mirror of
https://github.com/ENSL/NS.git
synced 2024-11-27 06:42:54 +00:00
305 lines
5.9 KiB
C++
305 lines
5.9 KiB
C++
|
/***
|
||
|
*
|
||
|
* Copyright (c) 1999, 2000, Valve LLC. All rights reserved.
|
||
|
*
|
||
|
* This product contains software technology licensed from Id
|
||
|
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
|
||
|
* All Rights Reserved.
|
||
|
*
|
||
|
* Use, distribution, and modification of this source code and/or resulting
|
||
|
* object code is restricted to non-commercial enhancements to products from
|
||
|
* Valve LLC. All other use, distribution, or modification is prohibited
|
||
|
* without written permission from Valve LLC.
|
||
|
*
|
||
|
****/
|
||
|
// pm_math.c -- math primitives
|
||
|
|
||
|
#include "mathlib.h"
|
||
|
#include "const.h"
|
||
|
#include <math.h>
|
||
|
#include "util/MathUtil.h"
|
||
|
|
||
|
float AngleBetweenVectors( float * v1, float * v2 );
|
||
|
void InterpolateAngles( float *start, float *end, float *output, float frac );
|
||
|
|
||
|
// up / down
|
||
|
#define PITCH 0
|
||
|
// left / right
|
||
|
#define YAW 1
|
||
|
// fall over
|
||
|
#define ROLL 2
|
||
|
|
||
|
#pragma warning(disable : 4244)
|
||
|
|
||
|
vec3_t vec3_origin = {0,0,0};
|
||
|
int nanmask = 255<<23;
|
||
|
|
||
|
float anglemod(float a)
|
||
|
{
|
||
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||
|
{
|
||
|
float angle;
|
||
|
float sr, sp, sy, cr, cp, cy;
|
||
|
|
||
|
angle = angles[YAW] * (M_PI*2 / 360);
|
||
|
sy = sin(angle);
|
||
|
cy = cos(angle);
|
||
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
||
|
sp = sin(angle);
|
||
|
cp = cos(angle);
|
||
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
||
|
sr = sin(angle);
|
||
|
cr = cos(angle);
|
||
|
|
||
|
if (forward)
|
||
|
{
|
||
|
forward[0] = cp*cy;
|
||
|
forward[1] = cp*sy;
|
||
|
forward[2] = -sp;
|
||
|
}
|
||
|
if (right)
|
||
|
{
|
||
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
||
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
||
|
right[2] = -1*sr*cp;
|
||
|
}
|
||
|
if (up)
|
||
|
{
|
||
|
up[0] = (cr*sp*cy+-sr*-sy);
|
||
|
up[1] = (cr*sp*sy+-sr*cy);
|
||
|
up[2] = cr*cp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||
|
{
|
||
|
float angle;
|
||
|
float sr, sp, sy, cr, cp, cy;
|
||
|
|
||
|
angle = angles[YAW] * (M_PI*2 / 360);
|
||
|
sy = sin(angle);
|
||
|
cy = cos(angle);
|
||
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
||
|
sp = sin(angle);
|
||
|
cp = cos(angle);
|
||
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
||
|
sr = sin(angle);
|
||
|
cr = cos(angle);
|
||
|
|
||
|
if (forward)
|
||
|
{
|
||
|
forward[0] = cp*cy;
|
||
|
forward[1] = (sr*sp*cy+cr*-sy);
|
||
|
forward[2] = (cr*sp*cy+-sr*-sy);
|
||
|
}
|
||
|
if (right)
|
||
|
{
|
||
|
right[0] = cp*sy;
|
||
|
right[1] = (sr*sp*sy+cr*cy);
|
||
|
right[2] = (cr*sp*sy+-sr*cy);
|
||
|
}
|
||
|
if (up)
|
||
|
{
|
||
|
up[0] = -sp;
|
||
|
up[1] = sr*cp;
|
||
|
up[2] = cr*cp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void AngleIMatrix (const vec3_t angles, float matrix[3][4] )
|
||
|
{
|
||
|
float angle;
|
||
|
float sr, sp, sy, cr, cp, cy;
|
||
|
|
||
|
angle = angles[YAW] * (M_PI*2 / 360);
|
||
|
sy = sin(angle);
|
||
|
cy = cos(angle);
|
||
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
||
|
sp = sin(angle);
|
||
|
cp = cos(angle);
|
||
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
||
|
sr = sin(angle);
|
||
|
cr = cos(angle);
|
||
|
|
||
|
// matrix = (YAW * PITCH) * ROLL
|
||
|
matrix[0][0] = cp*cy;
|
||
|
matrix[0][1] = cp*sy;
|
||
|
matrix[0][2] = -sp;
|
||
|
matrix[1][0] = sr*sp*cy+cr*-sy;
|
||
|
matrix[1][1] = sr*sp*sy+cr*cy;
|
||
|
matrix[1][2] = sr*cp;
|
||
|
matrix[2][0] = (cr*sp*cy+-sr*-sy);
|
||
|
matrix[2][1] = (cr*sp*sy+-sr*cy);
|
||
|
matrix[2][2] = cr*cp;
|
||
|
matrix[0][3] = 0.0;
|
||
|
matrix[1][3] = 0.0;
|
||
|
matrix[2][3] = 0.0;
|
||
|
}
|
||
|
|
||
|
void NormalizeAngles( float *angles )
|
||
|
{
|
||
|
int i;
|
||
|
// Normalize angles
|
||
|
for ( i = 0; i < 3; i++ )
|
||
|
{
|
||
|
if ( angles[i] > 180.0 )
|
||
|
{
|
||
|
angles[i] -= 360.0;
|
||
|
}
|
||
|
else if ( angles[i] < -180.0 )
|
||
|
{
|
||
|
angles[i] += 360.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
===================
|
||
|
InterpolateAngles
|
||
|
|
||
|
Interpolate Euler angles.
|
||
|
FIXME: Use Quaternions to avoid discontinuities
|
||
|
Frac is 0.0 to 1.0 ( i.e., should probably be clamped, but doesn't have to be )
|
||
|
===================
|
||
|
*/
|
||
|
void InterpolateAngles( float *start, float *end, float *output, float frac )
|
||
|
{
|
||
|
int i;
|
||
|
float ang1, ang2;
|
||
|
float d;
|
||
|
|
||
|
NormalizeAngles( start );
|
||
|
NormalizeAngles( end );
|
||
|
|
||
|
for ( i = 0 ; i < 3 ; i++ )
|
||
|
{
|
||
|
ang1 = start[i];
|
||
|
ang2 = end[i];
|
||
|
|
||
|
d = ang2 - ang1;
|
||
|
if ( d > 180 )
|
||
|
{
|
||
|
d -= 360;
|
||
|
}
|
||
|
else if ( d < -180 )
|
||
|
{
|
||
|
d += 360;
|
||
|
}
|
||
|
|
||
|
output[i] = ang1 + d * frac;
|
||
|
}
|
||
|
|
||
|
NormalizeAngles( output );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
===================
|
||
|
AngleBetweenVectors
|
||
|
|
||
|
===================
|
||
|
*/
|
||
|
float AngleBetweenVectors( float* v1, float* v2 )
|
||
|
{
|
||
|
float angle;
|
||
|
float l1 = Length( v1 );
|
||
|
float l2 = Length( v2 );
|
||
|
|
||
|
if ( !l1 || !l2 )
|
||
|
return 0.0f;
|
||
|
|
||
|
angle = acos( DotProduct( v1, v2 ) ) / (l1*l2);
|
||
|
angle = ( angle * 180.0f ) / M_PI;
|
||
|
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
void VectorTransform (const vec3_t in1, float in2[3][4], vec3_t out)
|
||
|
{
|
||
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
||
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
||
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
||
|
}
|
||
|
|
||
|
|
||
|
int VectorCompare (const vec3_t v1, const vec3_t v2)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i=0 ; i<3 ; i++)
|
||
|
if (v1[i] != v2[i])
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
||
|
{
|
||
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
||
|
}
|
||
|
|
||
|
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
|
||
|
{
|
||
|
out[0] = veca[0]-vecb[0];
|
||
|
out[1] = veca[1]-vecb[1];
|
||
|
out[2] = veca[2]-vecb[2];
|
||
|
}
|
||
|
|
||
|
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
|
||
|
{
|
||
|
out[0] = veca[0]+vecb[0];
|
||
|
out[1] = veca[1]+vecb[1];
|
||
|
out[2] = veca[2]+vecb[2];
|
||
|
}
|
||
|
|
||
|
void _VectorCopy (vec3_t in, vec3_t out)
|
||
|
{
|
||
|
out[0] = in[0];
|
||
|
out[1] = in[1];
|
||
|
out[2] = in[2];
|
||
|
}
|
||
|
|
||
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
|
||
|
{
|
||
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
||
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||
|
}
|
||
|
|
||
|
double sqrt(double x);
|
||
|
|
||
|
int Q_log2(int val)
|
||
|
{
|
||
|
int answer=0;
|
||
|
while (val>>=1)
|
||
|
answer++;
|
||
|
return answer;
|
||
|
}
|
||
|
|
||
|
void VectorMatrix( vec3_t forward, vec3_t right, vec3_t up)
|
||
|
{
|
||
|
vec3_t tmp;
|
||
|
|
||
|
if (forward[0] == 0 && forward[1] == 0)
|
||
|
{
|
||
|
right[0] = 1;
|
||
|
right[1] = 0;
|
||
|
right[2] = 0;
|
||
|
up[0] = -forward[2];
|
||
|
up[1] = 0;
|
||
|
up[2] = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0;
|
||
|
CrossProduct( forward, tmp, right );
|
||
|
VectorNormalize( right );
|
||
|
CrossProduct( right, forward, up );
|
||
|
VectorNormalize( up );
|
||
|
}
|
||
|
|