dhewm3/neo/tools/compilers/roqvq/roq.cpp
2011-12-10 15:34:48 +01:00

857 lines
24 KiB
C++

/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "../../../idlib/precompiled.h"
#pragma hdrstop
#include "roq.h"
#include "codec.h"
roq *theRoQ; // current roq file
roq::roq( void )
{
image = 0;
quietMode = false;
encoder = 0;
previousSize = 0;
lastFrame = false;
dataStuff=false;
}
roq::~roq( void )
{
if (image) delete image;
if (encoder) delete encoder;
return;
}
void roq::EncodeQuietly( bool which )
{
quietMode = which;
}
bool roq::IsQuiet( void )
{
return quietMode;
}
bool roq::IsLastFrame( void )
{
return lastFrame;
}
bool roq::Scaleable( void )
{
return paramFile->IsScaleable();
}
bool roq::ParamNoAlpha( void )
{
return paramFile->NoAlpha();
}
bool roq::MakingVideo( void )
{
return true; //paramFile->timecode];
}
bool roq::SearchType( void )
{
return paramFile->SearchType();
}
bool roq::HasSound( void )
{
return paramFile->HasSound();
}
int roq::PreviousFrameSize( void )
{
return previousSize;
}
int roq::FirstFrameSize( void )
{
return paramFile->FirstFrameSize();
}
int roq::NormalFrameSize( void )
{
return paramFile->NormalFrameSize();
}
const char * roq::CurrentFilename( void )
{
return currentFile.c_str();
}
void roq::EncodeStream( const char *paramInputFile )
{
int onFrame;
idStr f0, f1, f2;
int morestuff;
onFrame = 1;
encoder = new codec;
paramFile = new roqParam;
paramFile->numInputFiles = 0;
paramFile->InitFromFile( paramInputFile );
if (!paramFile->NumberOfFrames()) {
return;
}
InitRoQFile( paramFile->outputFilename);
numberOfFrames = paramFile->NumberOfFrames();
if (paramFile->NoAlpha()==true) common->Printf("encodeStream: eluding alpha\n");
f0 = "";
f1 = paramFile->GetNextImageFilename();
if (( paramFile->MoreFrames() == true )) {
f2 = paramFile->GetNextImageFilename();
}
morestuff = numberOfFrames;
while( morestuff ) {
LoadAndDisplayImage( f1 );
if (onFrame==1) {
encoder->SparseEncode();
// WriteLossless();
} else {
if (!strcmp( f0, f1 ) && strcmp( f1, f2) ) {
WriteHangFrame();
} else {
encoder->SparseEncode();
}
}
onFrame++;
f0 = f1;
f1 = f2;
if (paramFile->MoreFrames() == true) {
f2 = paramFile->GetNextImageFilename();
}
morestuff--;
session->UpdateScreen();
}
// if (numberOfFrames != 1) {
// if (image->hasAlpha() && paramFile->NoAlpha()==false) {
// lastFrame = true;
// encoder->SparseEncode();
// } else {
// WriteLossless();
// }
// }
CloseRoQFile();
}
void roq::Write16Word( word *aWord, idFile *stream )
{
byte a, b;
a = *aWord & 0xff;
b = *aWord >> 8;
stream->Write( &a, 1 );
stream->Write( &b, 1 );
}
void roq::Write32Word( unsigned int *aWord, idFile *stream )
{
byte a, b, c, d;
a = *aWord & 0xff;
b = (*aWord >> 8) & 0xff;
c = (*aWord >> 16) & 0xff;
d = (*aWord >> 24) & 0xff;
stream->Write( &a, 1 );
stream->Write( &b, 1 );
stream->Write( &c, 1 );
stream->Write( &d, 1 );
}
int roq::SizeFile( idFile *ftosize )
{
return ftosize->Length();
}
#if 0
/* Expanded data destination object for stdio output */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
byte* outfile; /* target stream */
int size;
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
/*
* Initialize destination --- called by jpeg_start_compress
* before any data is actually written.
*/
void roq::JPEGInitDestination (j_compress_ptr cinfo) {
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
dest->pub.next_output_byte = dest->outfile;
dest->pub.free_in_buffer = dest->size;
}
/*
* Empty the output buffer --- called whenever buffer fills up.
*
* In typical applications, this should write the entire output buffer
* (ignoring the current state of next_output_byte & free_in_buffer),
* reset the pointer & count to the start of the buffer, and return true
* indicating that the buffer has been dumped.
*
* In applications that need to be able to suspend compression due to output
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
* In this situation, the compressor will return to its caller (possibly with
* an indication that it has not accepted all the supplied scanlines). The
* application should resume compression after it has made more room in the
* output buffer. Note that there are substantial restrictions on the use of
* suspension --- see the documentation.
*
* When suspending, the compressor will back up to a convenient restart point
* (typically the start of the current MCU). next_output_byte & free_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point will be regenerated after resumption, so do not
* write it out when emptying the buffer externally.
*/
boolean roq::JPEGEmptyOutputBuffer (j_compress_ptr cinfo) {
return true;
}
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=true, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=true; then it will take active thought to do the
* wrong thing.
*/
void roq::JPEGStartCompress (j_compress_ptr cinfo, bool write_all_tables) {
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
jinit_compress_master(cinfo);
/* Set up for the first pass */
(*cinfo->master->prepare_for_pass) (cinfo);
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
JDIMENSION roq::JPEGWriteScanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines) {
JDIMENSION row_ctr, rows_left;
if (cinfo->global_state != CSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height)
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if (num_lines > rows_left)
num_lines = rows_left;
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Terminate destination --- called by jpeg_finish_compress
* after all data has been written. Usually needs to flush buffer.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
static int hackSize;
void roq::JPEGTermDestination (j_compress_ptr cinfo) {
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = dest->size - dest->pub.free_in_buffer;
hackSize = datacount;
}
/*
* Prepare for output to a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing compression.
*/
void roq::JPEGDest (j_compress_ptr cinfo, byte* outfile, int size) {
my_dest_ptr dest;
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same file without re-executing jpeg_stdio_dest.
* This makes it dangerous to use this manager and a different destination
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
sizeof(my_destination_mgr));
}
dest = (my_dest_ptr) cinfo->dest;
dest->pub.init_destination = JPEGInitDestination;
dest->pub.empty_output_buffer = JPEGEmptyOutputBuffer;
dest->pub.term_destination = JPEGTermDestination;
dest->outfile = outfile;
dest->size = size;
}
void roq::WriteLossless( void ) {
word direct;
uint directdw;
if (!dataStuff) {
InitRoQPatterns();
dataStuff=true;
}
direct = RoQ_QUAD_JPEG;
Write16Word( &direct, RoQFile);
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
byte *out;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
out = (byte *)Mem_Alloc(image->pixelsWide()*image->pixelsHigh()*4);
JPEGDest(&cinfo, out, image->pixelsWide()*image->pixelsHigh()*4);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image->pixelsWide(); /* image width and height, in pixels */
cinfo.image_height = image->pixelsHigh();
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, paramFile->JpegQuality(), true /* limit to baseline-JPEG values */);
/* Step 4: Start compressor */
/* true ensures that we will write a complete interchange-JPEG file.
* Pass true unless you are very sure of what you're doing.
*/
JPEGStartCompress(&cinfo, true);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image->pixelsWide() * 4; /* JSAMPLEs per row in image_buffer */
byte *pixbuf = image->bitmapData();
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = &pixbuf[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) JPEGWriteScanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
directdw = hackSize;
common->Printf("writeLossless: writing %d bytes to RoQ_QUAD_JPEG\n", hackSize);
Write32Word( &directdw, RoQFile );
direct = 0; // flags
Write16Word( &direct, RoQFile );
RoQFile->Write( out, hackSize );
Mem_Free(out);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
encoder->SetPreviousImage( "first frame", image );
}
#endif
void roq::InitRoQFile( const char *RoQFilename )
{
word i;
static int finit = 0;
if (!finit) {
finit++;
common->Printf("initRoQFile: %s\n", RoQFilename);
RoQFile = fileSystem->OpenFileWrite( RoQFilename );
// chmod(RoQFilename, S_IREAD|S_IWRITE|S_ISUID|S_ISGID|0070|0007 );
if ( !RoQFile ) {
common->Error("Unable to open output file %s.\n", RoQFilename);
}
i = RoQ_ID;
Write16Word( &i, RoQFile );
i = 0xffff;
Write16Word( &i, RoQFile );
Write16Word( &i, RoQFile );
// to retain exact file format write out 32 for new roq's
// on loading this will be noted and converted to 1000 / 30
// as with any new sound dump avi demos we need to playback
// at the speed the sound engine dumps the audio
i = 30; // framerate
Write16Word( &i, RoQFile );
}
roqOutfile = RoQFilename;
}
void roq::InitRoQPatterns( void )
{
uint j;
word direct;
direct = RoQ_QUAD_INFO;
Write16Word( &direct, RoQFile );
j = 8;
Write32Word( &j, RoQFile );
common->Printf("initRoQPatterns: outputting %d bytes to RoQ_INFO\n", j);
direct = image->hasAlpha();
if (ParamNoAlpha() == true) direct = 0;
Write16Word( &direct, RoQFile );
direct = image->pixelsWide();
Write16Word( &direct, RoQFile );
direct = image->pixelsHigh();
Write16Word( &direct, RoQFile );
direct = 8;
Write16Word( &direct, RoQFile );
direct = 4;
Write16Word( &direct, RoQFile );
}
void roq::CloseRoQFile( void )
{
common->Printf("closeRoQFile: closing RoQ file\n");
fileSystem->CloseFile( RoQFile );
}
void roq::WriteHangFrame( void )
{
uint j;
word direct;
common->Printf("*******************************************************************\n");
direct = RoQ_QUAD_HANG;
Write16Word( &direct, RoQFile);
j = 0;
Write32Word( &j, RoQFile);
direct = 0;
Write16Word( &direct, RoQFile);
}
void roq::WriteCodeBookToStream( byte *codebook, int csize, word cflags )
{
uint j;
word direct;
if (!csize) {
common->Printf("writeCodeBook: false VQ DATA!!!!\n");
return;
}
direct = RoQ_QUAD_CODEBOOK;
Write16Word( &direct, RoQFile);
j = csize;
Write32Word( &j, RoQFile);
common->Printf("writeCodeBook: outputting %d bytes to RoQ_QUAD_CODEBOOK\n", j);
direct = cflags;
Write16Word( &direct, RoQFile);
RoQFile->Write( codebook, j );
}
void roq::WriteCodeBook( byte *codebook )
{
memcpy( codes, codebook, 4096 );
}
void roq::WriteFrame( quadcel *pquad )
{
word action, direct;
int onCCC, onAction, i, code;
uint j;
byte *cccList;
bool *use2, *use4;
int dx,dy,dxMean,dyMean,index2[256],index4[256], dimension;
cccList = (byte *)Mem_Alloc( numQuadCels * 8); // maximum length
use2 = (bool *)Mem_Alloc(256*sizeof(bool));
use4 = (bool *)Mem_Alloc(256*sizeof(bool));
for(i=0;i<256;i++) {
use2[i] = false;
use4[i] = false;
}
action = 0;
j = onAction = 0;
onCCC = 2; // onAction going to go at zero
dxMean = encoder->MotMeanX();
dyMean = encoder->MotMeanY();
if (image->hasAlpha()) dimension = 10; else dimension = 6;
for (i=0; i<numQuadCels; i++) {
if ( pquad[i].size && pquad[i].size < 16 ) {
switch( pquad[i].status ) {
case SLD:
use4[pquad[i].patten[0]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+0]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+1]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+2]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+3]] = true;
break;
case PAT:
use4[pquad[i].patten[0]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+0]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+1]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+2]] = true;
use2[codes[dimension*256+(pquad[i].patten[0]*4)+3]] = true;
break;
case CCC:
use2[pquad[i].patten[1]] = true;
use2[pquad[i].patten[2]] = true;
use2[pquad[i].patten[3]] = true;
use2[pquad[i].patten[4]] = true;
}
}
}
if (!dataStuff) {
dataStuff=true;
InitRoQPatterns();
if (image->hasAlpha()) i = 3584; else i = 2560;
WriteCodeBookToStream( codes, i, 0 );
for(i=0;i<256;i++) {
index2[i] = i;
index4[i] = i;
}
} else {
j = 0;
for(i=0;i<256;i++) {
if (use2[i]) {
index2[i] = j;
for(dx=0;dx<dimension;dx++) cccList[j*dimension+dx] = codes[i*dimension+dx];
j++;
}
}
code = j*dimension;
direct = j;
common->Printf("writeFrame: really used %d 2x2 cels\n", j);
j = 0;
for(i=0;i<256;i++) {
if (use4[i]) {
index4[i] = j;
for(dx=0;dx<4;dx++) cccList[j*4+code+dx] = index2[codes[i*4+(dimension*256)+dx]];
j++;
}
}
code += j*4;
direct = (direct<<8) + j;
common->Printf("writeFrame: really used %d 4x4 cels\n", j);
if (image->hasAlpha()) i = 3584; else i = 2560;
if ( code == i || j == 256) {
WriteCodeBookToStream( codes, i, 0 );
} else {
WriteCodeBookToStream( cccList, code, direct );
}
}
action = 0;
j = onAction = 0;
for (i=0; i<numQuadCels; i++) {
if ( pquad[i].size && pquad[i].size < 16 ) {
code = -1;
switch( pquad[i].status ) {
case DEP:
code = 3;
break;
case SLD:
code = 2;
cccList[onCCC++] = index4[pquad[i].patten[0]];
break;
case MOT:
code = 0;
break;
case FCC:
code = 1;
dx = ((pquad[i].domain >> 8 )) - 128 - dxMean + 8;
dy = ((pquad[i].domain & 0xff)) - 128 - dyMean + 8;
if (dx>15 || dx<0 || dy>15 || dy<0 ) {
common->Error("writeFrame: FCC error %d,%d mean %d,%d at %d,%d,%d rmse %f\n", dx,dy, dxMean, dyMean,pquad[i].xat,pquad[i].yat,pquad[i].size, pquad[i].snr[FCC] );
}
cccList[onCCC++] = (dx<<4)+dy;
break;
case PAT:
code = 2;
cccList[onCCC++] = index4[pquad[i].patten[0]];
break;
case CCC:
code = 3;
cccList[onCCC++] = index2[pquad[i].patten[1]];
cccList[onCCC++] = index2[pquad[i].patten[2]];
cccList[onCCC++] = index2[pquad[i].patten[3]];
cccList[onCCC++] = index2[pquad[i].patten[4]];
break;
case DEAD:
common->Error("dead cels in picture\n");
break;
}
if (code == -1) {
common->Error( "writeFrame: an error occurred writing the frame\n");
}
action = (action<<2)|code;
j++;
if (j == 8) {
j = 0;
cccList[onAction+0] = (action & 0xff);
cccList[onAction+1] = ((action >> 8) & 0xff);
onAction = onCCC;
onCCC += 2;
}
}
}
if (j) {
action <<= ((8-j)*2);
cccList[onAction+0] = (action & 0xff);
cccList[onAction+1] = ((action >> 8) & 0xff);
}
direct = RoQ_QUAD_VQ;
Write16Word( &direct, RoQFile);
j = onCCC;
Write32Word( &j, RoQFile);
direct = dyMean;
direct &= 0xff;
direct += (dxMean<<8); // flags
Write16Word( &direct, RoQFile);
common->Printf("writeFrame: outputting %d bytes to RoQ_QUAD_VQ\n", j);
previousSize = j;
RoQFile->Write( cccList, onCCC );
Mem_Free( cccList );
Mem_Free( use2 );
Mem_Free( use4 );
}
//
// load a frame, create a window (if neccesary) and display the frame
//
void roq::LoadAndDisplayImage( const char * filename )
{
if (image) delete image;
common->Printf("loadAndDisplayImage: %s\n", filename);
currentFile = filename;
image = new NSBitmapImageRep( filename );
numQuadCels = ((image->pixelsWide() & 0xfff0)*(image->pixelsHigh() & 0xfff0))/(MINSIZE*MINSIZE);
numQuadCels += numQuadCels/4 + numQuadCels/16;
// if (paramFile->deltaFrames] == true && cleared == false && [image isPlanar] == false) {
// cleared = true;
// imageData = [image data];
// memset( imageData, 0, image->pixelsWide()*image->pixelsHigh()*[image samplesPerPixel]);
// }
if (!quietMode) common->Printf("loadAndDisplayImage: %dx%d\n", image->pixelsWide(), image->pixelsHigh());
}
void roq::MarkQuadx( int xat, int yat, int size, float cerror, int choice ) {
}
NSBitmapImageRep* roq::CurrentImage( void )
{
return image;
}
int roq::NumberOfFrames( void ) {
return numberOfFrames;
}
void RoQFileEncode_f( const idCmdArgs &args ) {
if ( args.Argc() != 2 ) {
common->Printf( "Usage: roq <paramfile>\n" );
return;
}
theRoQ = new roq;
int startMsec = Sys_Milliseconds();
theRoQ->EncodeStream( args.Argv( 1 ) );
int stopMsec = Sys_Milliseconds();
common->Printf( "total encoding time: %i second\n", ( stopMsec - startMsec ) / 1000 );
}