mirror of
https://github.com/ENSL/NS.git
synced 2024-12-17 16:11:33 +00:00
418 lines
11 KiB
C++
418 lines
11 KiB
C++
|
//======== (C) Copyright 2002 Charles G. Cleveland All rights reserved. =========
|
||
|
//
|
||
|
// The copyright to the contents herein is the property of Charles G. Cleveland.
|
||
|
// The contents may be used and/or copied only with the written permission of
|
||
|
// Charles G. Cleveland, or in accordance with the terms and conditions stipulated in
|
||
|
// the agreement/contract under which the contents have been supplied.
|
||
|
//
|
||
|
// Purpose:
|
||
|
//
|
||
|
// $Workfile: MathUtil.cpp $
|
||
|
// $Date: 2002/07/25 16:59:03 $
|
||
|
//
|
||
|
//-------------------------------------------------------------------------------
|
||
|
// $Log: MathUtil.cpp,v $
|
||
|
// Revision 1.7 2002/07/25 16:59:03 flayra
|
||
|
// -Linux changes
|
||
|
//
|
||
|
// Revision 1.6 2002/07/23 16:53:46 Flayra
|
||
|
// - Added VectorDistance2D, added document headers
|
||
|
//
|
||
|
//===============================================================================
|
||
|
#include <cmath>
|
||
|
#include "stdio.h"
|
||
|
#include "stdlib.h"
|
||
|
#include "math.h"
|
||
|
|
||
|
//#include "hud.h"
|
||
|
//#include "cl_util.h"
|
||
|
#include <string.h>
|
||
|
#include "nowarnings.h"
|
||
|
#include "util/MathUtil.h"
|
||
|
#include "common/vec_op.h"
|
||
|
#include "common/mathlib.h"
|
||
|
|
||
|
#ifndef max
|
||
|
#define max(a,b) (((a) > (b)) ? (a) : (b))
|
||
|
#endif
|
||
|
|
||
|
#ifndef min
|
||
|
#define min(a,b) (((a) < (b)) ? (a) : (b))
|
||
|
#endif
|
||
|
|
||
|
// Ignore "double to float possible loss of data" warning
|
||
|
#pragma warning (disable: 4244)
|
||
|
|
||
|
double sqrt(double x);
|
||
|
|
||
|
bool FindCollisionPointOnPlane(const float* inOrigin, const float* inRayVector, const float* inPlaneABCD, float* outPoint)
|
||
|
{
|
||
|
bool theSuccess = false;
|
||
|
|
||
|
// Solve for parametric t
|
||
|
float thePlaneA = inPlaneABCD[0];
|
||
|
float thePlaneB = inPlaneABCD[1];
|
||
|
float thePlaneC = inPlaneABCD[2];
|
||
|
float thePlaneD = inPlaneABCD[3];
|
||
|
|
||
|
float theDenom = (thePlaneA*inRayVector[0] + thePlaneB*inRayVector[1] + thePlaneC*inRayVector[2]);
|
||
|
if(fabs(theDenom) > kFloatTolerance)
|
||
|
{
|
||
|
float theT = -(thePlaneA*inOrigin[0] + thePlaneB*inOrigin[1] + thePlaneC*inOrigin[2] + thePlaneD)/theDenom;
|
||
|
|
||
|
// Now we have t, solve for the endpoint
|
||
|
outPoint[0] = inOrigin[0] + theT*inRayVector[0];
|
||
|
outPoint[1] = inOrigin[1] + theT*inRayVector[1];
|
||
|
outPoint[2] = inOrigin[2] + theT*inRayVector[2];
|
||
|
theSuccess = true;
|
||
|
}
|
||
|
|
||
|
// float theA = inPlaneABCD[0];
|
||
|
// float theB = inPlaneABCD[1];
|
||
|
// float theC = inPlaneABCD[2];
|
||
|
// float theD = inPlaneABCD[3];
|
||
|
//
|
||
|
// float theDenom = (theA*inRayVector[0] + theB*inRayVector[1] + theC*inRayVector[2]);
|
||
|
// if(fabs(theDenom) > kFloatTolerance)
|
||
|
// {
|
||
|
// float theT = -1*(theA*inOrigin[0] + theB*inOrigin[1] + theC*inOrigin[2] + theD)/theDenom;
|
||
|
// outPoint[0] = inOrigin[0] + inRayVector[0]*theT;
|
||
|
// outPoint[1] = inOrigin[1] + inRayVector[1]*theT;
|
||
|
// outPoint[2] = inOrigin[2] + inRayVector[2]*theT;
|
||
|
// theSuccess = true;
|
||
|
// }
|
||
|
|
||
|
return theSuccess;
|
||
|
}
|
||
|
|
||
|
bool IsVectorBetweenBoundingVectors(const float* inOrigin, const float* inRay, const float* inVecOne, const float* inVecTwo)
|
||
|
{
|
||
|
bool theSuccess = false;
|
||
|
|
||
|
// The plane normal is opposite to our view
|
||
|
float thePlaneABCD[4];
|
||
|
thePlaneABCD[0] = 0;//inRay[0];
|
||
|
thePlaneABCD[1] = 0;//inRay[1];
|
||
|
thePlaneABCD[2] = 1;//inRay[2];
|
||
|
thePlaneABCD[3] = 0;
|
||
|
|
||
|
// Put plane far away by plugging in far away point (ax + by + cz + d = 0)
|
||
|
// float theT = 5000;
|
||
|
// float thePoint[3];
|
||
|
// thePoint[0] = inOrigin[0] + theT*thePlaneABCD[0];
|
||
|
// thePoint[1] = inOrigin[1] + theT*thePlaneABCD[1];
|
||
|
// thePoint[2] = inOrigin[2] + theT*thePlaneABCD[2];
|
||
|
//
|
||
|
// // Find plane D using this point
|
||
|
// thePlaneABCD[3] = -(thePlaneABCD[0]*thePoint[0] + thePlaneABCD[1]*thePoint[1] + thePlaneABCD[2]*thePoint[2]);
|
||
|
|
||
|
// Solve for each vector hitting the plane
|
||
|
float theVecPoint[3];
|
||
|
float theVecOnePoint[3];
|
||
|
float theVecTwoPoint[3];
|
||
|
|
||
|
// If they all hit the plane
|
||
|
if(FindCollisionPointOnPlane(inOrigin, inRay, thePlaneABCD, theVecPoint))
|
||
|
{
|
||
|
if(FindCollisionPointOnPlane(inOrigin, inVecOne, thePlaneABCD, theVecOnePoint))
|
||
|
{
|
||
|
if(FindCollisionPointOnPlane(inOrigin, inVecTwo, thePlaneABCD, theVecTwoPoint))
|
||
|
{
|
||
|
// Get the collision point for each solution
|
||
|
float theMaxX = max(theVecOnePoint[0], theVecTwoPoint[0]);
|
||
|
float theMaxY = max(theVecOnePoint[1], theVecTwoPoint[1]);
|
||
|
float theMaxZ = max(theVecOnePoint[2], theVecTwoPoint[2]);
|
||
|
|
||
|
float theMinX = min(theVecOnePoint[0], theVecTwoPoint[0]);
|
||
|
float theMinY = min(theVecOnePoint[1], theVecTwoPoint[1]);
|
||
|
float theMinZ = min(theVecOnePoint[2], theVecTwoPoint[2]);
|
||
|
|
||
|
// If it is between them, the vector is between them
|
||
|
float theVecX = theVecPoint[0];
|
||
|
float theVecY = theVecPoint[1];
|
||
|
float theVecZ = theVecPoint[2];
|
||
|
if( (theVecX >= (theMinX - kFloatTolerance)) && (theVecX <= (theMaxX + kFloatTolerance)) &&
|
||
|
(theVecY >= (theMinY - kFloatTolerance)) && (theVecY <= (theMaxY + kFloatTolerance)) &&
|
||
|
(theVecZ >= (theMinZ - kFloatTolerance)) && (theVecZ <= (theMaxZ + kFloatTolerance)))
|
||
|
{
|
||
|
theSuccess = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return theSuccess;
|
||
|
}
|
||
|
|
||
|
void AngleMatrix(const float* angles, float matrix[3][4])
|
||
|
{
|
||
|
float angle;
|
||
|
float sr, sp, sy, cr, cp, cy;
|
||
|
|
||
|
angle = angles[2] * (M_PI*2 / 360);
|
||
|
sy = sin(angle);
|
||
|
cy = cos(angle);
|
||
|
angle = angles[1] * (M_PI*2 / 360);
|
||
|
sp = sin(angle);
|
||
|
cp = cos(angle);
|
||
|
angle = angles[0] * (M_PI*2 / 360);
|
||
|
sr = sin(angle);
|
||
|
cr = cos(angle);
|
||
|
|
||
|
// matrix = (Z * Y) * X
|
||
|
matrix[0][0] = cp*cy;
|
||
|
matrix[1][0] = cp*sy;
|
||
|
matrix[2][0] = -sp;
|
||
|
matrix[0][1] = sr*sp*cy+cr*-sy;
|
||
|
matrix[1][1] = sr*sp*sy+cr*cy;
|
||
|
matrix[2][1] = sr*cp;
|
||
|
matrix[0][2] = (cr*sp*cy+-sr*-sy);
|
||
|
matrix[1][2] = (cr*sp*sy+-sr*cy);
|
||
|
matrix[2][2] = cr*cp;
|
||
|
matrix[0][3] = 0.0;
|
||
|
matrix[1][3] = 0.0;
|
||
|
matrix[2][3] = 0.0;
|
||
|
}
|
||
|
|
||
|
float Length(const float *v)
|
||
|
{
|
||
|
int i;
|
||
|
float length;
|
||
|
|
||
|
length = 0;
|
||
|
for (i=0 ; i< 3 ; i++)
|
||
|
length += v[i]*v[i];
|
||
|
length = sqrt (length); // FIXME
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
void RotateFloatValuesByVector(float& ioX, float& ioY, float& ioZ, /*const float* inBaseVector,*/ const float* inVector)
|
||
|
{
|
||
|
// Get rotation vector
|
||
|
//float theBaseRotationAngles[3];
|
||
|
//VectorAngles((float*)inBaseVector, theBaseRotationAngles);
|
||
|
|
||
|
// Get rotation vector
|
||
|
float theRotationAngles[3];
|
||
|
VectorAngles((float*)inVector, theRotationAngles);
|
||
|
|
||
|
// Subtract out frame of reference
|
||
|
//theRotationAngles[0] -= theBaseRotationAngles[0];
|
||
|
//theRotationAngles[1] -= theBaseRotationAngles[1];
|
||
|
//theRotationAngles[2] -= theBaseRotationAngles[2];
|
||
|
|
||
|
// Rotate the first three parameters as a point
|
||
|
float theSourceValues[3] = {ioX, ioY, ioZ};
|
||
|
|
||
|
float theMatrix[3][4];
|
||
|
AngleMatrix(theRotationAngles, theMatrix);
|
||
|
|
||
|
float theRotatedValues[3];
|
||
|
VectorRotate(theSourceValues, theMatrix, theRotatedValues);
|
||
|
|
||
|
ioX = (int)theRotatedValues[0];
|
||
|
ioY = (int)theRotatedValues[1];
|
||
|
ioZ = (int)theRotatedValues[2];
|
||
|
}
|
||
|
|
||
|
float WrapFloat(float inValue, float inMin, float inMax)
|
||
|
{
|
||
|
const float theRange = inMax - inMin;
|
||
|
|
||
|
if (inValue < inMin)
|
||
|
{
|
||
|
inValue += floor((inMax - inValue) / theRange) * theRange;
|
||
|
}
|
||
|
|
||
|
if (inValue >= inMax)
|
||
|
{
|
||
|
inValue -= floor(((inValue - inMin) / theRange)) * theRange;
|
||
|
}
|
||
|
|
||
|
return inValue;
|
||
|
}
|
||
|
|
||
|
void CreateOrthoNormalBasis(float inZAxis[3], float outXAxis[3], float outYAxis[3])
|
||
|
{
|
||
|
VectorNormalize(inZAxis);
|
||
|
|
||
|
// check if in vector is z
|
||
|
float theUp[3] = { 0, 0, 1 };
|
||
|
if(fabs(DotProduct(theUp, inZAxis)) >= (1.0 - kFloatTolerance))
|
||
|
{
|
||
|
// Use y instead
|
||
|
theUp[0] = 0;
|
||
|
theUp[1] = 1;
|
||
|
theUp[2] = 0;
|
||
|
}
|
||
|
|
||
|
CrossProduct(inZAxis, theUp, outXAxis);
|
||
|
VectorNormalize(outXAxis);
|
||
|
|
||
|
CrossProduct(outXAxis, inZAxis, outYAxis);
|
||
|
VectorNormalize(outYAxis);
|
||
|
}
|
||
|
|
||
|
int RoundIntToNearestIncrementOf(int inValue, int inIncrement)
|
||
|
{
|
||
|
int theValue = inValue;
|
||
|
if(inIncrement > 0)
|
||
|
{
|
||
|
theValue = ((inValue + inIncrement/2)/inIncrement)*inIncrement;
|
||
|
}
|
||
|
return theValue;
|
||
|
}
|
||
|
|
||
|
void TransformVector(const float v[3], const float xAxis[3], const float yAxis[3], const float zAxis[3], float result[3])
|
||
|
{
|
||
|
float temp[3];
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
{
|
||
|
temp[i] = v[0] * xAxis[i] + v[1] * yAxis[i] + v[2] * zAxis[i];
|
||
|
}
|
||
|
for (int j = 0; j < 3; ++j)
|
||
|
{
|
||
|
result[j] = temp[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void RotateValuesByVector(int32& ioX, int32& ioY, int32& ioZ, /*const float* inBaseVector,*/ const float* inVector)
|
||
|
{
|
||
|
float ioFloatX = ioX;
|
||
|
float ioFloatY = ioY;
|
||
|
float ioFloatZ = ioZ;
|
||
|
|
||
|
RotateFloatValuesByVector(ioFloatX, ioFloatY, ioFloatZ, inVector);
|
||
|
|
||
|
ioX = (int32)ioFloatX;
|
||
|
ioY = (int32)ioFloatY;
|
||
|
ioZ = (int32)ioFloatZ;
|
||
|
}
|
||
|
|
||
|
void VectorAngles( const float *forward, float *angles )
|
||
|
{
|
||
|
float tmp, yaw, pitch;
|
||
|
|
||
|
if (forward[1] == 0 && forward[0] == 0)
|
||
|
{
|
||
|
yaw = 0;
|
||
|
if (forward[2] > 0)
|
||
|
pitch = 90;
|
||
|
else
|
||
|
pitch = 270;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
yaw = (atan2(forward[1], forward[0]) * 180 / M_PI);
|
||
|
if (yaw < 0)
|
||
|
yaw += 360;
|
||
|
|
||
|
tmp = sqrt (forward[0]*forward[0] + forward[1]*forward[1]);
|
||
|
pitch = (atan2(forward[2], tmp) * 180 / M_PI);
|
||
|
if (pitch < 0)
|
||
|
pitch += 360;
|
||
|
}
|
||
|
|
||
|
angles[0] = pitch;
|
||
|
angles[1] = yaw;
|
||
|
angles[2] = 0;
|
||
|
}
|
||
|
|
||
|
void VectorInverse ( float *v )
|
||
|
{
|
||
|
v[0] = -v[0];
|
||
|
v[1] = -v[1];
|
||
|
v[2] = -v[2];
|
||
|
}
|
||
|
|
||
|
void VectorMA (const float *veca, float scale, const float *vecb, float *vecc)
|
||
|
{
|
||
|
vecc[0] = veca[0] + scale*vecb[0];
|
||
|
vecc[1] = veca[1] + scale*vecb[1];
|
||
|
vecc[2] = veca[2] + scale*vecb[2];
|
||
|
}
|
||
|
|
||
|
float VectorNormalize (float *v)
|
||
|
{
|
||
|
float length, ilength;
|
||
|
|
||
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||
|
length = sqrt (length); // FIXME
|
||
|
|
||
|
if (length)
|
||
|
{
|
||
|
ilength = 1/length;
|
||
|
v[0] *= ilength;
|
||
|
v[1] *= ilength;
|
||
|
v[2] *= ilength;
|
||
|
}
|
||
|
|
||
|
return length;
|
||
|
|
||
|
}
|
||
|
|
||
|
void VectorRotate (const float* in1, const float in2[3][4], float* out)
|
||
|
{
|
||
|
out[0] = DotProduct(in1, in2[0]);
|
||
|
out[1] = DotProduct(in1, in2[1]);
|
||
|
out[2] = DotProduct(in1, in2[2]);
|
||
|
}
|
||
|
|
||
|
void VectorScale (const float *in, float scale, float *out)
|
||
|
{
|
||
|
out[0] = in[0]*scale;
|
||
|
out[1] = in[1]*scale;
|
||
|
out[2] = in[2]*scale;
|
||
|
}
|
||
|
|
||
|
double VectorDistance(const float* in1, const float* in2)
|
||
|
{
|
||
|
float theXDiff = in1[0] - in2[0];
|
||
|
float theYDiff = in1[1] - in2[1];
|
||
|
float theZDiff = in1[2] - in2[2];
|
||
|
|
||
|
return sqrt(theXDiff*theXDiff + theYDiff*theYDiff + theZDiff*theZDiff);
|
||
|
}
|
||
|
|
||
|
double VectorDistance2D(const float* in1, const float* in2)
|
||
|
{
|
||
|
float theXDiff = in1[0] - in2[0];
|
||
|
float theYDiff = in1[1] - in2[1];
|
||
|
|
||
|
return sqrt(theXDiff*theXDiff + theYDiff*theYDiff);
|
||
|
}
|
||
|
|
||
|
// Added by mmcguire.
|
||
|
void VectorsToAngles(const float forward[3], const float right[3], const float up[3], float angles[3])
|
||
|
{
|
||
|
|
||
|
float y,r,p;
|
||
|
float sy;
|
||
|
|
||
|
if(abs(forward[2]) < 0.9999)
|
||
|
{
|
||
|
y = atan2(forward[1], forward[0]);
|
||
|
sy = sin(y);
|
||
|
if (abs(sy) < 0.1)
|
||
|
{
|
||
|
p = atan2(-forward[2], forward[0] / cos(y));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
p = atan2(-forward[2], forward[1] / sy);
|
||
|
}
|
||
|
r = atan2(-right[2], up[2]);
|
||
|
}
|
||
|
else //gimbal lock; best we can do is assume roll = 0 and set pitch = pitch + actual roll
|
||
|
{
|
||
|
p = forward[2] > 0 ? -M_PI/2 : M_PI/2;
|
||
|
y = atan2(right[0],-right[1]);
|
||
|
r = 0;
|
||
|
}
|
||
|
|
||
|
angles[2] = r * (180 / M_PI); // Roll
|
||
|
angles[0] = p * (180 / M_PI); // Pitch
|
||
|
angles[1] = y * (180 / M_PI); // Yaw
|
||
|
}
|