * dt;
}
}
// Immediately displace position randomly
void PARandomDisplace::Execute(ParticleGroup *group)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
pVector displacement;
gen_disp.Generate(displacement);
// dt will affect this by making a higher probability of
// being near the original position after unit time. Smaller
// dt approach a normal distribution instead of a square wave.
m.pos += displacement * dt;
}
}
// Immediately assign a random velocity
void PARandomVelocity::Execute(ParticleGroup *group)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
pVector velocity;
gen_vel.Generate(velocity);
// Shouldn't multiply by dt because velocities are
// invariant of dt. How should dt affect this?
m.vel = velocity;
}
}
#if 0
// Produce coefficients of a velocity function v(t)=at^2 + bt + c
// satisfying initial x(0)=x0,v(0)=v0 and desired x(t)=xf,v(t)=vf,
// where x = x(0) + integrate(v(T),0,t)
static inline void _pconstrain(float x0, float v0, float xf, float vf,
float t, float *a, float *b, float *c)
{
*c = v0;
*b = 2 * (-t*vf - 2*t*v0 + 3*xf - 3*x0) / (t * t);
*a = 3 * (t*vf + t*v0 - 2*xf + 2*x0) / (t * t * t);
}
#endif
// Over time, restore particles to initial positions
// Put all particles on the surface of a statue, explode the statue,
// and then suck the particles back to the original position. Cool!
void PARestore::Execute(ParticleGroup *group)
{
if(time_left <= 0)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Already constrained, keep it there.
m.pos = m.posB;
m.vel = pVector(0,0,0);
}
}
else
{
float t = time_left;
float dtSqr = dt * dt;
float tSqrInv2dt = dt * 2.0f / (t * t);
float tCubInv3dtSqr = dtSqr * 3.0f / (t * t * t);
for(int i = 0; i < group->p_count; i++)
{
#if 1
Particle &m = group->list[i];
// Solve for a desired-behavior velocity function in each axis
// _pconstrain(m.pos.x, m.vel.x, m.posB.x, 0., timeLeft, &a, &b, &c);
// Figure new velocity at next timestep
// m.vel.x = a * dtSqr + b * dt + c;
float b = (-2*t*m.vel.x + 3*m.posB.x - 3*m.pos.x) * tSqrInv2dt;
float a = (t*m.vel.x - m.posB.x - m.posB.x + m.pos.x + m.pos.x) * tCubInv3dtSqr;
// Figure new velocity at next timestep
m.vel.x += a + b;
b = (-2*t*m.vel.y + 3*m.posB.y - 3*m.pos.y) * tSqrInv2dt;
a = (t*m.vel.y - m.posB.y - m.posB.y + m.pos.y + m.pos.y) * tCubInv3dtSqr;
// Figure new velocity at next timestep
m.vel.y += a + b;
b = (-2*t*m.vel.z + 3*m.posB.z - 3*m.pos.z) * tSqrInv2dt;
a = (t*m.vel.z - m.posB.z - m.posB.z + m.pos.z + m.pos.z) * tCubInv3dtSqr;
// Figure new velocity at next timestep
m.vel.z += a + b;
#else
Particle &m = group->list[i];
// XXX Optimize this.
// Solve for a desired-behavior velocity function in each axis
float a, b, c; // Coefficients of velocity function needed
_pconstrain(m.pos.x, m.vel.x, m.posB.x, 0.,
timeLeft, &a, &b, &c);
// Figure new velocity at next timestep
m.vel.x = a * dtSqr + b * dt + c;
_pconstrain(m.pos.y, m.vel.y, m.posB.y, 0.,
timeLeft, &a, &b, &c);
// Figure new velocity at next timestep
m.vel.y = a * dtSqr + b * dt + c;
_pconstrain(m.pos.z, m.vel.z, m.posB.z, 0.,
timeLeft, &a, &b, &c);
// Figure new velocity at next timestep
m.vel.z = a * dtSqr + b * dt + c;
#endif
}
}
time_left -= dt;
}
// Kill particles with positions on wrong side of the specified domain
void PASink::Execute(ParticleGroup *group)
{
// Must traverse list in reverse order so Remove will work
for(int i = group->p_count-1; i >= 0; i--)
{
Particle &m = group->list[i];
// Remove if inside/outside flag matches object's flag
if(!(position.Within(m.pos) ^ kill_inside))
group->Remove(i);
}
}
// Kill particles with velocities on wrong side of the specified domain
void PASinkVelocity::Execute(ParticleGroup *group)
{
// Must traverse list in reverse order so Remove will work
for(int i = group->p_count-1; i >= 0; i--)
{
Particle &m = group->list[i];
// Remove if inside/outside flag matches object's flag
if(!(velocity.Within(m.vel) ^ kill_inside))
group->Remove(i);
}
}
// Randomly add particles to the system
void PASource::Execute(ParticleGroup *group)
{
int rate = int(floor(particle_rate * dt));
// Dither the fraction particle in time.
if(drand48() < particle_rate * dt - float(rate))
rate++;
// Don't emit more than it can hold.
if(group->p_count + rate > group->max_particles)
rate = group->max_particles - group->p_count;
pVector pos, posB, vel, col, siz;
if(vertexB_tracks)
{
for(int i = 0; i < rate; i++)
{
position.Generate(pos);
size.Generate(siz);
velocity.Generate(vel);
color.Generate(col);
float ag = age + NRand(age_sigma);
group->Add(pos, pos, siz, vel, col, alpha, ag);
}
}
else
{
for(int i = 0; i < rate; i++)
{
position.Generate(pos);
positionB.Generate(posB);
size.Generate(siz);
velocity.Generate(vel);
color.Generate(col);
float ag = age + NRand(age_sigma);
group->Add(pos, posB, siz, vel, col, alpha, ag);
}
}
}
void PASpeedLimit::Execute(ParticleGroup *group)
{
float min_sqr = min_speed*min_speed;
float max_sqr = max_speed*max_speed;
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
float sSqr = m.vel.length2();
if(sSqr<min_sqr && sSqr)
{
float s = sqrtf(sSqr);
m.vel *= (min_speed/s);
}
else if(sSqr>max_sqr)
{
float s = sqrtf(sSqr);
m.vel *= (max_speed/s);
}
}
}
// Change color of all particles toward the specified color
void PATargetColor::Execute(ParticleGroup *group)
{
float scaleFac = scale * dt;
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
m.color += (color - m.color) * scaleFac;
m.alpha += (alpha - m.alpha) * scaleFac;
}
}
// Change sizes of all particles toward the specified size
void PATargetSize::Execute(ParticleGroup *group)
{
float scaleFac_x = scale.x * dt;
float scaleFac_y = scale.y * dt;
float scaleFac_z = scale.z * dt;
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
pVector dif(size - m.size);
dif.x *= scaleFac_x;
dif.y *= scaleFac_y;
dif.z *= scaleFac_z;
m.size += dif;
}
}
// Change velocity of all particles toward the specified velocity
void PATargetVelocity::Execute(ParticleGroup *group)
{
float scaleFac = scale * dt;
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
m.vel += (velocity - m.vel) * scaleFac;
}
}
// Immediately displace position using vortex
// Vortex tip at center, around axis, with magnitude
// and tightness exponent
void PAVortex::Execute(ParticleGroup *group)
{
float magdt = magnitude * dt;
float max_radiusSqr = max_radius * max_radius;
if(max_radiusSqr < P_MAXFLOAT)
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Vector from tip of vortex
pVector offset(m.pos - center);
// Compute distance from particle to tip of vortex.
float rSqr = offset.length2();
// Don't do anything to particle if too close or too far.
if(rSqr > max_radiusSqr)
continue;
float r = sqrtf(rSqr);
// Compute normalized offset vector.
pVector offnorm(offset / r);
// Construct orthogonal vector frame in which to rotate
// transformed point around origin
float axisProj = offnorm * axis; // offnorm . axis
// Components of offset perpendicular and parallel to axis
pVector w(axis * axisProj); // parallel component
pVector u(offnorm - w); // perpendicular component
// Perpendicular component completing frame:
pVector v(axis ^ u);
// Figure amount of rotation
// Resultant is (cos theta) u + (sin theta) v
float theta = magdt / (rSqr + epsilon);
float s = sinf(theta);
float c = cosf(theta);
offset = (u * c + v * s + w) * r;
// Translate back to object space
m.pos = offset + center;
}
}
else
{
for(int i = 0; i < group->p_count; i++)
{
Particle &m = group->list[i];
// Vector from tip of vortex
pVector offset(m.pos - center);
// Compute distance from particle to tip of vortex.
float rSqr = offset.length2();
float r = sqrtf(rSqr);
// Compute normalized offset vector.
pVector offnorm(offset / r);
// Construct orthogonal vector frame in which to rotate
// transformed point around origin
float axisProj = offnorm * axis; // offnorm . axis
// Components of offset perpendicular and parallel to axis
pVector w(axis * axisProj); // parallel component
pVector u(offnorm - w); // perpendicular component
// Perpendicular component completing frame:
pVector v(axis ^ u);
// Figure amount of rotation
// Resultant is (cos theta) u + (sin theta) v
float theta = magdt / (rSqr + epsilon);
float s = sinf(theta);
float c = cosf(theta);
offset = (u * c + v * s + w) * r;
// Translate back to object space
m.pos = offset + center;
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Stuff for the pDomain.
pDomain::pDomain(PDomainEnum dtype, float a0, float a1,
float a2, float a3, float a4, float a5,
float a6, float a7, float a8)
{
type = dtype;
switch(type)
{
case PDPoint:
p1 = pVector(a0, a1, a2);
break;
case PDLine:
{
p1 = pVector(a0, a1, a2);
pVector tmp(a3, a4, a5);
// p2 is vector from p1 to other endpoint.
p2 = tmp - p1;
}
break;
case PDBox:
// p1 is the min corner. p2 is the max corner.
if(a0 < a3)
{
p1.x = a0; p2.x = a3;
}
else
{
p1.x = a3; p2.x = a0;
}
if(a1 < a4)
{
p1.y = a1; p2.y = a4;
}
else
{
p1.y = a4; p2.y = a1;
}
if(a2 < a5)
{
p1.z = a2; p2.z = a5;
}
else
{
p1.z = a5; p2.z = a2;
}
break;
case PDTriangle:
{
p1 = pVector(a0, a1, a2);
pVector tp2 = pVector(a3, a4, a5);
pVector tp3 = pVector(a6, a7, a8);
u = tp2 - p1;
v = tp3 - p1;
// The rest of this is needed for bouncing.
radius1Sqr = u.length();
pVector tu = u / radius1Sqr;
radius2Sqr = v.length();
pVector tv = v / radius2Sqr;
p2 = tu ^ tv; // This is the non-unit normal.
p2.normalize(); // Must normalize it.
// radius1 stores the d of the plane eqn.
radius1 = -(p1 * p2);
}
break;
case PDRectangle:
{
p1 = pVector(a0, a1, a2);
u = pVector(a3, a4, a5);
v = pVector(a6, a7, a8);
// The rest of this is needed for bouncing.
radius1Sqr = u.length();
pVector tu = u / radius1Sqr;
radius2Sqr = v.length();
pVector tv = v / radius2Sqr;
p2 = tu ^ tv; // This is the non-unit normal.
p2.normalize(); // Must normalize it.
// radius1 stores the d of the plane eqn.
radius1 = -(p1 * p2);
}
break;
case PDPlane:
{
p1 = pVector(a0, a1, a2);
p2 = pVector(a3, a4, a5);
p2.normalize(); // Must normalize it.
// radius1 stores the d of the plane eqn.
radius1 = -(p1 * p2);
}
break;
case PDSphere:
p1 = pVector(a0, a1, a2);
if(a3 > a4)
{
radius1 = a3; radius2 = a4;
}
else
{
radius1 = a4; radius2 = a3;
}
radius1Sqr = radius1 * radius1;
radius2Sqr = radius2 * radius2;
break;
case PDCone:
case PDCylinder:
{
// p2 is a vector from p1 to the other end of cylinder.
// p1 is apex of cone.
p1 = pVector(a0, a1, a2);
pVector tmp(a3, a4, a5);
p2 = tmp - p1;
if(a6 > a7)
{
radius1 = a6; radius2 = a7;
}
else
{
radius1 = a7; radius2 = a6;
}
radius1Sqr = fsqr(radius1);
// Given an arbitrary nonzero vector n, make two orthonormal
// vectors u and v forming a frame [u,v,n.normalize()].
pVector n = p2;
float p2l2 = n.length2(); // Optimize this.
n.normalize();
// radius2Sqr stores 1 / (p2.p2)
// XXX Used to have an actual if.
radius2Sqr = p2l2 ? 1.0f / p2l2 : 0.0f;
// Find a vector orthogonal to n.
pVector basis(1.0f, 0.0f, 0.0f);
if(fabs(basis * n) > 0.999)
basis = pVector(0.0f, 1.0f, 0.0f);
// Project away N component, normalize and cross to get
// second orthonormal vector.
u = basis - n * (basis * n);
u.normalize();
v = n ^ u;
}
break;
case PDBlob:
{
p1 = pVector(a0, a1, a2);
radius1 = a3;
float tmp = 1./radius1;
radius2Sqr = -0.5f*fsqr(tmp);
radius2 = ONEOVERSQRT2PI * tmp;
}
break;
case PDDisc:
{
p1 = pVector(a0, a1, a2); // Center point
p2 = pVector(a3, a4, a5); // Normal (not used in Within and Generate)
p2.normalize();
if(a6 > a7)
{
radius1 = a6; radius2 = a7;
}
else
{
radius1 = a7; radius2 = a6;
}
// Find a vector orthogonal to n.
pVector basis(1.0f, 0.0f, 0.0f);
if(fabs(basis * p2) > 0.999)
basis = pVector(0.0f, 1.0f, 0.0f);
// Project away N component, normalize and cross to get
// second orthonormal vector.
u = basis - p2 * (basis * p2);
u.normalize();
v = p2 ^ u;
radius1Sqr = -(p1 * p2); // D of the plane eqn.
}
break;
}
}
// Determines if pos is inside the domain
bool pDomain::Within(const pVector &pos) const
{
switch (type)
{
case PDBox:
return !((pos.x < p1.x) || (pos.x > p2.x) ||
(pos.y < p1.y) || (pos.y > p2.y) ||
(pos.z < p1.z) || (pos.z > p2.z));
case PDPlane:
// Distance from plane = n * p + d
// Inside is the positive half-space.
return pos * p2 >= -radius1;
case PDSphere:
{
pVector rvec(pos - p1);
float rSqr = rvec.length2();
return rSqr <= radius1Sqr && rSqr >= radius2Sqr;
}
case PDCylinder:
case PDCone:
{
// This is painful and slow. Might be better to do quick
// accept/reject tests.
// Let p2 = vector from base to tip of the cylinder
// x = vector from base to test point
// x . p2
// dist = ------ = projected distance of x along the axis
// p2. p2 ranging from 0 (base) to 1 (tip)
//
// rad = x - dist * p2 = projected vector of x along the base
// p1 is the apex of the cone.
pVector x(pos - p1);
// Check axial distance
// radius2Sqr stores 1 / (p2.p2)
float dist = (p2 * x) * radius2Sqr;
if(dist < 0.0f || dist > 1.0f)
return false;
// Check radial distance; scale radius along axis for cones
pVector xrad = x - p2 * dist; // Radial component of x
float rSqr = xrad.length2();
if(type == PDCone)
return (rSqr <= fsqr(dist * radius1) &&
rSqr >= fsqr(dist * radius2));
else
return (rSqr <= radius1Sqr && rSqr >= fsqr(radius2));
}
case PDBlob:
{
pVector x(pos - p1);
// return exp(-0.5 * xSq * Sqr(oneOverSigma)) * ONEOVERSQRT2PI * oneOverSigma;
float Gx = expf(x.length2() * radius2Sqr) * radius2;
return (drand48() < Gx);
}
case PDPoint:
case PDLine:
case PDRectangle:
case PDTriangle:
case PDDisc:
default:
return false; // XXX Is there something better?
}
}
// Generate a random point uniformly distrbuted within the domain
void pDomain::Generate(pVector &pos) const
{
switch (type)
{
case PDPoint:
pos = p1;
break;
case PDLine:
pos = p1 + p2 * drand48();
break;
case PDBox:
// Scale and translate [0,1] random to fit box
pos.x = p1.x + (p2.x - p1.x) * drand48();
pos.y = p1.y + (p2.y - p1.y) * drand48();
pos.z = p1.z + (p2.z - p1.z) * drand48();
break;
case PDTriangle:
{
float r1 = drand48();
float r2 = drand48();
if(r1 + r2 < 1.0f)
pos = p1 + u * r1 + v * r2;
else
pos = p1 + u * (1.0f-r1) + v * (1.0f-r2);
}
break;
case PDRectangle:
pos = p1 + u * drand48() + v * drand48();
break;
case PDPlane: // How do I sensibly make a point on an infinite plane?
pos = p1;
break;
case PDSphere:
// Place on [-1..1] sphere
pos = RandVec() - vHalf;
pos.normalize();
// Scale unit sphere pos by [0..r] and translate
// (should distribute as r^2 law)
if(radius1 == radius2)
pos = p1 + pos * radius1;
else
pos = p1 + pos * (radius2 + drand48() * (radius1 - radius2));
break;
case PDCylinder:
case PDCone:
{
// For a cone, p2 is the apex of the cone.
float dist = drand48(); // Distance between base and tip
float theta = drand48() * 2.0f * float(M_PI); // Angle around axis
// Distance from axis
float r = radius2 + drand48() * (radius1 - radius2);
float x = r * cosf(theta); // Weighting of each frame vector
float y = r * sinf(theta);
// Scale radius along axis for cones
if(type == PDCone)
{
x *= dist;
y *= dist;
}
pos = p1 + p2 * dist + u * x + v * y;
}
break;
case PDBlob:
pos.x = p1.x + NRand(radius1);
pos.y = p1.y + NRand(radius1);
pos.z = p1.z + NRand(radius1);
break;
case PDDisc:
{
float theta = drand48() * 2.0f * float(M_PI); // Angle around normal
// Distance from center
float r = radius2 + drand48() * (radius1 - radius2);
float x = r * cosf(theta); // Weighting of each frame vector
float y = r * sinf(theta);
pos = p1 + u * x + v * y;
}
break;
default:
pos = pVector(0,0,0);
}
}