mirror of
https://github.com/dhewm/dhewm3-sdk.git
synced 2024-11-25 05:51:15 +00:00
afebd7e1e5
Don't include the lazy precompiled.h everywhere, only what's required for the compilation unit. platform.h needs to be included instead to provide all essential defines and types. All includes use the relative path to the neo or the game specific root. Move all idlib related includes from idlib/Lib.h to precompiled.h. precompiled.h still exists for the MFC stuff in tools/. Add some missing header guards.
930 lines
27 KiB
C++
930 lines
27 KiB
C++
/*
|
|
===========================================================================
|
|
|
|
Doom 3 GPL Source Code
|
|
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
|
|
|
|
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
|
|
|
|
Doom 3 Source Code is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Doom 3 Source Code is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
|
|
|
|
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
|
|
|
===========================================================================
|
|
*/
|
|
|
|
#ifndef __MATH_MATH_H__
|
|
#define __MATH_MATH_H__
|
|
|
|
#ifdef MACOS_X
|
|
// for FLT_MIN
|
|
#include <float.h>
|
|
#endif
|
|
|
|
/*
|
|
===============================================================================
|
|
|
|
Math
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
#ifdef INFINITY
|
|
#undef INFINITY
|
|
#endif
|
|
|
|
#ifdef FLT_EPSILON
|
|
#undef FLT_EPSILON
|
|
#endif
|
|
|
|
#define DEG2RAD(a) ( (a) * idMath::M_DEG2RAD )
|
|
#define RAD2DEG(a) ( (a) * idMath::M_RAD2DEG )
|
|
|
|
#define SEC2MS(t) ( idMath::FtoiFast( (t) * idMath::M_SEC2MS ) )
|
|
#define MS2SEC(t) ( (t) * idMath::M_MS2SEC )
|
|
|
|
#define ANGLE2SHORT(x) ( idMath::FtoiFast( (x) * 65536.0f / 360.0f ) & 65535 )
|
|
#define SHORT2ANGLE(x) ( (x) * ( 360.0f / 65536.0f ) )
|
|
|
|
#define ANGLE2BYTE(x) ( idMath::FtoiFast( (x) * 256.0f / 360.0f ) & 255 )
|
|
#define BYTE2ANGLE(x) ( (x) * ( 360.0f / 256.0f ) )
|
|
|
|
#define FLOATSIGNBITSET(f) ((*(const unsigned int *)&(f)) >> 31)
|
|
#define FLOATSIGNBITNOTSET(f) ((~(*(const unsigned int *)&(f))) >> 31)
|
|
#define FLOATNOTZERO(f) ((*(const unsigned int *)&(f)) & ~(1<<31) )
|
|
#define INTSIGNBITSET(i) (((const unsigned int)(i)) >> 31)
|
|
#define INTSIGNBITNOTSET(i) ((~((const unsigned int)(i))) >> 31)
|
|
|
|
#define FLOAT_IS_NAN(x) (((*(const unsigned int *)&x) & 0x7f800000) == 0x7f800000)
|
|
#define FLOAT_IS_INF(x) (((*(const unsigned int *)&x) & 0x7fffffff) == 0x7f800000)
|
|
#define FLOAT_IS_IND(x) ((*(const unsigned int *)&x) == 0xffc00000)
|
|
#define FLOAT_IS_DENORMAL(x) (((*(const unsigned int *)&x) & 0x7f800000) == 0x00000000 && \
|
|
((*(const unsigned int *)&x) & 0x007fffff) != 0x00000000 )
|
|
|
|
#define IEEE_FLT_MANTISSA_BITS 23
|
|
#define IEEE_FLT_EXPONENT_BITS 8
|
|
#define IEEE_FLT_EXPONENT_BIAS 127
|
|
#define IEEE_FLT_SIGN_BIT 31
|
|
|
|
#define IEEE_DBL_MANTISSA_BITS 52
|
|
#define IEEE_DBL_EXPONENT_BITS 11
|
|
#define IEEE_DBL_EXPONENT_BIAS 1023
|
|
#define IEEE_DBL_SIGN_BIT 63
|
|
|
|
#define IEEE_DBLE_MANTISSA_BITS 63
|
|
#define IEEE_DBLE_EXPONENT_BITS 15
|
|
#define IEEE_DBLE_EXPONENT_BIAS 0
|
|
#define IEEE_DBLE_SIGN_BIT 79
|
|
|
|
template<class T> ID_INLINE int MaxIndex( T x, T y ) { return ( x > y ) ? 0 : 1; }
|
|
template<class T> ID_INLINE int MinIndex( T x, T y ) { return ( x < y ) ? 0 : 1; }
|
|
|
|
template<class T> ID_INLINE T Max3( T x, T y, T z ) { return ( x > y ) ? ( ( x > z ) ? x : z ) : ( ( y > z ) ? y : z ); }
|
|
template<class T> ID_INLINE T Min3( T x, T y, T z ) { return ( x < y ) ? ( ( x < z ) ? x : z ) : ( ( y < z ) ? y : z ); }
|
|
template<class T> ID_INLINE int Max3Index( T x, T y, T z ) { return ( x > y ) ? ( ( x > z ) ? 0 : 2 ) : ( ( y > z ) ? 1 : 2 ); }
|
|
template<class T> ID_INLINE int Min3Index( T x, T y, T z ) { return ( x < y ) ? ( ( x < z ) ? 0 : 2 ) : ( ( y < z ) ? 1 : 2 ); }
|
|
|
|
template<class T> ID_INLINE T Sign( T f ) { return ( f > 0 ) ? 1 : ( ( f < 0 ) ? -1 : 0 ); }
|
|
template<class T> ID_INLINE T Square( T x ) { return x * x; }
|
|
template<class T> ID_INLINE T Cube( T x ) { return x * x * x; }
|
|
|
|
|
|
class idMath {
|
|
public:
|
|
|
|
static void Init( void );
|
|
|
|
static float RSqrt( float x ); // reciprocal square root, returns huge number when x == 0.0
|
|
|
|
static float InvSqrt( float x ); // inverse square root with 32 bits precision, returns huge number when x == 0.0
|
|
static float InvSqrt16( float x ); // inverse square root with 16 bits precision, returns huge number when x == 0.0
|
|
static double InvSqrt64( float x ); // inverse square root with 64 bits precision, returns huge number when x == 0.0
|
|
|
|
static float Sqrt( float x ); // square root with 32 bits precision
|
|
static float Sqrt16( float x ); // square root with 16 bits precision
|
|
static double Sqrt64( float x ); // square root with 64 bits precision
|
|
|
|
static float Sin( float a ); // sine with 32 bits precision
|
|
static float Sin16( float a ); // sine with 16 bits precision, maximum absolute error is 2.3082e-09
|
|
static double Sin64( float a ); // sine with 64 bits precision
|
|
|
|
static float Cos( float a ); // cosine with 32 bits precision
|
|
static float Cos16( float a ); // cosine with 16 bits precision, maximum absolute error is 2.3082e-09
|
|
static double Cos64( float a ); // cosine with 64 bits precision
|
|
|
|
static void SinCos( float a, float &s, float &c ); // sine and cosine with 32 bits precision
|
|
static void SinCos16( float a, float &s, float &c ); // sine and cosine with 16 bits precision
|
|
static void SinCos64( float a, double &s, double &c ); // sine and cosine with 64 bits precision
|
|
|
|
static float Tan( float a ); // tangent with 32 bits precision
|
|
static float Tan16( float a ); // tangent with 16 bits precision, maximum absolute error is 1.8897e-08
|
|
static double Tan64( float a ); // tangent with 64 bits precision
|
|
|
|
static float ASin( float a ); // arc sine with 32 bits precision, input is clamped to [-1, 1] to avoid a silent NaN
|
|
static float ASin16( float a ); // arc sine with 16 bits precision, maximum absolute error is 6.7626e-05
|
|
static double ASin64( float a ); // arc sine with 64 bits precision
|
|
|
|
static float ACos( float a ); // arc cosine with 32 bits precision, input is clamped to [-1, 1] to avoid a silent NaN
|
|
static float ACos16( float a ); // arc cosine with 16 bits precision, maximum absolute error is 6.7626e-05
|
|
static double ACos64( float a ); // arc cosine with 64 bits precision
|
|
|
|
static float ATan( float a ); // arc tangent with 32 bits precision
|
|
static float ATan16( float a ); // arc tangent with 16 bits precision, maximum absolute error is 1.3593e-08
|
|
static double ATan64( float a ); // arc tangent with 64 bits precision
|
|
|
|
static float ATan( float y, float x ); // arc tangent with 32 bits precision
|
|
static float ATan16( float y, float x ); // arc tangent with 16 bits precision, maximum absolute error is 1.3593e-08
|
|
static double ATan64( float y, float x ); // arc tangent with 64 bits precision
|
|
|
|
static float Pow( float x, float y ); // x raised to the power y with 32 bits precision
|
|
static float Pow16( float x, float y ); // x raised to the power y with 16 bits precision
|
|
static double Pow64( float x, float y ); // x raised to the power y with 64 bits precision
|
|
|
|
static float Exp( float f ); // e raised to the power f with 32 bits precision
|
|
static float Exp16( float f ); // e raised to the power f with 16 bits precision
|
|
static double Exp64( float f ); // e raised to the power f with 64 bits precision
|
|
|
|
static float Log( float f ); // natural logarithm with 32 bits precision
|
|
static float Log16( float f ); // natural logarithm with 16 bits precision
|
|
static double Log64( float f ); // natural logarithm with 64 bits precision
|
|
|
|
static int IPow( int x, int y ); // integral x raised to the power y
|
|
static int ILog2( float f ); // integral base-2 logarithm of the floating point value
|
|
static int ILog2( int i ); // integral base-2 logarithm of the integer value
|
|
|
|
static int BitsForFloat( float f ); // minumum number of bits required to represent ceil( f )
|
|
static int BitsForInteger( int i ); // minumum number of bits required to represent i
|
|
static int MaskForFloatSign( float f );// returns 0x00000000 if x >= 0.0f and returns 0xFFFFFFFF if x <= -0.0f
|
|
static int MaskForIntegerSign( int i );// returns 0x00000000 if x >= 0 and returns 0xFFFFFFFF if x < 0
|
|
static int FloorPowerOfTwo( int x ); // round x down to the nearest power of 2
|
|
static int CeilPowerOfTwo( int x ); // round x up to the nearest power of 2
|
|
static bool IsPowerOfTwo( int x ); // returns true if x is a power of 2
|
|
static int BitCount( int x ); // returns the number of 1 bits in x
|
|
static int BitReverse( int x ); // returns the bit reverse of x
|
|
|
|
static int Abs( int x ); // returns the absolute value of the integer value (for reference only)
|
|
static float Fabs( float f ); // returns the absolute value of the floating point value
|
|
static float Floor( float f ); // returns the largest integer that is less than or equal to the given value
|
|
static float Ceil( float f ); // returns the smallest integer that is greater than or equal to the given value
|
|
static float Rint( float f ); // returns the nearest integer
|
|
static int Ftoi( float f ); // float to int conversion
|
|
static int FtoiFast( float f ); // fast float to int conversion but uses current FPU round mode (default round nearest)
|
|
static unsigned int Ftol( float f ); // float to int conversion
|
|
static unsigned int FtolFast( float ); // fast float to int conversion but uses current FPU round mode (default round nearest)
|
|
|
|
static signed char ClampChar( int i );
|
|
static signed short ClampShort( int i );
|
|
static int ClampInt( int min, int max, int value );
|
|
static float ClampFloat( float min, float max, float value );
|
|
|
|
static float AngleNormalize360( float angle );
|
|
static float AngleNormalize180( float angle );
|
|
static float AngleDelta( float angle1, float angle2 );
|
|
|
|
static int FloatToBits( float f, int exponentBits, int mantissaBits );
|
|
static float BitsToFloat( int i, int exponentBits, int mantissaBits );
|
|
|
|
static int FloatHash( const float *array, const int numFloats );
|
|
|
|
static const float PI; // pi
|
|
static const float TWO_PI; // pi * 2
|
|
static const float HALF_PI; // pi / 2
|
|
static const float ONEFOURTH_PI; // pi / 4
|
|
static const float E; // e
|
|
static const float SQRT_TWO; // sqrt( 2 )
|
|
static const float SQRT_THREE; // sqrt( 3 )
|
|
static const float SQRT_1OVER2; // sqrt( 1 / 2 )
|
|
static const float SQRT_1OVER3; // sqrt( 1 / 3 )
|
|
static const float M_DEG2RAD; // degrees to radians multiplier
|
|
static const float M_RAD2DEG; // radians to degrees multiplier
|
|
static const float M_SEC2MS; // seconds to milliseconds multiplier
|
|
static const float M_MS2SEC; // milliseconds to seconds multiplier
|
|
static const float INFINITY; // huge number which should be larger than any valid number used
|
|
static const float FLT_EPSILON; // smallest positive number such that 1.0+FLT_EPSILON != 1.0
|
|
|
|
private:
|
|
enum {
|
|
LOOKUP_BITS = 8,
|
|
EXP_POS = 23,
|
|
EXP_BIAS = 127,
|
|
LOOKUP_POS = (EXP_POS-LOOKUP_BITS),
|
|
SEED_POS = (EXP_POS-8),
|
|
SQRT_TABLE_SIZE = (2<<LOOKUP_BITS),
|
|
LOOKUP_MASK = (SQRT_TABLE_SIZE-1)
|
|
};
|
|
|
|
union _flint {
|
|
dword i;
|
|
float f;
|
|
};
|
|
|
|
static dword iSqrt[SQRT_TABLE_SIZE];
|
|
static bool initialized;
|
|
};
|
|
|
|
ID_INLINE float idMath::RSqrt( float x ) {
|
|
|
|
int i;
|
|
float y, r;
|
|
|
|
y = x * 0.5f;
|
|
i = *reinterpret_cast<int *>( &x );
|
|
i = 0x5f3759df - ( i >> 1 );
|
|
r = *reinterpret_cast<float *>( &i );
|
|
r = r * ( 1.5f - r * r * y );
|
|
return r;
|
|
}
|
|
|
|
ID_INLINE float idMath::InvSqrt16( float x ) {
|
|
|
|
dword a = ((union _flint*)(&x))->i;
|
|
union _flint seed;
|
|
|
|
assert( initialized );
|
|
|
|
double y = x * 0.5f;
|
|
seed.i = (( ( (3*EXP_BIAS-1) - ( (a >> EXP_POS) & 0xFF) ) >> 1)<<EXP_POS) | iSqrt[(a >> (EXP_POS-LOOKUP_BITS)) & LOOKUP_MASK];
|
|
double r = seed.f;
|
|
r = r * ( 1.5f - r * r * y );
|
|
return (float) r;
|
|
}
|
|
|
|
ID_INLINE float idMath::InvSqrt( float x ) {
|
|
|
|
dword a = ((union _flint*)(&x))->i;
|
|
union _flint seed;
|
|
|
|
assert( initialized );
|
|
|
|
double y = x * 0.5f;
|
|
seed.i = (( ( (3*EXP_BIAS-1) - ( (a >> EXP_POS) & 0xFF) ) >> 1)<<EXP_POS) | iSqrt[(a >> (EXP_POS-LOOKUP_BITS)) & LOOKUP_MASK];
|
|
double r = seed.f;
|
|
r = r * ( 1.5f - r * r * y );
|
|
r = r * ( 1.5f - r * r * y );
|
|
return (float) r;
|
|
}
|
|
|
|
ID_INLINE double idMath::InvSqrt64( float x ) {
|
|
dword a = ((union _flint*)(&x))->i;
|
|
union _flint seed;
|
|
|
|
assert( initialized );
|
|
|
|
double y = x * 0.5f;
|
|
seed.i = (( ( (3*EXP_BIAS-1) - ( (a >> EXP_POS) & 0xFF) ) >> 1)<<EXP_POS) | iSqrt[(a >> (EXP_POS-LOOKUP_BITS)) & LOOKUP_MASK];
|
|
double r = seed.f;
|
|
r = r * ( 1.5f - r * r * y );
|
|
r = r * ( 1.5f - r * r * y );
|
|
r = r * ( 1.5f - r * r * y );
|
|
return r;
|
|
}
|
|
|
|
ID_INLINE float idMath::Sqrt16( float x ) {
|
|
return x * InvSqrt16( x );
|
|
}
|
|
|
|
ID_INLINE float idMath::Sqrt( float x ) {
|
|
return x * InvSqrt( x );
|
|
}
|
|
|
|
ID_INLINE double idMath::Sqrt64( float x ) {
|
|
return x * InvSqrt64( x );
|
|
}
|
|
|
|
ID_INLINE float idMath::Sin( float a ) {
|
|
return sinf( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::Sin16( float a ) {
|
|
float s;
|
|
|
|
if ( ( a < 0.0f ) || ( a >= TWO_PI ) ) {
|
|
a -= floorf( a / TWO_PI ) * TWO_PI;
|
|
}
|
|
#if 1
|
|
if ( a < PI ) {
|
|
if ( a > HALF_PI ) {
|
|
a = PI - a;
|
|
}
|
|
} else {
|
|
if ( a > PI + HALF_PI ) {
|
|
a = a - TWO_PI;
|
|
} else {
|
|
a = PI - a;
|
|
}
|
|
}
|
|
#else
|
|
a = PI - a;
|
|
if ( fabs( a ) >= HALF_PI ) {
|
|
a = ( ( a < 0.0f ) ? -PI : PI ) - a;
|
|
}
|
|
#endif
|
|
s = a * a;
|
|
return a * ( ( ( ( ( -2.39e-08f * s + 2.7526e-06f ) * s - 1.98409e-04f ) * s + 8.3333315e-03f ) * s - 1.666666664e-01f ) * s + 1.0f );
|
|
}
|
|
|
|
ID_INLINE double idMath::Sin64( float a ) {
|
|
return sin( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::Cos( float a ) {
|
|
return cosf( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::Cos16( float a ) {
|
|
float s, d;
|
|
|
|
if ( ( a < 0.0f ) || ( a >= TWO_PI ) ) {
|
|
a -= floorf( a / TWO_PI ) * TWO_PI;
|
|
}
|
|
#if 1
|
|
if ( a < PI ) {
|
|
if ( a > HALF_PI ) {
|
|
a = PI - a;
|
|
d = -1.0f;
|
|
} else {
|
|
d = 1.0f;
|
|
}
|
|
} else {
|
|
if ( a > PI + HALF_PI ) {
|
|
a = a - TWO_PI;
|
|
d = 1.0f;
|
|
} else {
|
|
a = PI - a;
|
|
d = -1.0f;
|
|
}
|
|
}
|
|
#else
|
|
a = PI - a;
|
|
if ( fabs( a ) >= HALF_PI ) {
|
|
a = ( ( a < 0.0f ) ? -PI : PI ) - a;
|
|
d = 1.0f;
|
|
} else {
|
|
d = -1.0f;
|
|
}
|
|
#endif
|
|
s = a * a;
|
|
return d * ( ( ( ( ( -2.605e-07f * s + 2.47609e-05f ) * s - 1.3888397e-03f ) * s + 4.16666418e-02f ) * s - 4.999999963e-01f ) * s + 1.0f );
|
|
}
|
|
|
|
ID_INLINE double idMath::Cos64( float a ) {
|
|
return cos( a );
|
|
}
|
|
|
|
ID_INLINE void idMath::SinCos( float a, float &s, float &c ) {
|
|
#ifdef _MSC_VER
|
|
_asm {
|
|
fld a
|
|
fsincos
|
|
mov ecx, c
|
|
mov edx, s
|
|
fstp dword ptr [ecx]
|
|
fstp dword ptr [edx]
|
|
}
|
|
#else
|
|
s = sinf( a );
|
|
c = cosf( a );
|
|
#endif
|
|
}
|
|
|
|
ID_INLINE void idMath::SinCos16( float a, float &s, float &c ) {
|
|
float t, d;
|
|
|
|
if ( ( a < 0.0f ) || ( a >= idMath::TWO_PI ) ) {
|
|
a -= floorf( a / idMath::TWO_PI ) * idMath::TWO_PI;
|
|
}
|
|
#if 1
|
|
if ( a < PI ) {
|
|
if ( a > HALF_PI ) {
|
|
a = PI - a;
|
|
d = -1.0f;
|
|
} else {
|
|
d = 1.0f;
|
|
}
|
|
} else {
|
|
if ( a > PI + HALF_PI ) {
|
|
a = a - TWO_PI;
|
|
d = 1.0f;
|
|
} else {
|
|
a = PI - a;
|
|
d = -1.0f;
|
|
}
|
|
}
|
|
#else
|
|
a = PI - a;
|
|
if ( fabs( a ) >= HALF_PI ) {
|
|
a = ( ( a < 0.0f ) ? -PI : PI ) - a;
|
|
d = 1.0f;
|
|
} else {
|
|
d = -1.0f;
|
|
}
|
|
#endif
|
|
t = a * a;
|
|
s = a * ( ( ( ( ( -2.39e-08f * t + 2.7526e-06f ) * t - 1.98409e-04f ) * t + 8.3333315e-03f ) * t - 1.666666664e-01f ) * t + 1.0f );
|
|
c = d * ( ( ( ( ( -2.605e-07f * t + 2.47609e-05f ) * t - 1.3888397e-03f ) * t + 4.16666418e-02f ) * t - 4.999999963e-01f ) * t + 1.0f );
|
|
}
|
|
|
|
ID_INLINE void idMath::SinCos64( float a, double &s, double &c ) {
|
|
#ifdef _MSC_VER
|
|
_asm {
|
|
fld a
|
|
fsincos
|
|
mov ecx, c
|
|
mov edx, s
|
|
fstp qword ptr [ecx]
|
|
fstp qword ptr [edx]
|
|
}
|
|
#else
|
|
s = sin( a );
|
|
c = cos( a );
|
|
#endif
|
|
}
|
|
|
|
ID_INLINE float idMath::Tan( float a ) {
|
|
return tanf( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::Tan16( float a ) {
|
|
float s;
|
|
bool reciprocal;
|
|
|
|
if ( ( a < 0.0f ) || ( a >= PI ) ) {
|
|
a -= floorf( a / PI ) * PI;
|
|
}
|
|
#if 1
|
|
if ( a < HALF_PI ) {
|
|
if ( a > ONEFOURTH_PI ) {
|
|
a = HALF_PI - a;
|
|
reciprocal = true;
|
|
} else {
|
|
reciprocal = false;
|
|
}
|
|
} else {
|
|
if ( a > HALF_PI + ONEFOURTH_PI ) {
|
|
a = a - PI;
|
|
reciprocal = false;
|
|
} else {
|
|
a = HALF_PI - a;
|
|
reciprocal = true;
|
|
}
|
|
}
|
|
#else
|
|
a = HALF_PI - a;
|
|
if ( fabs( a ) >= ONEFOURTH_PI ) {
|
|
a = ( ( a < 0.0f ) ? -HALF_PI : HALF_PI ) - a;
|
|
reciprocal = false;
|
|
} else {
|
|
reciprocal = true;
|
|
}
|
|
#endif
|
|
s = a * a;
|
|
s = a * ( ( ( ( ( ( 9.5168091e-03f * s + 2.900525e-03f ) * s + 2.45650893e-02f ) * s + 5.33740603e-02f ) * s + 1.333923995e-01f ) * s + 3.333314036e-01f ) * s + 1.0f );
|
|
if ( reciprocal ) {
|
|
return 1.0f / s;
|
|
} else {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
ID_INLINE double idMath::Tan64( float a ) {
|
|
return tan( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ASin( float a ) {
|
|
if ( a <= -1.0f ) {
|
|
return -HALF_PI;
|
|
}
|
|
if ( a >= 1.0f ) {
|
|
return HALF_PI;
|
|
}
|
|
return asinf( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ASin16( float a ) {
|
|
if ( FLOATSIGNBITSET( a ) ) {
|
|
if ( a <= -1.0f ) {
|
|
return -HALF_PI;
|
|
}
|
|
a = fabs( a );
|
|
return ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * sqrt( 1.0f - a ) - HALF_PI;
|
|
} else {
|
|
if ( a >= 1.0f ) {
|
|
return HALF_PI;
|
|
}
|
|
return HALF_PI - ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * sqrt( 1.0f - a );
|
|
}
|
|
}
|
|
|
|
ID_INLINE double idMath::ASin64( float a ) {
|
|
if ( a <= -1.0f ) {
|
|
return -HALF_PI;
|
|
}
|
|
if ( a >= 1.0f ) {
|
|
return HALF_PI;
|
|
}
|
|
return asin( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ACos( float a ) {
|
|
if ( a <= -1.0f ) {
|
|
return PI;
|
|
}
|
|
if ( a >= 1.0f ) {
|
|
return 0.0f;
|
|
}
|
|
return acosf( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ACos16( float a ) {
|
|
if ( FLOATSIGNBITSET( a ) ) {
|
|
if ( a <= -1.0f ) {
|
|
return PI;
|
|
}
|
|
a = fabs( a );
|
|
return PI - ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * sqrt( 1.0f - a );
|
|
} else {
|
|
if ( a >= 1.0f ) {
|
|
return 0.0f;
|
|
}
|
|
return ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * sqrt( 1.0f - a );
|
|
}
|
|
}
|
|
|
|
ID_INLINE double idMath::ACos64( float a ) {
|
|
if ( a <= -1.0f ) {
|
|
return PI;
|
|
}
|
|
if ( a >= 1.0f ) {
|
|
return 0.0f;
|
|
}
|
|
return acos( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ATan( float a ) {
|
|
return atanf( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ATan16( float a ) {
|
|
float s;
|
|
|
|
if ( fabs( a ) > 1.0f ) {
|
|
a = 1.0f / a;
|
|
s = a * a;
|
|
s = - ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f )
|
|
* s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a;
|
|
if ( FLOATSIGNBITSET( a ) ) {
|
|
return s - HALF_PI;
|
|
} else {
|
|
return s + HALF_PI;
|
|
}
|
|
} else {
|
|
s = a * a;
|
|
return ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f )
|
|
* s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a;
|
|
}
|
|
}
|
|
|
|
ID_INLINE double idMath::ATan64( float a ) {
|
|
return atan( a );
|
|
}
|
|
|
|
ID_INLINE float idMath::ATan( float y, float x ) {
|
|
return atan2f( y, x );
|
|
}
|
|
|
|
ID_INLINE float idMath::ATan16( float y, float x ) {
|
|
float a, s;
|
|
|
|
if ( fabs( y ) > fabs( x ) ) {
|
|
a = x / y;
|
|
s = a * a;
|
|
s = - ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f )
|
|
* s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a;
|
|
if ( FLOATSIGNBITSET( a ) ) {
|
|
return s - HALF_PI;
|
|
} else {
|
|
return s + HALF_PI;
|
|
}
|
|
} else {
|
|
a = y / x;
|
|
s = a * a;
|
|
return ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f )
|
|
* s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a;
|
|
}
|
|
}
|
|
|
|
ID_INLINE double idMath::ATan64( float y, float x ) {
|
|
return atan2( y, x );
|
|
}
|
|
|
|
ID_INLINE float idMath::Pow( float x, float y ) {
|
|
return powf( x, y );
|
|
}
|
|
|
|
ID_INLINE float idMath::Pow16( float x, float y ) {
|
|
return Exp16( y * Log16( x ) );
|
|
}
|
|
|
|
ID_INLINE double idMath::Pow64( float x, float y ) {
|
|
return pow( x, y );
|
|
}
|
|
|
|
ID_INLINE float idMath::Exp( float f ) {
|
|
return expf( f );
|
|
}
|
|
|
|
ID_INLINE float idMath::Exp16( float f ) {
|
|
int i, s, e, m, exponent;
|
|
float x, x2, y, p, q;
|
|
|
|
x = f * 1.44269504088896340f; // multiply with ( 1 / log( 2 ) )
|
|
#if 1
|
|
i = *reinterpret_cast<int *>(&x);
|
|
s = ( i >> IEEE_FLT_SIGN_BIT );
|
|
e = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
|
|
m = ( i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 ) ) | ( 1 << IEEE_FLT_MANTISSA_BITS );
|
|
i = ( ( m >> ( IEEE_FLT_MANTISSA_BITS - e ) ) & ~( e >> 31 ) ) ^ s;
|
|
#else
|
|
i = (int) x;
|
|
if ( x < 0.0f ) {
|
|
i--;
|
|
}
|
|
#endif
|
|
exponent = ( i + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS;
|
|
y = *reinterpret_cast<float *>(&exponent);
|
|
x -= (float) i;
|
|
if ( x >= 0.5f ) {
|
|
x -= 0.5f;
|
|
y *= 1.4142135623730950488f; // multiply with sqrt( 2 )
|
|
}
|
|
x2 = x * x;
|
|
p = x * ( 7.2152891511493f + x2 * 0.0576900723731f );
|
|
q = 20.8189237930062f + x2;
|
|
x = y * ( q + p ) / ( q - p );
|
|
return x;
|
|
}
|
|
|
|
ID_INLINE double idMath::Exp64( float f ) {
|
|
return exp( f );
|
|
}
|
|
|
|
ID_INLINE float idMath::Log( float f ) {
|
|
return logf( f );
|
|
}
|
|
|
|
ID_INLINE float idMath::Log16( float f ) {
|
|
int i, exponent;
|
|
float y, y2;
|
|
|
|
i = *reinterpret_cast<int *>(&f);
|
|
exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
|
|
i -= ( exponent + 1 ) << IEEE_FLT_MANTISSA_BITS; // get value in the range [.5, 1>
|
|
y = *reinterpret_cast<float *>(&i);
|
|
y *= 1.4142135623730950488f; // multiply with sqrt( 2 )
|
|
y = ( y - 1.0f ) / ( y + 1.0f );
|
|
y2 = y * y;
|
|
y = y * ( 2.000000000046727f + y2 * ( 0.666666635059382f + y2 * ( 0.4000059794795f + y2 * ( 0.28525381498f + y2 * 0.2376245609f ) ) ) );
|
|
y += 0.693147180559945f * ( (float)exponent + 0.5f );
|
|
return y;
|
|
}
|
|
|
|
ID_INLINE double idMath::Log64( float f ) {
|
|
return log( f );
|
|
}
|
|
|
|
ID_INLINE int idMath::IPow( int x, int y ) {
|
|
int r; for( r = x; y > 1; y-- ) { r *= x; } return r;
|
|
}
|
|
|
|
ID_INLINE int idMath::ILog2( float f ) {
|
|
return ( ( (*reinterpret_cast<int *>(&f)) >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
|
|
}
|
|
|
|
ID_INLINE int idMath::ILog2( int i ) {
|
|
return ILog2( (float)i );
|
|
}
|
|
|
|
ID_INLINE int idMath::BitsForFloat( float f ) {
|
|
return ILog2( f ) + 1;
|
|
}
|
|
|
|
ID_INLINE int idMath::BitsForInteger( int i ) {
|
|
return ILog2( (float)i ) + 1;
|
|
}
|
|
|
|
ID_INLINE int idMath::MaskForFloatSign( float f ) {
|
|
return ( (*reinterpret_cast<int *>(&f)) >> 31 );
|
|
}
|
|
|
|
ID_INLINE int idMath::MaskForIntegerSign( int i ) {
|
|
return ( i >> 31 );
|
|
}
|
|
|
|
ID_INLINE int idMath::FloorPowerOfTwo( int x ) {
|
|
return CeilPowerOfTwo( x ) >> 1;
|
|
}
|
|
|
|
ID_INLINE int idMath::CeilPowerOfTwo( int x ) {
|
|
x--;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
x++;
|
|
return x;
|
|
}
|
|
|
|
ID_INLINE bool idMath::IsPowerOfTwo( int x ) {
|
|
return ( x & ( x - 1 ) ) == 0 && x > 0;
|
|
}
|
|
|
|
ID_INLINE int idMath::BitCount( int x ) {
|
|
x -= ( ( x >> 1 ) & 0x55555555 );
|
|
x = ( ( ( x >> 2 ) & 0x33333333 ) + ( x & 0x33333333 ) );
|
|
x = ( ( ( x >> 4 ) + x ) & 0x0f0f0f0f );
|
|
x += ( x >> 8 );
|
|
return ( ( x + ( x >> 16 ) ) & 0x0000003f );
|
|
}
|
|
|
|
ID_INLINE int idMath::BitReverse( int x ) {
|
|
x = ( ( ( x >> 1 ) & 0x55555555 ) | ( ( x & 0x55555555 ) << 1 ) );
|
|
x = ( ( ( x >> 2 ) & 0x33333333 ) | ( ( x & 0x33333333 ) << 2 ) );
|
|
x = ( ( ( x >> 4 ) & 0x0f0f0f0f ) | ( ( x & 0x0f0f0f0f ) << 4 ) );
|
|
x = ( ( ( x >> 8 ) & 0x00ff00ff ) | ( ( x & 0x00ff00ff ) << 8 ) );
|
|
return ( ( x >> 16 ) | ( x << 16 ) );
|
|
}
|
|
|
|
ID_INLINE int idMath::Abs( int x ) {
|
|
int y = x >> 31;
|
|
return ( ( x ^ y ) - y );
|
|
}
|
|
|
|
ID_INLINE float idMath::Fabs( float f ) {
|
|
int tmp = *reinterpret_cast<int *>( &f );
|
|
tmp &= 0x7FFFFFFF;
|
|
return *reinterpret_cast<float *>( &tmp );
|
|
}
|
|
|
|
ID_INLINE float idMath::Floor( float f ) {
|
|
return floorf( f );
|
|
}
|
|
|
|
ID_INLINE float idMath::Ceil( float f ) {
|
|
return ceilf( f );
|
|
}
|
|
|
|
ID_INLINE float idMath::Rint( float f ) {
|
|
return floorf( f + 0.5f );
|
|
}
|
|
|
|
ID_INLINE int idMath::Ftoi( float f ) {
|
|
return (int) f;
|
|
}
|
|
|
|
ID_INLINE int idMath::FtoiFast( float f ) {
|
|
#ifdef _MSC_VER
|
|
int i;
|
|
__asm fld f
|
|
__asm fistp i // use default rouding mode (round nearest)
|
|
return i;
|
|
#elif 0 // round chop (C/C++ standard)
|
|
int i, s, e, m, shift;
|
|
i = *reinterpret_cast<int *>(&f);
|
|
s = i >> IEEE_FLT_SIGN_BIT;
|
|
e = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
|
|
m = ( i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 ) ) | ( 1 << IEEE_FLT_MANTISSA_BITS );
|
|
shift = e - IEEE_FLT_MANTISSA_BITS;
|
|
return ( ( ( ( m >> -shift ) | ( m << shift ) ) & ~( e >> 31 ) ) ^ s ) - s;
|
|
//#elif defined( __i386__ )
|
|
#elif 0
|
|
int i = 0;
|
|
__asm__ __volatile__ (
|
|
"fld %1\n" \
|
|
"fistp %0\n" \
|
|
: "=m" (i) \
|
|
: "m" (f) );
|
|
return i;
|
|
#else
|
|
return (int) f;
|
|
#endif
|
|
}
|
|
|
|
ID_INLINE unsigned int idMath::Ftol( float f ) {
|
|
return (unsigned int) f;
|
|
}
|
|
|
|
ID_INLINE unsigned int idMath::FtolFast( float f ) {
|
|
#ifdef _MSC_VER
|
|
// FIXME: this overflows on 31bits still .. same as FtoiFast
|
|
unsigned int i;
|
|
__asm fld f
|
|
__asm fistp i // use default rouding mode (round nearest)
|
|
return i;
|
|
#elif 0 // round chop (C/C++ standard)
|
|
int i, s, e, m, shift;
|
|
i = *reinterpret_cast<int *>(&f);
|
|
s = i >> IEEE_FLT_SIGN_BIT;
|
|
e = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
|
|
m = ( i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 ) ) | ( 1 << IEEE_FLT_MANTISSA_BITS );
|
|
shift = e - IEEE_FLT_MANTISSA_BITS;
|
|
return ( ( ( ( m >> -shift ) | ( m << shift ) ) & ~( e >> 31 ) ) ^ s ) - s;
|
|
//#elif defined( __i386__ )
|
|
#elif 0
|
|
// for some reason, on gcc I need to make sure i == 0 before performing a fistp
|
|
int i = 0;
|
|
__asm__ __volatile__ (
|
|
"fld %1\n" \
|
|
"fistp %0\n" \
|
|
: "=m" (i) \
|
|
: "m" (f) );
|
|
return i;
|
|
#else
|
|
return (unsigned int) f;
|
|
#endif
|
|
}
|
|
|
|
ID_INLINE signed char idMath::ClampChar( int i ) {
|
|
if ( i < -128 ) {
|
|
return -128;
|
|
}
|
|
if ( i > 127 ) {
|
|
return 127;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
ID_INLINE signed short idMath::ClampShort( int i ) {
|
|
if ( i < -32768 ) {
|
|
return -32768;
|
|
}
|
|
if ( i > 32767 ) {
|
|
return 32767;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
ID_INLINE int idMath::ClampInt( int min, int max, int value ) {
|
|
if ( value < min ) {
|
|
return min;
|
|
}
|
|
if ( value > max ) {
|
|
return max;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
ID_INLINE float idMath::ClampFloat( float min, float max, float value ) {
|
|
if ( value < min ) {
|
|
return min;
|
|
}
|
|
if ( value > max ) {
|
|
return max;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
ID_INLINE float idMath::AngleNormalize360( float angle ) {
|
|
if ( ( angle >= 360.0f ) || ( angle < 0.0f ) ) {
|
|
angle -= floor( angle / 360.0f ) * 360.0f;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
ID_INLINE float idMath::AngleNormalize180( float angle ) {
|
|
angle = AngleNormalize360( angle );
|
|
if ( angle > 180.0f ) {
|
|
angle -= 360.0f;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
ID_INLINE float idMath::AngleDelta( float angle1, float angle2 ) {
|
|
return AngleNormalize180( angle1 - angle2 );
|
|
}
|
|
|
|
ID_INLINE int idMath::FloatHash( const float *array, const int numFloats ) {
|
|
int i, hash = 0;
|
|
const int *ptr;
|
|
|
|
ptr = reinterpret_cast<const int *>( array );
|
|
for ( i = 0; i < numFloats; i++ ) {
|
|
hash ^= ptr[i];
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
#endif /* !__MATH_MATH_H__ */
|