dhewm3/neo/idlib/geometry/Surface_Patch.cpp
dhewg 736ec20d4d Untangle the epic precompiled.h mess
Don't include the lazy precompiled.h everywhere, only what's
required for the compilation unit.
platform.h needs to be included instead to provide all essential
defines and types.
All includes use the relative path to the neo or the game
specific root.
Move all idlib related includes from idlib/Lib.h to precompiled.h.
precompiled.h still exists for the MFC stuff in tools/.
Add some missing header guards.
2011-12-19 23:21:47 +01:00

691 lines
18 KiB
C++

/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "sys/platform.h"
#include "idlib/geometry/Surface_Patch.h"
/*
=================
idSurface_Patch::SetSize
=================
*/
void idSurface_Patch::SetSize( int patchWidth, int patchHeight ) {
if ( patchWidth < 1 || patchWidth > maxWidth ) {
idLib::common->FatalError("idSurface_Patch::SetSize: invalid patchWidth");
}
if ( patchHeight < 1 || patchHeight > maxHeight ) {
idLib::common->FatalError("idSurface_Patch::SetSize: invalid patchHeight");
}
width = patchWidth;
height = patchHeight;
verts.SetNum( width * height, false );
}
/*
=================
idSurface_Patch::PutOnCurve
Expects an expanded patch.
=================
*/
void idSurface_Patch::PutOnCurve( void ) {
int i, j;
idDrawVert prev, next;
assert( expanded == true );
// put all the approximating points on the curve
for ( i = 0; i < width; i++ ) {
for ( j = 1; j < height; j += 2 ) {
LerpVert( verts[j*maxWidth+i], verts[(j+1)*maxWidth+i], prev );
LerpVert( verts[j*maxWidth+i], verts[(j-1)*maxWidth+i], next );
LerpVert( prev, next, verts[j*maxWidth+i] );
}
}
for ( j = 0; j < height; j++ ) {
for ( i = 1; i < width; i += 2 ) {
LerpVert( verts[j*maxWidth+i], verts[j*maxWidth+i+1], prev );
LerpVert( verts[j*maxWidth+i], verts[j*maxWidth+i-1], next );
LerpVert( prev, next, verts[j*maxWidth+i] );
}
}
}
/*
================
idSurface_Patch::ProjectPointOntoVector
================
*/
void idSurface_Patch::ProjectPointOntoVector( const idVec3 &point, const idVec3 &vStart, const idVec3 &vEnd, idVec3 &vProj ) {
idVec3 pVec, vec;
pVec = point - vStart;
vec = vEnd - vStart;
vec.Normalize();
// project onto the directional vector for this segment
vProj = vStart + (pVec * vec) * vec;
}
/*
================
idSurface_Patch::RemoveLinearColumnsRows
Expects an expanded patch.
================
*/
void idSurface_Patch::RemoveLinearColumnsRows( void ) {
int i, j, k;
float len, maxLength;
idVec3 proj, dir;
assert( expanded == true );
for ( j = 1; j < width - 1; j++ ) {
maxLength = 0;
for ( i = 0; i < height; i++ ) {
idSurface_Patch::ProjectPointOntoVector( verts[i*maxWidth + j].xyz,
verts[i*maxWidth + j-1].xyz, verts[i*maxWidth + j+1].xyz, proj);
dir = verts[i*maxWidth + j].xyz - proj;
len = dir.LengthSqr();
if ( len > maxLength ) {
maxLength = len;
}
}
if ( maxLength < Square( 0.2f ) ) {
width--;
for ( i = 0; i < height; i++ ) {
for ( k = j; k < width; k++ ) {
verts[i*maxWidth + k] = verts[i*maxWidth + k+1];
}
}
j--;
}
}
for ( j = 1; j < height - 1; j++ ) {
maxLength = 0;
for ( i = 0; i < width; i++ ) {
idSurface_Patch::ProjectPointOntoVector( verts[j*maxWidth + i].xyz,
verts[(j-1)*maxWidth + i].xyz, verts[(j+1)*maxWidth + i].xyz, proj);
dir = verts[j*maxWidth + i].xyz - proj;
len = dir.LengthSqr();
if ( len > maxLength ) {
maxLength = len;
}
}
if ( maxLength < Square( 0.2f ) ) {
height--;
for ( i = 0; i < width; i++ ) {
for ( k = j; k < height; k++ ) {
verts[k*maxWidth + i] = verts[(k+1)*maxWidth + i];
}
}
j--;
}
}
}
/*
================
idSurface_Patch::ResizeExpanded
================
*/
void idSurface_Patch::ResizeExpanded( int newHeight, int newWidth ) {
int i, j;
assert( expanded == true );
if ( newHeight <= maxHeight && newWidth <= maxWidth ) {
return;
}
if ( newHeight * newWidth > maxHeight * maxWidth ) {
verts.SetNum( newHeight * newWidth );
}
// space out verts for new height and width
for ( j = maxHeight-1; j >= 0; j-- ) {
for ( i = maxWidth-1; i >= 0; i-- ) {
verts[j*newWidth + i] = verts[j*maxWidth + i];
}
}
maxHeight = newHeight;
maxWidth = newWidth;
}
/*
================
idSurface_Patch::Collapse
================
*/
void idSurface_Patch::Collapse( void ) {
int i, j;
if ( !expanded ) {
idLib::common->FatalError("idSurface_Patch::Collapse: patch not expanded");
}
expanded = false;
if ( width != maxWidth ) {
for ( j = 0; j < height; j++ ) {
for ( i = 0; i < width; i++ ) {
verts[j*width + i] = verts[j*maxWidth + i];
}
}
}
verts.SetNum( width * height, false );
}
/*
================
idSurface_Patch::Expand
================
*/
void idSurface_Patch::Expand( void ) {
int i, j;
if ( expanded ) {
idLib::common->FatalError("idSurface_Patch::Expand: patch alread expanded");
}
expanded = true;
verts.SetNum( maxWidth * maxHeight, false );
if ( width != maxWidth ) {
for ( j = height-1; j >= 0; j-- ) {
for ( i = width-1; i >= 0; i-- ) {
verts[j*maxWidth + i] = verts[j*width + i];
}
}
}
}
/*
============
idSurface_Patch::LerpVert
============
*/
void idSurface_Patch::LerpVert( const idDrawVert &a, const idDrawVert &b, idDrawVert &out ) const {
out.xyz[0] = 0.5f * ( a.xyz[0] + b.xyz[0] );
out.xyz[1] = 0.5f * ( a.xyz[1] + b.xyz[1] );
out.xyz[2] = 0.5f * ( a.xyz[2] + b.xyz[2] );
out.normal[0] = 0.5f * ( a.normal[0] + b.normal[0] );
out.normal[1] = 0.5f * ( a.normal[1] + b.normal[1] );
out.normal[2] = 0.5f * ( a.normal[2] + b.normal[2] );
out.st[0] = 0.5f * ( a.st[0] + b.st[0] );
out.st[1] = 0.5f * ( a.st[1] + b.st[1] );
}
/*
=================
idSurface_Patch::GenerateNormals
Handles all the complicated wrapping and degenerate cases
Expects a Not expanded patch.
=================
*/
#define COPLANAR_EPSILON 0.1f
void idSurface_Patch::GenerateNormals( void ) {
int i, j, k, dist;
idVec3 norm;
idVec3 sum;
int count;
idVec3 base;
idVec3 delta;
int x, y;
idVec3 around[8], temp;
bool good[8];
bool wrapWidth, wrapHeight;
static int neighbors[8][2] = {
{0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}
};
assert( expanded == false );
//
// if all points are coplanar, set all normals to that plane
//
idVec3 extent[3];
float offset;
extent[0] = verts[width - 1].xyz - verts[0].xyz;
extent[1] = verts[(height-1) * width + width - 1].xyz - verts[0].xyz;
extent[2] = verts[(height-1) * width].xyz - verts[0].xyz;
norm = extent[0].Cross( extent[1] );
if ( norm.LengthSqr() == 0.0f ) {
norm = extent[0].Cross( extent[2] );
if ( norm.LengthSqr() == 0.0f ) {
norm = extent[1].Cross( extent[2] );
}
}
// wrapped patched may not get a valid normal here
if ( norm.Normalize() != 0.0f ) {
offset = verts[0].xyz * norm;
for ( i = 1; i < width * height; i++ ) {
float d = verts[i].xyz * norm;
if ( idMath::Fabs( d - offset ) > COPLANAR_EPSILON ) {
break;
}
}
if ( i == width * height ) {
// all are coplanar
for ( i = 0; i < width * height; i++ ) {
verts[i].normal = norm;
}
return;
}
}
// check for wrapped edge cases, which should smooth across themselves
wrapWidth = false;
for ( i = 0; i < height; i++ ) {
delta = verts[i * width].xyz - verts[i * width + width-1].xyz;
if ( delta.LengthSqr() > Square( 1.0f ) ) {
break;
}
}
if ( i == height ) {
wrapWidth = true;
}
wrapHeight = false;
for ( i = 0; i < width; i++ ) {
delta = verts[i].xyz - verts[(height-1) * width + i].xyz;
if ( delta.LengthSqr() > Square( 1.0f ) ) {
break;
}
}
if ( i == width ) {
wrapHeight = true;
}
for ( i = 0; i < width; i++ ) {
for ( j = 0; j < height; j++ ) {
count = 0;
base = verts[j * width + i].xyz;
for ( k = 0; k < 8; k++ ) {
around[k] = vec3_origin;
good[k] = false;
for ( dist = 1; dist <= 3; dist++ ) {
x = i + neighbors[k][0] * dist;
y = j + neighbors[k][1] * dist;
if ( wrapWidth ) {
if ( x < 0 ) {
x = width - 1 + x;
} else if ( x >= width ) {
x = 1 + x - width;
}
}
if ( wrapHeight ) {
if ( y < 0 ) {
y = height - 1 + y;
} else if ( y >= height ) {
y = 1 + y - height;
}
}
if ( x < 0 || x >= width || y < 0 || y >= height ) {
break; // edge of patch
}
temp = verts[y * width + x].xyz - base;
if ( temp.Normalize() == 0.0f ) {
continue; // degenerate edge, get more dist
} else {
good[k] = true;
around[k] = temp;
break; // good edge
}
}
}
sum = vec3_origin;
for ( k = 0; k < 8; k++ ) {
if ( !good[k] || !good[(k+1)&7] ) {
continue; // didn't get two points
}
norm = around[(k+1)&7].Cross( around[k] );
if ( norm.Normalize() == 0.0f ) {
continue;
}
sum += norm;
count++;
}
if ( count == 0 ) {
//idLib::common->Printf("bad normal\n");
count = 1;
}
verts[j * width + i].normal = sum;
verts[j * width + i].normal.Normalize();
}
}
}
/*
=================
idSurface_Patch::GenerateIndexes
=================
*/
void idSurface_Patch::GenerateIndexes( void ) {
int i, j, v1, v2, v3, v4, index;
indexes.SetNum( (width-1) * (height-1) * 2 * 3, false );
index = 0;
for ( i = 0; i < width - 1; i++ ) {
for ( j = 0; j < height - 1; j++ ) {
v1 = j * width + i;
v2 = v1 + 1;
v3 = v1 + width + 1;
v4 = v1 + width;
indexes[index++] = v1;
indexes[index++] = v3;
indexes[index++] = v2;
indexes[index++] = v1;
indexes[index++] = v4;
indexes[index++] = v3;
}
}
GenerateEdgeIndexes();
}
/*
===============
idSurface_Patch::SampleSinglePatchPoint
===============
*/
void idSurface_Patch::SampleSinglePatchPoint( const idDrawVert ctrl[3][3], float u, float v, idDrawVert *out ) const {
float vCtrl[3][8];
int vPoint;
int axis;
// find the control points for the v coordinate
for ( vPoint = 0; vPoint < 3; vPoint++ ) {
for ( axis = 0; axis < 8; axis++ ) {
float a, b, c;
float qA, qB, qC;
if ( axis < 3 ) {
a = ctrl[0][vPoint].xyz[axis];
b = ctrl[1][vPoint].xyz[axis];
c = ctrl[2][vPoint].xyz[axis];
} else if ( axis < 6 ) {
a = ctrl[0][vPoint].normal[axis-3];
b = ctrl[1][vPoint].normal[axis-3];
c = ctrl[2][vPoint].normal[axis-3];
} else {
a = ctrl[0][vPoint].st[axis-6];
b = ctrl[1][vPoint].st[axis-6];
c = ctrl[2][vPoint].st[axis-6];
}
qA = a - 2.0f * b + c;
qB = 2.0f * b - 2.0f * a;
qC = a;
vCtrl[vPoint][axis] = qA * u * u + qB * u + qC;
}
}
// interpolate the v value
for ( axis = 0; axis < 8; axis++ ) {
float a, b, c;
float qA, qB, qC;
a = vCtrl[0][axis];
b = vCtrl[1][axis];
c = vCtrl[2][axis];
qA = a - 2.0f * b + c;
qB = 2.0f * b - 2.0f * a;
qC = a;
if ( axis < 3 ) {
out->xyz[axis] = qA * v * v + qB * v + qC;
} else if ( axis < 6 ) {
out->normal[axis-3] = qA * v * v + qB * v + qC;
} else {
out->st[axis-6] = qA * v * v + qB * v + qC;
}
}
}
/*
===================
idSurface_Patch::SampleSinglePatch
===================
*/
void idSurface_Patch::SampleSinglePatch( const idDrawVert ctrl[3][3], int baseCol, int baseRow, int width, int horzSub, int vertSub, idDrawVert *outVerts ) const {
int i, j;
float u, v;
horzSub++;
vertSub++;
for ( i = 0; i < horzSub; i++ ) {
for ( j = 0; j < vertSub; j++ ) {
u = (float) i / ( horzSub - 1 );
v = (float) j / ( vertSub - 1 );
SampleSinglePatchPoint( ctrl, u, v, &outVerts[((baseRow + j) * width) + i + baseCol] );
}
}
}
/*
=================
idSurface_Patch::SubdivideExplicit
=================
*/
void idSurface_Patch::SubdivideExplicit( int horzSubdivisions, int vertSubdivisions, bool genNormals, bool removeLinear ) {
int i, j, k, l;
idDrawVert sample[3][3];
int outWidth = ((width - 1) / 2 * horzSubdivisions) + 1;
int outHeight = ((height - 1) / 2 * vertSubdivisions) + 1;
idDrawVert *dv = new idDrawVert[ outWidth * outHeight ];
// generate normals for the control mesh
if ( genNormals ) {
GenerateNormals();
}
int baseCol = 0;
for ( i = 0; i + 2 < width; i += 2 ) {
int baseRow = 0;
for ( j = 0; j + 2 < height; j += 2 ) {
for ( k = 0; k < 3; k++ ) {
for ( l = 0; l < 3; l++ ) {
sample[k][l] = verts[ ((j + l) * width) + i + k ];
}
}
SampleSinglePatch( sample, baseCol, baseRow, outWidth, horzSubdivisions, vertSubdivisions, dv );
baseRow += vertSubdivisions;
}
baseCol += horzSubdivisions;
}
verts.SetNum( outWidth * outHeight );
for ( i = 0; i < outWidth * outHeight; i++ ) {
verts[i] = dv[i];
}
delete[] dv;
width = maxWidth = outWidth;
height = maxHeight = outHeight;
expanded = false;
if ( removeLinear ) {
Expand();
RemoveLinearColumnsRows();
Collapse();
}
// normalize all the lerped normals
if ( genNormals ) {
for ( i = 0; i < width * height; i++ ) {
verts[i].normal.Normalize();
}
}
GenerateIndexes();
}
/*
=================
idSurface_Patch::Subdivide
=================
*/
void idSurface_Patch::Subdivide( float maxHorizontalError, float maxVerticalError, float maxLength, bool genNormals ) {
int i, j, k, l;
idDrawVert prev, next, mid;
idVec3 prevxyz, nextxyz, midxyz;
idVec3 delta;
float maxHorizontalErrorSqr, maxVerticalErrorSqr, maxLengthSqr;
// generate normals for the control mesh
if ( genNormals ) {
GenerateNormals();
}
maxHorizontalErrorSqr = Square( maxHorizontalError );
maxVerticalErrorSqr = Square( maxVerticalError );
maxLengthSqr = Square( maxLength );
Expand();
// horizontal subdivisions
for ( j = 0; j + 2 < width; j += 2 ) {
// check subdivided midpoints against control points
for ( i = 0; i < height; i++ ) {
for ( l = 0; l < 3; l++ ) {
prevxyz[l] = verts[i*maxWidth + j+1].xyz[l] - verts[i*maxWidth + j ].xyz[l];
nextxyz[l] = verts[i*maxWidth + j+2].xyz[l] - verts[i*maxWidth + j+1].xyz[l];
midxyz[l] = (verts[i*maxWidth + j ].xyz[l] + verts[i*maxWidth + j+1].xyz[l] * 2.0f +
verts[i*maxWidth + j+2].xyz[l] ) * 0.25f;
}
if ( maxLength > 0.0f ) {
// if the span length is too long, force a subdivision
if ( prevxyz.LengthSqr() > maxLengthSqr || nextxyz.LengthSqr() > maxLengthSqr ) {
break;
}
}
// see if this midpoint is off far enough to subdivide
delta = verts[i*maxWidth + j+1].xyz - midxyz;
if ( delta.LengthSqr() > maxHorizontalErrorSqr ) {
break;
}
}
if ( i == height ) {
continue; // didn't need subdivision
}
if ( width + 2 >= maxWidth ) {
ResizeExpanded( maxHeight, maxWidth + 4 );
}
// insert two columns and replace the peak
width += 2;
for ( i = 0; i < height; i++ ) {
idSurface_Patch::LerpVert( verts[i*maxWidth + j ], verts[i*maxWidth + j+1], prev );
idSurface_Patch::LerpVert( verts[i*maxWidth + j+1], verts[i*maxWidth + j+2], next );
idSurface_Patch::LerpVert( prev, next, mid );
for ( k = width - 1; k > j + 3; k-- ) {
verts[i*maxWidth + k] = verts[i*maxWidth + k-2];
}
verts[i*maxWidth + j+1] = prev;
verts[i*maxWidth + j+2] = mid;
verts[i*maxWidth + j+3] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
// vertical subdivisions
for ( j = 0; j + 2 < height; j += 2 ) {
// check subdivided midpoints against control points
for ( i = 0; i < width; i++ ) {
for ( l = 0; l < 3; l++ ) {
prevxyz[l] = verts[(j+1)*maxWidth + i].xyz[l] - verts[j*maxWidth + i].xyz[l];
nextxyz[l] = verts[(j+2)*maxWidth + i].xyz[l] - verts[(j+1)*maxWidth + i].xyz[l];
midxyz[l] = (verts[j*maxWidth + i].xyz[l] + verts[(j+1)*maxWidth + i].xyz[l] * 2.0f +
verts[(j+2)*maxWidth + i].xyz[l] ) * 0.25f;
}
if ( maxLength > 0.0f ) {
// if the span length is too long, force a subdivision
if ( prevxyz.LengthSqr() > maxLengthSqr || nextxyz.LengthSqr() > maxLengthSqr ) {
break;
}
}
// see if this midpoint is off far enough to subdivide
delta = verts[(j+1)*maxWidth + i].xyz - midxyz;
if ( delta.LengthSqr() > maxVerticalErrorSqr ) {
break;
}
}
if ( i == width ) {
continue; // didn't need subdivision
}
if ( height + 2 >= maxHeight ) {
ResizeExpanded( maxHeight + 4, maxWidth );
}
// insert two columns and replace the peak
height += 2;
for ( i = 0; i < width; i++ ) {
LerpVert( verts[j*maxWidth + i], verts[(j+1)*maxWidth + i], prev );
LerpVert( verts[(j+1)*maxWidth + i], verts[(j+2)*maxWidth + i], next );
LerpVert( prev, next, mid );
for ( k = height - 1; k > j + 3; k-- ) {
verts[k*maxWidth + i] = verts[(k-2)*maxWidth + i];
}
verts[(j+1)*maxWidth + i] = prev;
verts[(j+2)*maxWidth + i] = mid;
verts[(j+3)*maxWidth + i] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
PutOnCurve();
RemoveLinearColumnsRows();
Collapse();
// normalize all the lerped normals
if ( genNormals ) {
for ( i = 0; i < width * height; i++ ) {
verts[i].normal.Normalize();
}
}
GenerateIndexes();
}