mirror of
https://github.com/dhewm/dhewm3-sdk.git
synced 2024-11-22 12:41:48 +00:00
afebd7e1e5
Don't include the lazy precompiled.h everywhere, only what's required for the compilation unit. platform.h needs to be included instead to provide all essential defines and types. All includes use the relative path to the neo or the game specific root. Move all idlib related includes from idlib/Lib.h to precompiled.h. precompiled.h still exists for the MFC stuff in tools/. Add some missing header guards.
8108 lines
244 KiB
C++
8108 lines
244 KiB
C++
/*
|
|
===========================================================================
|
|
|
|
Doom 3 GPL Source Code
|
|
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
|
|
|
|
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
|
|
|
|
Doom 3 Source Code is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Doom 3 Source Code is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
|
|
|
|
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
|
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "sys/platform.h"
|
|
#include "idlib/containers/List.h"
|
|
#include "idlib/math/Math.h"
|
|
#include "idlib/math/Angles.h"
|
|
#include "idlib/math/Quat.h"
|
|
#include "idlib/math/Rotation.h"
|
|
#include "idlib/Str.h"
|
|
#include "framework/Common.h"
|
|
|
|
#include "idlib/math/Matrix.h"
|
|
|
|
//===============================================================
|
|
//
|
|
// idMat2
|
|
//
|
|
//===============================================================
|
|
|
|
idMat2 mat2_zero( idVec2( 0, 0 ), idVec2( 0, 0 ) );
|
|
idMat2 mat2_identity( idVec2( 1, 0 ), idVec2( 0, 1 ) );
|
|
|
|
/*
|
|
============
|
|
idMat2::InverseSelf
|
|
============
|
|
*/
|
|
bool idMat2::InverseSelf( void ) {
|
|
// 2+4 = 6 multiplications
|
|
// 1 division
|
|
double det, invDet, a;
|
|
|
|
det = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
a = mat[0][0];
|
|
mat[0][0] = mat[1][1] * invDet;
|
|
mat[0][1] = - mat[0][1] * invDet;
|
|
mat[1][0] = - mat[1][0] * invDet;
|
|
mat[1][1] = a * invDet;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat2::InverseFastSelf
|
|
============
|
|
*/
|
|
bool idMat2::InverseFastSelf( void ) {
|
|
#if 1
|
|
// 2+4 = 6 multiplications
|
|
// 1 division
|
|
double det, invDet, a;
|
|
|
|
det = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
a = mat[0][0];
|
|
mat[0][0] = mat[1][1] * invDet;
|
|
mat[0][1] = - mat[0][1] * invDet;
|
|
mat[1][0] = - mat[1][0] * invDet;
|
|
mat[1][1] = a * invDet;
|
|
|
|
return true;
|
|
#else
|
|
// 2*4 = 8 multiplications
|
|
// 2 division
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
double d, di;
|
|
float s;
|
|
|
|
di = mat[0];
|
|
s = di;
|
|
mat[0*2+0] = d = 1.0f / di;
|
|
mat[0*2+1] *= d;
|
|
d = -d;
|
|
mat[1*2+0] *= d;
|
|
d = mat[1*2+0] * di;
|
|
mat[1*2+1] += mat[0*2+1] * d;
|
|
di = mat[1*2+1];
|
|
s *= di;
|
|
mat[1*2+1] = d = 1.0f / di;
|
|
mat[1*2+0] *= d;
|
|
d = -d;
|
|
mat[0*2+1] *= d;
|
|
d = mat[0*2+1] * di;
|
|
mat[0*2+0] += mat[1*2+0] * d;
|
|
|
|
return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
=============
|
|
idMat2::ToString
|
|
=============
|
|
*/
|
|
const char *idMat2::ToString( int precision ) const {
|
|
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
|
|
}
|
|
|
|
|
|
//===============================================================
|
|
//
|
|
// idMat3
|
|
//
|
|
//===============================================================
|
|
|
|
idMat3 mat3_zero( idVec3( 0, 0, 0 ), idVec3( 0, 0, 0 ), idVec3( 0, 0, 0 ) );
|
|
idMat3 mat3_identity( idVec3( 1, 0, 0 ), idVec3( 0, 1, 0 ), idVec3( 0, 0, 1 ) );
|
|
|
|
/*
|
|
============
|
|
idMat3::ToAngles
|
|
============
|
|
*/
|
|
idAngles idMat3::ToAngles( void ) const {
|
|
idAngles angles;
|
|
double theta;
|
|
double cp;
|
|
float sp;
|
|
|
|
sp = mat[ 0 ][ 2 ];
|
|
|
|
// cap off our sin value so that we don't get any NANs
|
|
if ( sp > 1.0f ) {
|
|
sp = 1.0f;
|
|
} else if ( sp < -1.0f ) {
|
|
sp = -1.0f;
|
|
}
|
|
|
|
theta = -asin( sp );
|
|
cp = cos( theta );
|
|
|
|
if ( cp > 8192.0f * idMath::FLT_EPSILON ) {
|
|
angles.pitch = RAD2DEG( theta );
|
|
angles.yaw = RAD2DEG( atan2( mat[ 0 ][ 1 ], mat[ 0 ][ 0 ] ) );
|
|
angles.roll = RAD2DEG( atan2( mat[ 1 ][ 2 ], mat[ 2 ][ 2 ] ) );
|
|
} else {
|
|
angles.pitch = RAD2DEG( theta );
|
|
angles.yaw = RAD2DEG( -atan2( mat[ 1 ][ 0 ], mat[ 1 ][ 1 ] ) );
|
|
angles.roll = 0;
|
|
}
|
|
return angles;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::ToQuat
|
|
============
|
|
*/
|
|
idQuat idMat3::ToQuat( void ) const {
|
|
idQuat q;
|
|
float trace;
|
|
float s;
|
|
float t;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
|
|
static int next[ 3 ] = { 1, 2, 0 };
|
|
|
|
trace = mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ];
|
|
|
|
if ( trace > 0.0f ) {
|
|
|
|
t = trace + 1.0f;
|
|
s = idMath::InvSqrt( t ) * 0.5f;
|
|
|
|
q[3] = s * t;
|
|
q[0] = ( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] ) * s;
|
|
q[1] = ( mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] ) * s;
|
|
q[2] = ( mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] ) * s;
|
|
|
|
} else {
|
|
|
|
i = 0;
|
|
if ( mat[ 1 ][ 1 ] > mat[ 0 ][ 0 ] ) {
|
|
i = 1;
|
|
}
|
|
if ( mat[ 2 ][ 2 ] > mat[ i ][ i ] ) {
|
|
i = 2;
|
|
}
|
|
j = next[ i ];
|
|
k = next[ j ];
|
|
|
|
t = ( mat[ i ][ i ] - ( mat[ j ][ j ] + mat[ k ][ k ] ) ) + 1.0f;
|
|
s = idMath::InvSqrt( t ) * 0.5f;
|
|
|
|
q[i] = s * t;
|
|
q[3] = ( mat[ k ][ j ] - mat[ j ][ k ] ) * s;
|
|
q[j] = ( mat[ j ][ i ] + mat[ i ][ j ] ) * s;
|
|
q[k] = ( mat[ k ][ i ] + mat[ i ][ k ] ) * s;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::ToCQuat
|
|
============
|
|
*/
|
|
idCQuat idMat3::ToCQuat( void ) const {
|
|
idQuat q = ToQuat();
|
|
if ( q.w < 0.0f ) {
|
|
return idCQuat( -q.x, -q.y, -q.z );
|
|
}
|
|
return idCQuat( q.x, q.y, q.z );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::ToRotation
|
|
============
|
|
*/
|
|
idRotation idMat3::ToRotation( void ) const {
|
|
idRotation r;
|
|
float trace;
|
|
float s;
|
|
float t;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
static int next[ 3 ] = { 1, 2, 0 };
|
|
|
|
trace = mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ];
|
|
if ( trace > 0.0f ) {
|
|
|
|
t = trace + 1.0f;
|
|
s = idMath::InvSqrt( t ) * 0.5f;
|
|
|
|
r.angle = s * t;
|
|
r.vec[0] = ( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] ) * s;
|
|
r.vec[1] = ( mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] ) * s;
|
|
r.vec[2] = ( mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] ) * s;
|
|
|
|
} else {
|
|
|
|
i = 0;
|
|
if ( mat[ 1 ][ 1 ] > mat[ 0 ][ 0 ] ) {
|
|
i = 1;
|
|
}
|
|
if ( mat[ 2 ][ 2 ] > mat[ i ][ i ] ) {
|
|
i = 2;
|
|
}
|
|
j = next[ i ];
|
|
k = next[ j ];
|
|
|
|
t = ( mat[ i ][ i ] - ( mat[ j ][ j ] + mat[ k ][ k ] ) ) + 1.0f;
|
|
s = idMath::InvSqrt( t ) * 0.5f;
|
|
|
|
r.vec[i] = s * t;
|
|
r.angle = ( mat[ k ][ j ] - mat[ j ][ k ] ) * s;
|
|
r.vec[j] = ( mat[ j ][ i ] + mat[ i ][ j ] ) * s;
|
|
r.vec[k] = ( mat[ k ][ i ] + mat[ i ][ k ] ) * s;
|
|
}
|
|
r.angle = idMath::ACos( r.angle );
|
|
if ( idMath::Fabs( r.angle ) < 1e-10f ) {
|
|
r.vec.Set( 0.0f, 0.0f, 1.0f );
|
|
r.angle = 0.0f;
|
|
} else {
|
|
//vec *= (1.0f / sin( angle ));
|
|
r.vec.Normalize();
|
|
r.vec.FixDegenerateNormal();
|
|
r.angle *= 2.0f * idMath::M_RAD2DEG;
|
|
}
|
|
|
|
r.origin.Zero();
|
|
r.axis = *this;
|
|
r.axisValid = true;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
idMat3::ToAngularVelocity
|
|
=================
|
|
*/
|
|
idVec3 idMat3::ToAngularVelocity( void ) const {
|
|
idRotation rotation = ToRotation();
|
|
return rotation.GetVec() * DEG2RAD( rotation.GetAngle() );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::Determinant
|
|
============
|
|
*/
|
|
float idMat3::Determinant( void ) const {
|
|
|
|
float det2_12_01 = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
|
|
float det2_12_02 = mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0];
|
|
float det2_12_12 = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
|
|
|
|
return mat[0][0] * det2_12_12 - mat[0][1] * det2_12_02 + mat[0][2] * det2_12_01;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::InverseSelf
|
|
============
|
|
*/
|
|
bool idMat3::InverseSelf( void ) {
|
|
// 18+3+9 = 30 multiplications
|
|
// 1 division
|
|
idMat3 inverse;
|
|
double det, invDet;
|
|
|
|
inverse[0][0] = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
|
|
inverse[1][0] = mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2];
|
|
inverse[2][0] = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
|
|
|
|
det = mat[0][0] * inverse[0][0] + mat[0][1] * inverse[1][0] + mat[0][2] * inverse[2][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
inverse[0][1] = mat[0][2] * mat[2][1] - mat[0][1] * mat[2][2];
|
|
inverse[0][2] = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
|
|
inverse[1][1] = mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0];
|
|
inverse[1][2] = mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2];
|
|
inverse[2][1] = mat[0][1] * mat[2][0] - mat[0][0] * mat[2][1];
|
|
inverse[2][2] = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
|
|
mat[0][0] = inverse[0][0] * invDet;
|
|
mat[0][1] = inverse[0][1] * invDet;
|
|
mat[0][2] = inverse[0][2] * invDet;
|
|
|
|
mat[1][0] = inverse[1][0] * invDet;
|
|
mat[1][1] = inverse[1][1] * invDet;
|
|
mat[1][2] = inverse[1][2] * invDet;
|
|
|
|
mat[2][0] = inverse[2][0] * invDet;
|
|
mat[2][1] = inverse[2][1] * invDet;
|
|
mat[2][2] = inverse[2][2] * invDet;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::InverseFastSelf
|
|
============
|
|
*/
|
|
bool idMat3::InverseFastSelf( void ) {
|
|
#if 1
|
|
// 18+3+9 = 30 multiplications
|
|
// 1 division
|
|
idMat3 inverse;
|
|
double det, invDet;
|
|
|
|
inverse[0][0] = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
|
|
inverse[1][0] = mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2];
|
|
inverse[2][0] = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
|
|
|
|
det = mat[0][0] * inverse[0][0] + mat[0][1] * inverse[1][0] + mat[0][2] * inverse[2][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
inverse[0][1] = mat[0][2] * mat[2][1] - mat[0][1] * mat[2][2];
|
|
inverse[0][2] = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
|
|
inverse[1][1] = mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0];
|
|
inverse[1][2] = mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2];
|
|
inverse[2][1] = mat[0][1] * mat[2][0] - mat[0][0] * mat[2][1];
|
|
inverse[2][2] = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
|
|
mat[0][0] = inverse[0][0] * invDet;
|
|
mat[0][1] = inverse[0][1] * invDet;
|
|
mat[0][2] = inverse[0][2] * invDet;
|
|
|
|
mat[1][0] = inverse[1][0] * invDet;
|
|
mat[1][1] = inverse[1][1] * invDet;
|
|
mat[1][2] = inverse[1][2] * invDet;
|
|
|
|
mat[2][0] = inverse[2][0] * invDet;
|
|
mat[2][1] = inverse[2][1] * invDet;
|
|
mat[2][2] = inverse[2][2] * invDet;
|
|
|
|
return true;
|
|
#elif 0
|
|
// 3*10 = 30 multiplications
|
|
// 3 divisions
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
float s;
|
|
double d, di;
|
|
|
|
di = mat[0];
|
|
s = di;
|
|
mat[0] = d = 1.0f / di;
|
|
mat[1] *= d;
|
|
mat[2] *= d;
|
|
d = -d;
|
|
mat[3] *= d;
|
|
mat[6] *= d;
|
|
d = mat[3] * di;
|
|
mat[4] += mat[1] * d;
|
|
mat[5] += mat[2] * d;
|
|
d = mat[6] * di;
|
|
mat[7] += mat[1] * d;
|
|
mat[8] += mat[2] * d;
|
|
di = mat[4];
|
|
s *= di;
|
|
mat[4] = d = 1.0f / di;
|
|
mat[3] *= d;
|
|
mat[5] *= d;
|
|
d = -d;
|
|
mat[1] *= d;
|
|
mat[7] *= d;
|
|
d = mat[1] * di;
|
|
mat[0] += mat[3] * d;
|
|
mat[2] += mat[5] * d;
|
|
d = mat[7] * di;
|
|
mat[6] += mat[3] * d;
|
|
mat[8] += mat[5] * d;
|
|
di = mat[8];
|
|
s *= di;
|
|
mat[8] = d = 1.0f / di;
|
|
mat[6] *= d;
|
|
mat[7] *= d;
|
|
d = -d;
|
|
mat[2] *= d;
|
|
mat[5] *= d;
|
|
d = mat[2] * di;
|
|
mat[0] += mat[6] * d;
|
|
mat[1] += mat[7] * d;
|
|
d = mat[5] * di;
|
|
mat[3] += mat[6] * d;
|
|
mat[4] += mat[7] * d;
|
|
|
|
return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
|
|
#else
|
|
// 4*2+4*4 = 24 multiplications
|
|
// 2*1 = 2 divisions
|
|
idMat2 r0;
|
|
float r1[2], r2[2], r3;
|
|
float det, invDet;
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
|
|
// r0 = m0.Inverse(); // 2x2
|
|
det = mat[0*3+0] * mat[1*3+1] - mat[0*3+1] * mat[1*3+0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
r0[0][0] = mat[1*3+1] * invDet;
|
|
r0[0][1] = - mat[0*3+1] * invDet;
|
|
r0[1][0] = - mat[1*3+0] * invDet;
|
|
r0[1][1] = mat[0*3+0] * invDet;
|
|
|
|
// r1 = r0 * m1; // 2x1 = 2x2 * 2x1
|
|
r1[0] = r0[0][0] * mat[0*3+2] + r0[0][1] * mat[1*3+2];
|
|
r1[1] = r0[1][0] * mat[0*3+2] + r0[1][1] * mat[1*3+2];
|
|
|
|
// r2 = m2 * r1; // 1x1 = 1x2 * 2x1
|
|
r2[0] = mat[2*3+0] * r1[0] + mat[2*3+1] * r1[1];
|
|
|
|
// r3 = r2 - m3; // 1x1 = 1x1 - 1x1
|
|
r3 = r2[0] - mat[2*3+2];
|
|
|
|
// r3.InverseSelf();
|
|
if ( idMath::Fabs( r3 ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
r3 = 1.0f / r3;
|
|
|
|
// r2 = m2 * r0; // 1x2 = 1x2 * 2x2
|
|
r2[0] = mat[2*3+0] * r0[0][0] + mat[2*3+1] * r0[1][0];
|
|
r2[1] = mat[2*3+0] * r0[0][1] + mat[2*3+1] * r0[1][1];
|
|
|
|
// m2 = r3 * r2; // 1x2 = 1x1 * 1x2
|
|
mat[2*3+0] = r3 * r2[0];
|
|
mat[2*3+1] = r3 * r2[1];
|
|
|
|
// m0 = r0 - r1 * m2; // 2x2 - 2x1 * 1x2
|
|
mat[0*3+0] = r0[0][0] - r1[0] * mat[2*3+0];
|
|
mat[0*3+1] = r0[0][1] - r1[0] * mat[2*3+1];
|
|
mat[1*3+0] = r0[1][0] - r1[1] * mat[2*3+0];
|
|
mat[1*3+1] = r0[1][1] - r1[1] * mat[2*3+1];
|
|
|
|
// m1 = r1 * r3; // 2x1 = 2x1 * 1x1
|
|
mat[0*3+2] = r1[0] * r3;
|
|
mat[1*3+2] = r1[1] * r3;
|
|
|
|
// m3 = -r3;
|
|
mat[2*3+2] = -r3;
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::InertiaTranslate
|
|
============
|
|
*/
|
|
idMat3 idMat3::InertiaTranslate( const float mass, const idVec3 ¢erOfMass, const idVec3 &translation ) const {
|
|
idMat3 m;
|
|
idVec3 newCenter;
|
|
|
|
newCenter = centerOfMass + translation;
|
|
|
|
m[0][0] = mass * ( ( centerOfMass[1] * centerOfMass[1] + centerOfMass[2] * centerOfMass[2] )
|
|
- ( newCenter[1] * newCenter[1] + newCenter[2] * newCenter[2] ) );
|
|
m[1][1] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[2] * centerOfMass[2] )
|
|
- ( newCenter[0] * newCenter[0] + newCenter[2] * newCenter[2] ) );
|
|
m[2][2] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[1] * centerOfMass[1] )
|
|
- ( newCenter[0] * newCenter[0] + newCenter[1] * newCenter[1] ) );
|
|
|
|
m[0][1] = m[1][0] = mass * ( newCenter[0] * newCenter[1] - centerOfMass[0] * centerOfMass[1] );
|
|
m[1][2] = m[2][1] = mass * ( newCenter[1] * newCenter[2] - centerOfMass[1] * centerOfMass[2] );
|
|
m[0][2] = m[2][0] = mass * ( newCenter[0] * newCenter[2] - centerOfMass[0] * centerOfMass[2] );
|
|
|
|
return (*this) + m;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::InertiaTranslateSelf
|
|
============
|
|
*/
|
|
idMat3 &idMat3::InertiaTranslateSelf( const float mass, const idVec3 ¢erOfMass, const idVec3 &translation ) {
|
|
idMat3 m;
|
|
idVec3 newCenter;
|
|
|
|
newCenter = centerOfMass + translation;
|
|
|
|
m[0][0] = mass * ( ( centerOfMass[1] * centerOfMass[1] + centerOfMass[2] * centerOfMass[2] )
|
|
- ( newCenter[1] * newCenter[1] + newCenter[2] * newCenter[2] ) );
|
|
m[1][1] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[2] * centerOfMass[2] )
|
|
- ( newCenter[0] * newCenter[0] + newCenter[2] * newCenter[2] ) );
|
|
m[2][2] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[1] * centerOfMass[1] )
|
|
- ( newCenter[0] * newCenter[0] + newCenter[1] * newCenter[1] ) );
|
|
|
|
m[0][1] = m[1][0] = mass * ( newCenter[0] * newCenter[1] - centerOfMass[0] * centerOfMass[1] );
|
|
m[1][2] = m[2][1] = mass * ( newCenter[1] * newCenter[2] - centerOfMass[1] * centerOfMass[2] );
|
|
m[0][2] = m[2][0] = mass * ( newCenter[0] * newCenter[2] - centerOfMass[0] * centerOfMass[2] );
|
|
|
|
(*this) += m;
|
|
|
|
return (*this);
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::InertiaRotate
|
|
============
|
|
*/
|
|
idMat3 idMat3::InertiaRotate( const idMat3 &rotation ) const {
|
|
// NOTE: the rotation matrix is stored column-major
|
|
return rotation.Transpose() * (*this) * rotation;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat3::InertiaRotateSelf
|
|
============
|
|
*/
|
|
idMat3 &idMat3::InertiaRotateSelf( const idMat3 &rotation ) {
|
|
// NOTE: the rotation matrix is stored column-major
|
|
*this = rotation.Transpose() * (*this) * rotation;
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
idMat3::ToString
|
|
=============
|
|
*/
|
|
const char *idMat3::ToString( int precision ) const {
|
|
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
|
|
}
|
|
|
|
|
|
//===============================================================
|
|
//
|
|
// idMat4
|
|
//
|
|
//===============================================================
|
|
|
|
idMat4 mat4_zero( idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ) );
|
|
idMat4 mat4_identity( idVec4( 1, 0, 0, 0 ), idVec4( 0, 1, 0, 0 ), idVec4( 0, 0, 1, 0 ), idVec4( 0, 0, 0, 1 ) );
|
|
|
|
/*
|
|
============
|
|
idMat4::Transpose
|
|
============
|
|
*/
|
|
idMat4 idMat4::Transpose( void ) const {
|
|
idMat4 transpose;
|
|
int i, j;
|
|
|
|
for( i = 0; i < 4; i++ ) {
|
|
for( j = 0; j < 4; j++ ) {
|
|
transpose[ i ][ j ] = mat[ j ][ i ];
|
|
}
|
|
}
|
|
return transpose;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat4::TransposeSelf
|
|
============
|
|
*/
|
|
idMat4 &idMat4::TransposeSelf( void ) {
|
|
float temp;
|
|
int i, j;
|
|
|
|
for( i = 0; i < 4; i++ ) {
|
|
for( j = i + 1; j < 4; j++ ) {
|
|
temp = mat[ i ][ j ];
|
|
mat[ i ][ j ] = mat[ j ][ i ];
|
|
mat[ j ][ i ] = temp;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat4::Determinant
|
|
============
|
|
*/
|
|
float idMat4::Determinant( void ) const {
|
|
|
|
// 2x2 sub-determinants
|
|
float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0];
|
|
float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0];
|
|
float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
|
|
float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1];
|
|
float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2];
|
|
|
|
// 3x3 sub-determinants
|
|
float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01;
|
|
float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01;
|
|
float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02;
|
|
float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12;
|
|
|
|
return ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat4::InverseSelf
|
|
============
|
|
*/
|
|
bool idMat4::InverseSelf( void ) {
|
|
// 84+4+16 = 104 multiplications
|
|
// 1 division
|
|
double det, invDet;
|
|
|
|
// 2x2 sub-determinants required to calculate 4x4 determinant
|
|
float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0];
|
|
float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0];
|
|
float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
|
|
float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1];
|
|
float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2];
|
|
|
|
// 3x3 sub-determinants required to calculate 4x4 determinant
|
|
float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01;
|
|
float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01;
|
|
float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02;
|
|
float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12;
|
|
|
|
det = ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] );
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
// remaining 2x2 sub-determinants
|
|
float det2_03_01 = mat[0][0] * mat[3][1] - mat[0][1] * mat[3][0];
|
|
float det2_03_02 = mat[0][0] * mat[3][2] - mat[0][2] * mat[3][0];
|
|
float det2_03_03 = mat[0][0] * mat[3][3] - mat[0][3] * mat[3][0];
|
|
float det2_03_12 = mat[0][1] * mat[3][2] - mat[0][2] * mat[3][1];
|
|
float det2_03_13 = mat[0][1] * mat[3][3] - mat[0][3] * mat[3][1];
|
|
float det2_03_23 = mat[0][2] * mat[3][3] - mat[0][3] * mat[3][2];
|
|
|
|
float det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0];
|
|
float det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0];
|
|
float det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0];
|
|
float det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1];
|
|
float det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1];
|
|
float det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2];
|
|
|
|
// remaining 3x3 sub-determinants
|
|
float det3_203_012 = mat[2][0] * det2_03_12 - mat[2][1] * det2_03_02 + mat[2][2] * det2_03_01;
|
|
float det3_203_013 = mat[2][0] * det2_03_13 - mat[2][1] * det2_03_03 + mat[2][3] * det2_03_01;
|
|
float det3_203_023 = mat[2][0] * det2_03_23 - mat[2][2] * det2_03_03 + mat[2][3] * det2_03_02;
|
|
float det3_203_123 = mat[2][1] * det2_03_23 - mat[2][2] * det2_03_13 + mat[2][3] * det2_03_12;
|
|
|
|
float det3_213_012 = mat[2][0] * det2_13_12 - mat[2][1] * det2_13_02 + mat[2][2] * det2_13_01;
|
|
float det3_213_013 = mat[2][0] * det2_13_13 - mat[2][1] * det2_13_03 + mat[2][3] * det2_13_01;
|
|
float det3_213_023 = mat[2][0] * det2_13_23 - mat[2][2] * det2_13_03 + mat[2][3] * det2_13_02;
|
|
float det3_213_123 = mat[2][1] * det2_13_23 - mat[2][2] * det2_13_13 + mat[2][3] * det2_13_12;
|
|
|
|
float det3_301_012 = mat[3][0] * det2_01_12 - mat[3][1] * det2_01_02 + mat[3][2] * det2_01_01;
|
|
float det3_301_013 = mat[3][0] * det2_01_13 - mat[3][1] * det2_01_03 + mat[3][3] * det2_01_01;
|
|
float det3_301_023 = mat[3][0] * det2_01_23 - mat[3][2] * det2_01_03 + mat[3][3] * det2_01_02;
|
|
float det3_301_123 = mat[3][1] * det2_01_23 - mat[3][2] * det2_01_13 + mat[3][3] * det2_01_12;
|
|
|
|
mat[0][0] = - det3_213_123 * invDet;
|
|
mat[1][0] = + det3_213_023 * invDet;
|
|
mat[2][0] = - det3_213_013 * invDet;
|
|
mat[3][0] = + det3_213_012 * invDet;
|
|
|
|
mat[0][1] = + det3_203_123 * invDet;
|
|
mat[1][1] = - det3_203_023 * invDet;
|
|
mat[2][1] = + det3_203_013 * invDet;
|
|
mat[3][1] = - det3_203_012 * invDet;
|
|
|
|
mat[0][2] = + det3_301_123 * invDet;
|
|
mat[1][2] = - det3_301_023 * invDet;
|
|
mat[2][2] = + det3_301_013 * invDet;
|
|
mat[3][2] = - det3_301_012 * invDet;
|
|
|
|
mat[0][3] = - det3_201_123 * invDet;
|
|
mat[1][3] = + det3_201_023 * invDet;
|
|
mat[2][3] = - det3_201_013 * invDet;
|
|
mat[3][3] = + det3_201_012 * invDet;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat4::InverseFastSelf
|
|
============
|
|
*/
|
|
bool idMat4::InverseFastSelf( void ) {
|
|
#if 0
|
|
// 84+4+16 = 104 multiplications
|
|
// 1 division
|
|
double det, invDet;
|
|
|
|
// 2x2 sub-determinants required to calculate 4x4 determinant
|
|
float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
|
|
float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0];
|
|
float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0];
|
|
float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
|
|
float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1];
|
|
float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2];
|
|
|
|
// 3x3 sub-determinants required to calculate 4x4 determinant
|
|
float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01;
|
|
float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01;
|
|
float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02;
|
|
float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12;
|
|
|
|
det = ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] );
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
// remaining 2x2 sub-determinants
|
|
float det2_03_01 = mat[0][0] * mat[3][1] - mat[0][1] * mat[3][0];
|
|
float det2_03_02 = mat[0][0] * mat[3][2] - mat[0][2] * mat[3][0];
|
|
float det2_03_03 = mat[0][0] * mat[3][3] - mat[0][3] * mat[3][0];
|
|
float det2_03_12 = mat[0][1] * mat[3][2] - mat[0][2] * mat[3][1];
|
|
float det2_03_13 = mat[0][1] * mat[3][3] - mat[0][3] * mat[3][1];
|
|
float det2_03_23 = mat[0][2] * mat[3][3] - mat[0][3] * mat[3][2];
|
|
|
|
float det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0];
|
|
float det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0];
|
|
float det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0];
|
|
float det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1];
|
|
float det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1];
|
|
float det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2];
|
|
|
|
// remaining 3x3 sub-determinants
|
|
float det3_203_012 = mat[2][0] * det2_03_12 - mat[2][1] * det2_03_02 + mat[2][2] * det2_03_01;
|
|
float det3_203_013 = mat[2][0] * det2_03_13 - mat[2][1] * det2_03_03 + mat[2][3] * det2_03_01;
|
|
float det3_203_023 = mat[2][0] * det2_03_23 - mat[2][2] * det2_03_03 + mat[2][3] * det2_03_02;
|
|
float det3_203_123 = mat[2][1] * det2_03_23 - mat[2][2] * det2_03_13 + mat[2][3] * det2_03_12;
|
|
|
|
float det3_213_012 = mat[2][0] * det2_13_12 - mat[2][1] * det2_13_02 + mat[2][2] * det2_13_01;
|
|
float det3_213_013 = mat[2][0] * det2_13_13 - mat[2][1] * det2_13_03 + mat[2][3] * det2_13_01;
|
|
float det3_213_023 = mat[2][0] * det2_13_23 - mat[2][2] * det2_13_03 + mat[2][3] * det2_13_02;
|
|
float det3_213_123 = mat[2][1] * det2_13_23 - mat[2][2] * det2_13_13 + mat[2][3] * det2_13_12;
|
|
|
|
float det3_301_012 = mat[3][0] * det2_01_12 - mat[3][1] * det2_01_02 + mat[3][2] * det2_01_01;
|
|
float det3_301_013 = mat[3][0] * det2_01_13 - mat[3][1] * det2_01_03 + mat[3][3] * det2_01_01;
|
|
float det3_301_023 = mat[3][0] * det2_01_23 - mat[3][2] * det2_01_03 + mat[3][3] * det2_01_02;
|
|
float det3_301_123 = mat[3][1] * det2_01_23 - mat[3][2] * det2_01_13 + mat[3][3] * det2_01_12;
|
|
|
|
mat[0][0] = - det3_213_123 * invDet;
|
|
mat[1][0] = + det3_213_023 * invDet;
|
|
mat[2][0] = - det3_213_013 * invDet;
|
|
mat[3][0] = + det3_213_012 * invDet;
|
|
|
|
mat[0][1] = + det3_203_123 * invDet;
|
|
mat[1][1] = - det3_203_023 * invDet;
|
|
mat[2][1] = + det3_203_013 * invDet;
|
|
mat[3][1] = - det3_203_012 * invDet;
|
|
|
|
mat[0][2] = + det3_301_123 * invDet;
|
|
mat[1][2] = - det3_301_023 * invDet;
|
|
mat[2][2] = + det3_301_013 * invDet;
|
|
mat[3][2] = - det3_301_012 * invDet;
|
|
|
|
mat[0][3] = - det3_201_123 * invDet;
|
|
mat[1][3] = + det3_201_023 * invDet;
|
|
mat[2][3] = - det3_201_013 * invDet;
|
|
mat[3][3] = + det3_201_012 * invDet;
|
|
|
|
return true;
|
|
#elif 0
|
|
// 4*18 = 72 multiplications
|
|
// 4 divisions
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
float s;
|
|
double d, di;
|
|
|
|
di = mat[0];
|
|
s = di;
|
|
mat[0] = d = 1.0f / di;
|
|
mat[1] *= d;
|
|
mat[2] *= d;
|
|
mat[3] *= d;
|
|
d = -d;
|
|
mat[4] *= d;
|
|
mat[8] *= d;
|
|
mat[12] *= d;
|
|
d = mat[4] * di;
|
|
mat[5] += mat[1] * d;
|
|
mat[6] += mat[2] * d;
|
|
mat[7] += mat[3] * d;
|
|
d = mat[8] * di;
|
|
mat[9] += mat[1] * d;
|
|
mat[10] += mat[2] * d;
|
|
mat[11] += mat[3] * d;
|
|
d = mat[12] * di;
|
|
mat[13] += mat[1] * d;
|
|
mat[14] += mat[2] * d;
|
|
mat[15] += mat[3] * d;
|
|
di = mat[5];
|
|
s *= di;
|
|
mat[5] = d = 1.0f / di;
|
|
mat[4] *= d;
|
|
mat[6] *= d;
|
|
mat[7] *= d;
|
|
d = -d;
|
|
mat[1] *= d;
|
|
mat[9] *= d;
|
|
mat[13] *= d;
|
|
d = mat[1] * di;
|
|
mat[0] += mat[4] * d;
|
|
mat[2] += mat[6] * d;
|
|
mat[3] += mat[7] * d;
|
|
d = mat[9] * di;
|
|
mat[8] += mat[4] * d;
|
|
mat[10] += mat[6] * d;
|
|
mat[11] += mat[7] * d;
|
|
d = mat[13] * di;
|
|
mat[12] += mat[4] * d;
|
|
mat[14] += mat[6] * d;
|
|
mat[15] += mat[7] * d;
|
|
di = mat[10];
|
|
s *= di;
|
|
mat[10] = d = 1.0f / di;
|
|
mat[8] *= d;
|
|
mat[9] *= d;
|
|
mat[11] *= d;
|
|
d = -d;
|
|
mat[2] *= d;
|
|
mat[6] *= d;
|
|
mat[14] *= d;
|
|
d = mat[2] * di;
|
|
mat[0] += mat[8] * d;
|
|
mat[1] += mat[9] * d;
|
|
mat[3] += mat[11] * d;
|
|
d = mat[6] * di;
|
|
mat[4] += mat[8] * d;
|
|
mat[5] += mat[9] * d;
|
|
mat[7] += mat[11] * d;
|
|
d = mat[14] * di;
|
|
mat[12] += mat[8] * d;
|
|
mat[13] += mat[9] * d;
|
|
mat[15] += mat[11] * d;
|
|
di = mat[15];
|
|
s *= di;
|
|
mat[15] = d = 1.0f / di;
|
|
mat[12] *= d;
|
|
mat[13] *= d;
|
|
mat[14] *= d;
|
|
d = -d;
|
|
mat[3] *= d;
|
|
mat[7] *= d;
|
|
mat[11] *= d;
|
|
d = mat[3] * di;
|
|
mat[0] += mat[12] * d;
|
|
mat[1] += mat[13] * d;
|
|
mat[2] += mat[14] * d;
|
|
d = mat[7] * di;
|
|
mat[4] += mat[12] * d;
|
|
mat[5] += mat[13] * d;
|
|
mat[6] += mat[14] * d;
|
|
d = mat[11] * di;
|
|
mat[8] += mat[12] * d;
|
|
mat[9] += mat[13] * d;
|
|
mat[10] += mat[14] * d;
|
|
|
|
return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
|
|
#else
|
|
// 6*8+2*6 = 60 multiplications
|
|
// 2*1 = 2 divisions
|
|
idMat2 r0, r1, r2, r3;
|
|
float a, det, invDet;
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
|
|
// r0 = m0.Inverse();
|
|
det = mat[0*4+0] * mat[1*4+1] - mat[0*4+1] * mat[1*4+0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
r0[0][0] = mat[1*4+1] * invDet;
|
|
r0[0][1] = - mat[0*4+1] * invDet;
|
|
r0[1][0] = - mat[1*4+0] * invDet;
|
|
r0[1][1] = mat[0*4+0] * invDet;
|
|
|
|
// r1 = r0 * m1;
|
|
r1[0][0] = r0[0][0] * mat[0*4+2] + r0[0][1] * mat[1*4+2];
|
|
r1[0][1] = r0[0][0] * mat[0*4+3] + r0[0][1] * mat[1*4+3];
|
|
r1[1][0] = r0[1][0] * mat[0*4+2] + r0[1][1] * mat[1*4+2];
|
|
r1[1][1] = r0[1][0] * mat[0*4+3] + r0[1][1] * mat[1*4+3];
|
|
|
|
// r2 = m2 * r1;
|
|
r2[0][0] = mat[2*4+0] * r1[0][0] + mat[2*4+1] * r1[1][0];
|
|
r2[0][1] = mat[2*4+0] * r1[0][1] + mat[2*4+1] * r1[1][1];
|
|
r2[1][0] = mat[3*4+0] * r1[0][0] + mat[3*4+1] * r1[1][0];
|
|
r2[1][1] = mat[3*4+0] * r1[0][1] + mat[3*4+1] * r1[1][1];
|
|
|
|
// r3 = r2 - m3;
|
|
r3[0][0] = r2[0][0] - mat[2*4+2];
|
|
r3[0][1] = r2[0][1] - mat[2*4+3];
|
|
r3[1][0] = r2[1][0] - mat[3*4+2];
|
|
r3[1][1] = r2[1][1] - mat[3*4+3];
|
|
|
|
// r3.InverseSelf();
|
|
det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
a = r3[0][0];
|
|
r3[0][0] = r3[1][1] * invDet;
|
|
r3[0][1] = - r3[0][1] * invDet;
|
|
r3[1][0] = - r3[1][0] * invDet;
|
|
r3[1][1] = a * invDet;
|
|
|
|
// r2 = m2 * r0;
|
|
r2[0][0] = mat[2*4+0] * r0[0][0] + mat[2*4+1] * r0[1][0];
|
|
r2[0][1] = mat[2*4+0] * r0[0][1] + mat[2*4+1] * r0[1][1];
|
|
r2[1][0] = mat[3*4+0] * r0[0][0] + mat[3*4+1] * r0[1][0];
|
|
r2[1][1] = mat[3*4+0] * r0[0][1] + mat[3*4+1] * r0[1][1];
|
|
|
|
// m2 = r3 * r2;
|
|
mat[2*4+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0];
|
|
mat[2*4+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1];
|
|
mat[3*4+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0];
|
|
mat[3*4+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1];
|
|
|
|
// m0 = r0 - r1 * m2;
|
|
mat[0*4+0] = r0[0][0] - r1[0][0] * mat[2*4+0] - r1[0][1] * mat[3*4+0];
|
|
mat[0*4+1] = r0[0][1] - r1[0][0] * mat[2*4+1] - r1[0][1] * mat[3*4+1];
|
|
mat[1*4+0] = r0[1][0] - r1[1][0] * mat[2*4+0] - r1[1][1] * mat[3*4+0];
|
|
mat[1*4+1] = r0[1][1] - r1[1][0] * mat[2*4+1] - r1[1][1] * mat[3*4+1];
|
|
|
|
// m1 = r1 * r3;
|
|
mat[0*4+2] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0];
|
|
mat[0*4+3] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1];
|
|
mat[1*4+2] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0];
|
|
mat[1*4+3] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1];
|
|
|
|
// m3 = -r3;
|
|
mat[2*4+2] = -r3[0][0];
|
|
mat[2*4+3] = -r3[0][1];
|
|
mat[3*4+2] = -r3[1][0];
|
|
mat[3*4+3] = -r3[1][1];
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
=============
|
|
idMat4::ToString
|
|
=============
|
|
*/
|
|
const char *idMat4::ToString( int precision ) const {
|
|
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
|
|
}
|
|
|
|
|
|
//===============================================================
|
|
//
|
|
// idMat5
|
|
//
|
|
//===============================================================
|
|
|
|
idMat5 mat5_zero( idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ) );
|
|
idMat5 mat5_identity( idVec5( 1, 0, 0, 0, 0 ), idVec5( 0, 1, 0, 0, 0 ), idVec5( 0, 0, 1, 0, 0 ), idVec5( 0, 0, 0, 1, 0 ), idVec5( 0, 0, 0, 0, 1 ) );
|
|
|
|
/*
|
|
============
|
|
idMat5::Transpose
|
|
============
|
|
*/
|
|
idMat5 idMat5::Transpose( void ) const {
|
|
idMat5 transpose;
|
|
int i, j;
|
|
|
|
for( i = 0; i < 5; i++ ) {
|
|
for( j = 0; j < 5; j++ ) {
|
|
transpose[ i ][ j ] = mat[ j ][ i ];
|
|
}
|
|
}
|
|
return transpose;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat5::TransposeSelf
|
|
============
|
|
*/
|
|
idMat5 &idMat5::TransposeSelf( void ) {
|
|
float temp;
|
|
int i, j;
|
|
|
|
for( i = 0; i < 5; i++ ) {
|
|
for( j = i + 1; j < 5; j++ ) {
|
|
temp = mat[ i ][ j ];
|
|
mat[ i ][ j ] = mat[ j ][ i ];
|
|
mat[ j ][ i ] = temp;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat5::Determinant
|
|
============
|
|
*/
|
|
float idMat5::Determinant( void ) const {
|
|
|
|
// 2x2 sub-determinants required to calculate 5x5 determinant
|
|
float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
|
|
float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
|
|
float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
|
|
float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
|
|
float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
|
|
float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
|
|
float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
|
|
float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
|
|
float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
|
|
float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
|
|
|
|
// 3x3 sub-determinants required to calculate 5x5 determinant
|
|
float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
|
|
float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
|
|
float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
|
|
float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
|
|
float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
|
|
float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
|
|
float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
|
|
float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
|
|
float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
|
|
float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
|
|
|
|
// 4x4 sub-determinants required to calculate 5x5 determinant
|
|
float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
|
|
float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
|
|
float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
|
|
float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
|
|
float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
|
|
|
|
// determinant of 5x5 matrix
|
|
return mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat5::InverseSelf
|
|
============
|
|
*/
|
|
bool idMat5::InverseSelf( void ) {
|
|
// 280+5+25 = 310 multiplications
|
|
// 1 division
|
|
double det, invDet;
|
|
|
|
// 2x2 sub-determinants required to calculate 5x5 determinant
|
|
float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
|
|
float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
|
|
float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
|
|
float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
|
|
float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
|
|
float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
|
|
float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
|
|
float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
|
|
float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
|
|
float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
|
|
|
|
// 3x3 sub-determinants required to calculate 5x5 determinant
|
|
float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
|
|
float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
|
|
float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
|
|
float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
|
|
float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
|
|
float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
|
|
float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
|
|
float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
|
|
float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
|
|
float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
|
|
|
|
// 4x4 sub-determinants required to calculate 5x5 determinant
|
|
float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
|
|
float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
|
|
float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
|
|
float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
|
|
float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
|
|
|
|
// determinant of 5x5 matrix
|
|
det = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
|
|
|
|
if( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
// remaining 2x2 sub-determinants
|
|
float det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0];
|
|
float det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0];
|
|
float det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0];
|
|
float det2_23_04 = mat[2][0] * mat[3][4] - mat[2][4] * mat[3][0];
|
|
float det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1];
|
|
float det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1];
|
|
float det2_23_14 = mat[2][1] * mat[3][4] - mat[2][4] * mat[3][1];
|
|
float det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2];
|
|
float det2_23_24 = mat[2][2] * mat[3][4] - mat[2][4] * mat[3][2];
|
|
float det2_23_34 = mat[2][3] * mat[3][4] - mat[2][4] * mat[3][3];
|
|
float det2_24_01 = mat[2][0] * mat[4][1] - mat[2][1] * mat[4][0];
|
|
float det2_24_02 = mat[2][0] * mat[4][2] - mat[2][2] * mat[4][0];
|
|
float det2_24_03 = mat[2][0] * mat[4][3] - mat[2][3] * mat[4][0];
|
|
float det2_24_04 = mat[2][0] * mat[4][4] - mat[2][4] * mat[4][0];
|
|
float det2_24_12 = mat[2][1] * mat[4][2] - mat[2][2] * mat[4][1];
|
|
float det2_24_13 = mat[2][1] * mat[4][3] - mat[2][3] * mat[4][1];
|
|
float det2_24_14 = mat[2][1] * mat[4][4] - mat[2][4] * mat[4][1];
|
|
float det2_24_23 = mat[2][2] * mat[4][3] - mat[2][3] * mat[4][2];
|
|
float det2_24_24 = mat[2][2] * mat[4][4] - mat[2][4] * mat[4][2];
|
|
float det2_24_34 = mat[2][3] * mat[4][4] - mat[2][4] * mat[4][3];
|
|
|
|
// remaining 3x3 sub-determinants
|
|
float det3_123_012 = mat[1][0] * det2_23_12 - mat[1][1] * det2_23_02 + mat[1][2] * det2_23_01;
|
|
float det3_123_013 = mat[1][0] * det2_23_13 - mat[1][1] * det2_23_03 + mat[1][3] * det2_23_01;
|
|
float det3_123_014 = mat[1][0] * det2_23_14 - mat[1][1] * det2_23_04 + mat[1][4] * det2_23_01;
|
|
float det3_123_023 = mat[1][0] * det2_23_23 - mat[1][2] * det2_23_03 + mat[1][3] * det2_23_02;
|
|
float det3_123_024 = mat[1][0] * det2_23_24 - mat[1][2] * det2_23_04 + mat[1][4] * det2_23_02;
|
|
float det3_123_034 = mat[1][0] * det2_23_34 - mat[1][3] * det2_23_04 + mat[1][4] * det2_23_03;
|
|
float det3_123_123 = mat[1][1] * det2_23_23 - mat[1][2] * det2_23_13 + mat[1][3] * det2_23_12;
|
|
float det3_123_124 = mat[1][1] * det2_23_24 - mat[1][2] * det2_23_14 + mat[1][4] * det2_23_12;
|
|
float det3_123_134 = mat[1][1] * det2_23_34 - mat[1][3] * det2_23_14 + mat[1][4] * det2_23_13;
|
|
float det3_123_234 = mat[1][2] * det2_23_34 - mat[1][3] * det2_23_24 + mat[1][4] * det2_23_23;
|
|
float det3_124_012 = mat[1][0] * det2_24_12 - mat[1][1] * det2_24_02 + mat[1][2] * det2_24_01;
|
|
float det3_124_013 = mat[1][0] * det2_24_13 - mat[1][1] * det2_24_03 + mat[1][3] * det2_24_01;
|
|
float det3_124_014 = mat[1][0] * det2_24_14 - mat[1][1] * det2_24_04 + mat[1][4] * det2_24_01;
|
|
float det3_124_023 = mat[1][0] * det2_24_23 - mat[1][2] * det2_24_03 + mat[1][3] * det2_24_02;
|
|
float det3_124_024 = mat[1][0] * det2_24_24 - mat[1][2] * det2_24_04 + mat[1][4] * det2_24_02;
|
|
float det3_124_034 = mat[1][0] * det2_24_34 - mat[1][3] * det2_24_04 + mat[1][4] * det2_24_03;
|
|
float det3_124_123 = mat[1][1] * det2_24_23 - mat[1][2] * det2_24_13 + mat[1][3] * det2_24_12;
|
|
float det3_124_124 = mat[1][1] * det2_24_24 - mat[1][2] * det2_24_14 + mat[1][4] * det2_24_12;
|
|
float det3_124_134 = mat[1][1] * det2_24_34 - mat[1][3] * det2_24_14 + mat[1][4] * det2_24_13;
|
|
float det3_124_234 = mat[1][2] * det2_24_34 - mat[1][3] * det2_24_24 + mat[1][4] * det2_24_23;
|
|
float det3_134_012 = mat[1][0] * det2_34_12 - mat[1][1] * det2_34_02 + mat[1][2] * det2_34_01;
|
|
float det3_134_013 = mat[1][0] * det2_34_13 - mat[1][1] * det2_34_03 + mat[1][3] * det2_34_01;
|
|
float det3_134_014 = mat[1][0] * det2_34_14 - mat[1][1] * det2_34_04 + mat[1][4] * det2_34_01;
|
|
float det3_134_023 = mat[1][0] * det2_34_23 - mat[1][2] * det2_34_03 + mat[1][3] * det2_34_02;
|
|
float det3_134_024 = mat[1][0] * det2_34_24 - mat[1][2] * det2_34_04 + mat[1][4] * det2_34_02;
|
|
float det3_134_034 = mat[1][0] * det2_34_34 - mat[1][3] * det2_34_04 + mat[1][4] * det2_34_03;
|
|
float det3_134_123 = mat[1][1] * det2_34_23 - mat[1][2] * det2_34_13 + mat[1][3] * det2_34_12;
|
|
float det3_134_124 = mat[1][1] * det2_34_24 - mat[1][2] * det2_34_14 + mat[1][4] * det2_34_12;
|
|
float det3_134_134 = mat[1][1] * det2_34_34 - mat[1][3] * det2_34_14 + mat[1][4] * det2_34_13;
|
|
float det3_134_234 = mat[1][2] * det2_34_34 - mat[1][3] * det2_34_24 + mat[1][4] * det2_34_23;
|
|
|
|
// remaining 4x4 sub-determinants
|
|
float det4_0123_0123 = mat[0][0] * det3_123_123 - mat[0][1] * det3_123_023 + mat[0][2] * det3_123_013 - mat[0][3] * det3_123_012;
|
|
float det4_0123_0124 = mat[0][0] * det3_123_124 - mat[0][1] * det3_123_024 + mat[0][2] * det3_123_014 - mat[0][4] * det3_123_012;
|
|
float det4_0123_0134 = mat[0][0] * det3_123_134 - mat[0][1] * det3_123_034 + mat[0][3] * det3_123_014 - mat[0][4] * det3_123_013;
|
|
float det4_0123_0234 = mat[0][0] * det3_123_234 - mat[0][2] * det3_123_034 + mat[0][3] * det3_123_024 - mat[0][4] * det3_123_023;
|
|
float det4_0123_1234 = mat[0][1] * det3_123_234 - mat[0][2] * det3_123_134 + mat[0][3] * det3_123_124 - mat[0][4] * det3_123_123;
|
|
float det4_0124_0123 = mat[0][0] * det3_124_123 - mat[0][1] * det3_124_023 + mat[0][2] * det3_124_013 - mat[0][3] * det3_124_012;
|
|
float det4_0124_0124 = mat[0][0] * det3_124_124 - mat[0][1] * det3_124_024 + mat[0][2] * det3_124_014 - mat[0][4] * det3_124_012;
|
|
float det4_0124_0134 = mat[0][0] * det3_124_134 - mat[0][1] * det3_124_034 + mat[0][3] * det3_124_014 - mat[0][4] * det3_124_013;
|
|
float det4_0124_0234 = mat[0][0] * det3_124_234 - mat[0][2] * det3_124_034 + mat[0][3] * det3_124_024 - mat[0][4] * det3_124_023;
|
|
float det4_0124_1234 = mat[0][1] * det3_124_234 - mat[0][2] * det3_124_134 + mat[0][3] * det3_124_124 - mat[0][4] * det3_124_123;
|
|
float det4_0134_0123 = mat[0][0] * det3_134_123 - mat[0][1] * det3_134_023 + mat[0][2] * det3_134_013 - mat[0][3] * det3_134_012;
|
|
float det4_0134_0124 = mat[0][0] * det3_134_124 - mat[0][1] * det3_134_024 + mat[0][2] * det3_134_014 - mat[0][4] * det3_134_012;
|
|
float det4_0134_0134 = mat[0][0] * det3_134_134 - mat[0][1] * det3_134_034 + mat[0][3] * det3_134_014 - mat[0][4] * det3_134_013;
|
|
float det4_0134_0234 = mat[0][0] * det3_134_234 - mat[0][2] * det3_134_034 + mat[0][3] * det3_134_024 - mat[0][4] * det3_134_023;
|
|
float det4_0134_1234 = mat[0][1] * det3_134_234 - mat[0][2] * det3_134_134 + mat[0][3] * det3_134_124 - mat[0][4] * det3_134_123;
|
|
float det4_0234_0123 = mat[0][0] * det3_234_123 - mat[0][1] * det3_234_023 + mat[0][2] * det3_234_013 - mat[0][3] * det3_234_012;
|
|
float det4_0234_0124 = mat[0][0] * det3_234_124 - mat[0][1] * det3_234_024 + mat[0][2] * det3_234_014 - mat[0][4] * det3_234_012;
|
|
float det4_0234_0134 = mat[0][0] * det3_234_134 - mat[0][1] * det3_234_034 + mat[0][3] * det3_234_014 - mat[0][4] * det3_234_013;
|
|
float det4_0234_0234 = mat[0][0] * det3_234_234 - mat[0][2] * det3_234_034 + mat[0][3] * det3_234_024 - mat[0][4] * det3_234_023;
|
|
float det4_0234_1234 = mat[0][1] * det3_234_234 - mat[0][2] * det3_234_134 + mat[0][3] * det3_234_124 - mat[0][4] * det3_234_123;
|
|
|
|
mat[0][0] = det4_1234_1234 * invDet;
|
|
mat[0][1] = -det4_0234_1234 * invDet;
|
|
mat[0][2] = det4_0134_1234 * invDet;
|
|
mat[0][3] = -det4_0124_1234 * invDet;
|
|
mat[0][4] = det4_0123_1234 * invDet;
|
|
|
|
mat[1][0] = -det4_1234_0234 * invDet;
|
|
mat[1][1] = det4_0234_0234 * invDet;
|
|
mat[1][2] = -det4_0134_0234 * invDet;
|
|
mat[1][3] = det4_0124_0234 * invDet;
|
|
mat[1][4] = -det4_0123_0234 * invDet;
|
|
|
|
mat[2][0] = det4_1234_0134 * invDet;
|
|
mat[2][1] = -det4_0234_0134 * invDet;
|
|
mat[2][2] = det4_0134_0134 * invDet;
|
|
mat[2][3] = -det4_0124_0134 * invDet;
|
|
mat[2][4] = det4_0123_0134 * invDet;
|
|
|
|
mat[3][0] = -det4_1234_0124 * invDet;
|
|
mat[3][1] = det4_0234_0124 * invDet;
|
|
mat[3][2] = -det4_0134_0124 * invDet;
|
|
mat[3][3] = det4_0124_0124 * invDet;
|
|
mat[3][4] = -det4_0123_0124 * invDet;
|
|
|
|
mat[4][0] = det4_1234_0123 * invDet;
|
|
mat[4][1] = -det4_0234_0123 * invDet;
|
|
mat[4][2] = det4_0134_0123 * invDet;
|
|
mat[4][3] = -det4_0124_0123 * invDet;
|
|
mat[4][4] = det4_0123_0123 * invDet;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat5::InverseFastSelf
|
|
============
|
|
*/
|
|
bool idMat5::InverseFastSelf( void ) {
|
|
#if 0
|
|
// 280+5+25 = 310 multiplications
|
|
// 1 division
|
|
double det, invDet;
|
|
|
|
// 2x2 sub-determinants required to calculate 5x5 determinant
|
|
float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
|
|
float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
|
|
float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
|
|
float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
|
|
float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
|
|
float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
|
|
float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
|
|
float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
|
|
float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
|
|
float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
|
|
|
|
// 3x3 sub-determinants required to calculate 5x5 determinant
|
|
float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
|
|
float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
|
|
float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
|
|
float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
|
|
float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
|
|
float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
|
|
float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
|
|
float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
|
|
float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
|
|
float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
|
|
|
|
// 4x4 sub-determinants required to calculate 5x5 determinant
|
|
float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
|
|
float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
|
|
float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
|
|
float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
|
|
float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
|
|
|
|
// determinant of 5x5 matrix
|
|
det = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
|
|
|
|
if( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
// remaining 2x2 sub-determinants
|
|
float det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0];
|
|
float det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0];
|
|
float det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0];
|
|
float det2_23_04 = mat[2][0] * mat[3][4] - mat[2][4] * mat[3][0];
|
|
float det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1];
|
|
float det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1];
|
|
float det2_23_14 = mat[2][1] * mat[3][4] - mat[2][4] * mat[3][1];
|
|
float det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2];
|
|
float det2_23_24 = mat[2][2] * mat[3][4] - mat[2][4] * mat[3][2];
|
|
float det2_23_34 = mat[2][3] * mat[3][4] - mat[2][4] * mat[3][3];
|
|
float det2_24_01 = mat[2][0] * mat[4][1] - mat[2][1] * mat[4][0];
|
|
float det2_24_02 = mat[2][0] * mat[4][2] - mat[2][2] * mat[4][0];
|
|
float det2_24_03 = mat[2][0] * mat[4][3] - mat[2][3] * mat[4][0];
|
|
float det2_24_04 = mat[2][0] * mat[4][4] - mat[2][4] * mat[4][0];
|
|
float det2_24_12 = mat[2][1] * mat[4][2] - mat[2][2] * mat[4][1];
|
|
float det2_24_13 = mat[2][1] * mat[4][3] - mat[2][3] * mat[4][1];
|
|
float det2_24_14 = mat[2][1] * mat[4][4] - mat[2][4] * mat[4][1];
|
|
float det2_24_23 = mat[2][2] * mat[4][3] - mat[2][3] * mat[4][2];
|
|
float det2_24_24 = mat[2][2] * mat[4][4] - mat[2][4] * mat[4][2];
|
|
float det2_24_34 = mat[2][3] * mat[4][4] - mat[2][4] * mat[4][3];
|
|
|
|
// remaining 3x3 sub-determinants
|
|
float det3_123_012 = mat[1][0] * det2_23_12 - mat[1][1] * det2_23_02 + mat[1][2] * det2_23_01;
|
|
float det3_123_013 = mat[1][0] * det2_23_13 - mat[1][1] * det2_23_03 + mat[1][3] * det2_23_01;
|
|
float det3_123_014 = mat[1][0] * det2_23_14 - mat[1][1] * det2_23_04 + mat[1][4] * det2_23_01;
|
|
float det3_123_023 = mat[1][0] * det2_23_23 - mat[1][2] * det2_23_03 + mat[1][3] * det2_23_02;
|
|
float det3_123_024 = mat[1][0] * det2_23_24 - mat[1][2] * det2_23_04 + mat[1][4] * det2_23_02;
|
|
float det3_123_034 = mat[1][0] * det2_23_34 - mat[1][3] * det2_23_04 + mat[1][4] * det2_23_03;
|
|
float det3_123_123 = mat[1][1] * det2_23_23 - mat[1][2] * det2_23_13 + mat[1][3] * det2_23_12;
|
|
float det3_123_124 = mat[1][1] * det2_23_24 - mat[1][2] * det2_23_14 + mat[1][4] * det2_23_12;
|
|
float det3_123_134 = mat[1][1] * det2_23_34 - mat[1][3] * det2_23_14 + mat[1][4] * det2_23_13;
|
|
float det3_123_234 = mat[1][2] * det2_23_34 - mat[1][3] * det2_23_24 + mat[1][4] * det2_23_23;
|
|
float det3_124_012 = mat[1][0] * det2_24_12 - mat[1][1] * det2_24_02 + mat[1][2] * det2_24_01;
|
|
float det3_124_013 = mat[1][0] * det2_24_13 - mat[1][1] * det2_24_03 + mat[1][3] * det2_24_01;
|
|
float det3_124_014 = mat[1][0] * det2_24_14 - mat[1][1] * det2_24_04 + mat[1][4] * det2_24_01;
|
|
float det3_124_023 = mat[1][0] * det2_24_23 - mat[1][2] * det2_24_03 + mat[1][3] * det2_24_02;
|
|
float det3_124_024 = mat[1][0] * det2_24_24 - mat[1][2] * det2_24_04 + mat[1][4] * det2_24_02;
|
|
float det3_124_034 = mat[1][0] * det2_24_34 - mat[1][3] * det2_24_04 + mat[1][4] * det2_24_03;
|
|
float det3_124_123 = mat[1][1] * det2_24_23 - mat[1][2] * det2_24_13 + mat[1][3] * det2_24_12;
|
|
float det3_124_124 = mat[1][1] * det2_24_24 - mat[1][2] * det2_24_14 + mat[1][4] * det2_24_12;
|
|
float det3_124_134 = mat[1][1] * det2_24_34 - mat[1][3] * det2_24_14 + mat[1][4] * det2_24_13;
|
|
float det3_124_234 = mat[1][2] * det2_24_34 - mat[1][3] * det2_24_24 + mat[1][4] * det2_24_23;
|
|
float det3_134_012 = mat[1][0] * det2_34_12 - mat[1][1] * det2_34_02 + mat[1][2] * det2_34_01;
|
|
float det3_134_013 = mat[1][0] * det2_34_13 - mat[1][1] * det2_34_03 + mat[1][3] * det2_34_01;
|
|
float det3_134_014 = mat[1][0] * det2_34_14 - mat[1][1] * det2_34_04 + mat[1][4] * det2_34_01;
|
|
float det3_134_023 = mat[1][0] * det2_34_23 - mat[1][2] * det2_34_03 + mat[1][3] * det2_34_02;
|
|
float det3_134_024 = mat[1][0] * det2_34_24 - mat[1][2] * det2_34_04 + mat[1][4] * det2_34_02;
|
|
float det3_134_034 = mat[1][0] * det2_34_34 - mat[1][3] * det2_34_04 + mat[1][4] * det2_34_03;
|
|
float det3_134_123 = mat[1][1] * det2_34_23 - mat[1][2] * det2_34_13 + mat[1][3] * det2_34_12;
|
|
float det3_134_124 = mat[1][1] * det2_34_24 - mat[1][2] * det2_34_14 + mat[1][4] * det2_34_12;
|
|
float det3_134_134 = mat[1][1] * det2_34_34 - mat[1][3] * det2_34_14 + mat[1][4] * det2_34_13;
|
|
float det3_134_234 = mat[1][2] * det2_34_34 - mat[1][3] * det2_34_24 + mat[1][4] * det2_34_23;
|
|
|
|
// remaining 4x4 sub-determinants
|
|
float det4_0123_0123 = mat[0][0] * det3_123_123 - mat[0][1] * det3_123_023 + mat[0][2] * det3_123_013 - mat[0][3] * det3_123_012;
|
|
float det4_0123_0124 = mat[0][0] * det3_123_124 - mat[0][1] * det3_123_024 + mat[0][2] * det3_123_014 - mat[0][4] * det3_123_012;
|
|
float det4_0123_0134 = mat[0][0] * det3_123_134 - mat[0][1] * det3_123_034 + mat[0][3] * det3_123_014 - mat[0][4] * det3_123_013;
|
|
float det4_0123_0234 = mat[0][0] * det3_123_234 - mat[0][2] * det3_123_034 + mat[0][3] * det3_123_024 - mat[0][4] * det3_123_023;
|
|
float det4_0123_1234 = mat[0][1] * det3_123_234 - mat[0][2] * det3_123_134 + mat[0][3] * det3_123_124 - mat[0][4] * det3_123_123;
|
|
float det4_0124_0123 = mat[0][0] * det3_124_123 - mat[0][1] * det3_124_023 + mat[0][2] * det3_124_013 - mat[0][3] * det3_124_012;
|
|
float det4_0124_0124 = mat[0][0] * det3_124_124 - mat[0][1] * det3_124_024 + mat[0][2] * det3_124_014 - mat[0][4] * det3_124_012;
|
|
float det4_0124_0134 = mat[0][0] * det3_124_134 - mat[0][1] * det3_124_034 + mat[0][3] * det3_124_014 - mat[0][4] * det3_124_013;
|
|
float det4_0124_0234 = mat[0][0] * det3_124_234 - mat[0][2] * det3_124_034 + mat[0][3] * det3_124_024 - mat[0][4] * det3_124_023;
|
|
float det4_0124_1234 = mat[0][1] * det3_124_234 - mat[0][2] * det3_124_134 + mat[0][3] * det3_124_124 - mat[0][4] * det3_124_123;
|
|
float det4_0134_0123 = mat[0][0] * det3_134_123 - mat[0][1] * det3_134_023 + mat[0][2] * det3_134_013 - mat[0][3] * det3_134_012;
|
|
float det4_0134_0124 = mat[0][0] * det3_134_124 - mat[0][1] * det3_134_024 + mat[0][2] * det3_134_014 - mat[0][4] * det3_134_012;
|
|
float det4_0134_0134 = mat[0][0] * det3_134_134 - mat[0][1] * det3_134_034 + mat[0][3] * det3_134_014 - mat[0][4] * det3_134_013;
|
|
float det4_0134_0234 = mat[0][0] * det3_134_234 - mat[0][2] * det3_134_034 + mat[0][3] * det3_134_024 - mat[0][4] * det3_134_023;
|
|
float det4_0134_1234 = mat[0][1] * det3_134_234 - mat[0][2] * det3_134_134 + mat[0][3] * det3_134_124 - mat[0][4] * det3_134_123;
|
|
float det4_0234_0123 = mat[0][0] * det3_234_123 - mat[0][1] * det3_234_023 + mat[0][2] * det3_234_013 - mat[0][3] * det3_234_012;
|
|
float det4_0234_0124 = mat[0][0] * det3_234_124 - mat[0][1] * det3_234_024 + mat[0][2] * det3_234_014 - mat[0][4] * det3_234_012;
|
|
float det4_0234_0134 = mat[0][0] * det3_234_134 - mat[0][1] * det3_234_034 + mat[0][3] * det3_234_014 - mat[0][4] * det3_234_013;
|
|
float det4_0234_0234 = mat[0][0] * det3_234_234 - mat[0][2] * det3_234_034 + mat[0][3] * det3_234_024 - mat[0][4] * det3_234_023;
|
|
float det4_0234_1234 = mat[0][1] * det3_234_234 - mat[0][2] * det3_234_134 + mat[0][3] * det3_234_124 - mat[0][4] * det3_234_123;
|
|
|
|
mat[0][0] = det4_1234_1234 * invDet;
|
|
mat[0][1] = -det4_0234_1234 * invDet;
|
|
mat[0][2] = det4_0134_1234 * invDet;
|
|
mat[0][3] = -det4_0124_1234 * invDet;
|
|
mat[0][4] = det4_0123_1234 * invDet;
|
|
|
|
mat[1][0] = -det4_1234_0234 * invDet;
|
|
mat[1][1] = det4_0234_0234 * invDet;
|
|
mat[1][2] = -det4_0134_0234 * invDet;
|
|
mat[1][3] = det4_0124_0234 * invDet;
|
|
mat[1][4] = -det4_0123_0234 * invDet;
|
|
|
|
mat[2][0] = det4_1234_0134 * invDet;
|
|
mat[2][1] = -det4_0234_0134 * invDet;
|
|
mat[2][2] = det4_0134_0134 * invDet;
|
|
mat[2][3] = -det4_0124_0134 * invDet;
|
|
mat[2][4] = det4_0123_0134 * invDet;
|
|
|
|
mat[3][0] = -det4_1234_0124 * invDet;
|
|
mat[3][1] = det4_0234_0124 * invDet;
|
|
mat[3][2] = -det4_0134_0124 * invDet;
|
|
mat[3][3] = det4_0124_0124 * invDet;
|
|
mat[3][4] = -det4_0123_0124 * invDet;
|
|
|
|
mat[4][0] = det4_1234_0123 * invDet;
|
|
mat[4][1] = -det4_0234_0123 * invDet;
|
|
mat[4][2] = det4_0134_0123 * invDet;
|
|
mat[4][3] = -det4_0124_0123 * invDet;
|
|
mat[4][4] = det4_0123_0123 * invDet;
|
|
|
|
return true;
|
|
#elif 0
|
|
// 5*28 = 140 multiplications
|
|
// 5 divisions
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
float s;
|
|
double d, di;
|
|
|
|
di = mat[0];
|
|
s = di;
|
|
mat[0] = d = 1.0f / di;
|
|
mat[1] *= d;
|
|
mat[2] *= d;
|
|
mat[3] *= d;
|
|
mat[4] *= d;
|
|
d = -d;
|
|
mat[5] *= d;
|
|
mat[10] *= d;
|
|
mat[15] *= d;
|
|
mat[20] *= d;
|
|
d = mat[5] * di;
|
|
mat[6] += mat[1] * d;
|
|
mat[7] += mat[2] * d;
|
|
mat[8] += mat[3] * d;
|
|
mat[9] += mat[4] * d;
|
|
d = mat[10] * di;
|
|
mat[11] += mat[1] * d;
|
|
mat[12] += mat[2] * d;
|
|
mat[13] += mat[3] * d;
|
|
mat[14] += mat[4] * d;
|
|
d = mat[15] * di;
|
|
mat[16] += mat[1] * d;
|
|
mat[17] += mat[2] * d;
|
|
mat[18] += mat[3] * d;
|
|
mat[19] += mat[4] * d;
|
|
d = mat[20] * di;
|
|
mat[21] += mat[1] * d;
|
|
mat[22] += mat[2] * d;
|
|
mat[23] += mat[3] * d;
|
|
mat[24] += mat[4] * d;
|
|
di = mat[6];
|
|
s *= di;
|
|
mat[6] = d = 1.0f / di;
|
|
mat[5] *= d;
|
|
mat[7] *= d;
|
|
mat[8] *= d;
|
|
mat[9] *= d;
|
|
d = -d;
|
|
mat[1] *= d;
|
|
mat[11] *= d;
|
|
mat[16] *= d;
|
|
mat[21] *= d;
|
|
d = mat[1] * di;
|
|
mat[0] += mat[5] * d;
|
|
mat[2] += mat[7] * d;
|
|
mat[3] += mat[8] * d;
|
|
mat[4] += mat[9] * d;
|
|
d = mat[11] * di;
|
|
mat[10] += mat[5] * d;
|
|
mat[12] += mat[7] * d;
|
|
mat[13] += mat[8] * d;
|
|
mat[14] += mat[9] * d;
|
|
d = mat[16] * di;
|
|
mat[15] += mat[5] * d;
|
|
mat[17] += mat[7] * d;
|
|
mat[18] += mat[8] * d;
|
|
mat[19] += mat[9] * d;
|
|
d = mat[21] * di;
|
|
mat[20] += mat[5] * d;
|
|
mat[22] += mat[7] * d;
|
|
mat[23] += mat[8] * d;
|
|
mat[24] += mat[9] * d;
|
|
di = mat[12];
|
|
s *= di;
|
|
mat[12] = d = 1.0f / di;
|
|
mat[10] *= d;
|
|
mat[11] *= d;
|
|
mat[13] *= d;
|
|
mat[14] *= d;
|
|
d = -d;
|
|
mat[2] *= d;
|
|
mat[7] *= d;
|
|
mat[17] *= d;
|
|
mat[22] *= d;
|
|
d = mat[2] * di;
|
|
mat[0] += mat[10] * d;
|
|
mat[1] += mat[11] * d;
|
|
mat[3] += mat[13] * d;
|
|
mat[4] += mat[14] * d;
|
|
d = mat[7] * di;
|
|
mat[5] += mat[10] * d;
|
|
mat[6] += mat[11] * d;
|
|
mat[8] += mat[13] * d;
|
|
mat[9] += mat[14] * d;
|
|
d = mat[17] * di;
|
|
mat[15] += mat[10] * d;
|
|
mat[16] += mat[11] * d;
|
|
mat[18] += mat[13] * d;
|
|
mat[19] += mat[14] * d;
|
|
d = mat[22] * di;
|
|
mat[20] += mat[10] * d;
|
|
mat[21] += mat[11] * d;
|
|
mat[23] += mat[13] * d;
|
|
mat[24] += mat[14] * d;
|
|
di = mat[18];
|
|
s *= di;
|
|
mat[18] = d = 1.0f / di;
|
|
mat[15] *= d;
|
|
mat[16] *= d;
|
|
mat[17] *= d;
|
|
mat[19] *= d;
|
|
d = -d;
|
|
mat[3] *= d;
|
|
mat[8] *= d;
|
|
mat[13] *= d;
|
|
mat[23] *= d;
|
|
d = mat[3] * di;
|
|
mat[0] += mat[15] * d;
|
|
mat[1] += mat[16] * d;
|
|
mat[2] += mat[17] * d;
|
|
mat[4] += mat[19] * d;
|
|
d = mat[8] * di;
|
|
mat[5] += mat[15] * d;
|
|
mat[6] += mat[16] * d;
|
|
mat[7] += mat[17] * d;
|
|
mat[9] += mat[19] * d;
|
|
d = mat[13] * di;
|
|
mat[10] += mat[15] * d;
|
|
mat[11] += mat[16] * d;
|
|
mat[12] += mat[17] * d;
|
|
mat[14] += mat[19] * d;
|
|
d = mat[23] * di;
|
|
mat[20] += mat[15] * d;
|
|
mat[21] += mat[16] * d;
|
|
mat[22] += mat[17] * d;
|
|
mat[24] += mat[19] * d;
|
|
di = mat[24];
|
|
s *= di;
|
|
mat[24] = d = 1.0f / di;
|
|
mat[20] *= d;
|
|
mat[21] *= d;
|
|
mat[22] *= d;
|
|
mat[23] *= d;
|
|
d = -d;
|
|
mat[4] *= d;
|
|
mat[9] *= d;
|
|
mat[14] *= d;
|
|
mat[19] *= d;
|
|
d = mat[4] * di;
|
|
mat[0] += mat[20] * d;
|
|
mat[1] += mat[21] * d;
|
|
mat[2] += mat[22] * d;
|
|
mat[3] += mat[23] * d;
|
|
d = mat[9] * di;
|
|
mat[5] += mat[20] * d;
|
|
mat[6] += mat[21] * d;
|
|
mat[7] += mat[22] * d;
|
|
mat[8] += mat[23] * d;
|
|
d = mat[14] * di;
|
|
mat[10] += mat[20] * d;
|
|
mat[11] += mat[21] * d;
|
|
mat[12] += mat[22] * d;
|
|
mat[13] += mat[23] * d;
|
|
d = mat[19] * di;
|
|
mat[15] += mat[20] * d;
|
|
mat[16] += mat[21] * d;
|
|
mat[17] += mat[22] * d;
|
|
mat[18] += mat[23] * d;
|
|
|
|
return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
|
|
#else
|
|
// 86+30+6 = 122 multiplications
|
|
// 2*1 = 2 divisions
|
|
idMat3 r0, r1, r2, r3;
|
|
float c0, c1, c2, det, invDet;
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
|
|
// r0 = m0.Inverse(); // 3x3
|
|
c0 = mat[1*5+1] * mat[2*5+2] - mat[1*5+2] * mat[2*5+1];
|
|
c1 = mat[1*5+2] * mat[2*5+0] - mat[1*5+0] * mat[2*5+2];
|
|
c2 = mat[1*5+0] * mat[2*5+1] - mat[1*5+1] * mat[2*5+0];
|
|
|
|
det = mat[0*5+0] * c0 + mat[0*5+1] * c1 + mat[0*5+2] * c2;
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
r0[0][0] = c0 * invDet;
|
|
r0[0][1] = ( mat[0*5+2] * mat[2*5+1] - mat[0*5+1] * mat[2*5+2] ) * invDet;
|
|
r0[0][2] = ( mat[0*5+1] * mat[1*5+2] - mat[0*5+2] * mat[1*5+1] ) * invDet;
|
|
r0[1][0] = c1 * invDet;
|
|
r0[1][1] = ( mat[0*5+0] * mat[2*5+2] - mat[0*5+2] * mat[2*5+0] ) * invDet;
|
|
r0[1][2] = ( mat[0*5+2] * mat[1*5+0] - mat[0*5+0] * mat[1*5+2] ) * invDet;
|
|
r0[2][0] = c2 * invDet;
|
|
r0[2][1] = ( mat[0*5+1] * mat[2*5+0] - mat[0*5+0] * mat[2*5+1] ) * invDet;
|
|
r0[2][2] = ( mat[0*5+0] * mat[1*5+1] - mat[0*5+1] * mat[1*5+0] ) * invDet;
|
|
|
|
// r1 = r0 * m1; // 3x2 = 3x3 * 3x2
|
|
r1[0][0] = r0[0][0] * mat[0*5+3] + r0[0][1] * mat[1*5+3] + r0[0][2] * mat[2*5+3];
|
|
r1[0][1] = r0[0][0] * mat[0*5+4] + r0[0][1] * mat[1*5+4] + r0[0][2] * mat[2*5+4];
|
|
r1[1][0] = r0[1][0] * mat[0*5+3] + r0[1][1] * mat[1*5+3] + r0[1][2] * mat[2*5+3];
|
|
r1[1][1] = r0[1][0] * mat[0*5+4] + r0[1][1] * mat[1*5+4] + r0[1][2] * mat[2*5+4];
|
|
r1[2][0] = r0[2][0] * mat[0*5+3] + r0[2][1] * mat[1*5+3] + r0[2][2] * mat[2*5+3];
|
|
r1[2][1] = r0[2][0] * mat[0*5+4] + r0[2][1] * mat[1*5+4] + r0[2][2] * mat[2*5+4];
|
|
|
|
// r2 = m2 * r1; // 2x2 = 2x3 * 3x2
|
|
r2[0][0] = mat[3*5+0] * r1[0][0] + mat[3*5+1] * r1[1][0] + mat[3*5+2] * r1[2][0];
|
|
r2[0][1] = mat[3*5+0] * r1[0][1] + mat[3*5+1] * r1[1][1] + mat[3*5+2] * r1[2][1];
|
|
r2[1][0] = mat[4*5+0] * r1[0][0] + mat[4*5+1] * r1[1][0] + mat[4*5+2] * r1[2][0];
|
|
r2[1][1] = mat[4*5+0] * r1[0][1] + mat[4*5+1] * r1[1][1] + mat[4*5+2] * r1[2][1];
|
|
|
|
// r3 = r2 - m3; // 2x2 = 2x2 - 2x2
|
|
r3[0][0] = r2[0][0] - mat[3*5+3];
|
|
r3[0][1] = r2[0][1] - mat[3*5+4];
|
|
r3[1][0] = r2[1][0] - mat[4*5+3];
|
|
r3[1][1] = r2[1][1] - mat[4*5+4];
|
|
|
|
// r3.InverseSelf(); // 2x2
|
|
det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
c0 = r3[0][0];
|
|
r3[0][0] = r3[1][1] * invDet;
|
|
r3[0][1] = - r3[0][1] * invDet;
|
|
r3[1][0] = - r3[1][0] * invDet;
|
|
r3[1][1] = c0 * invDet;
|
|
|
|
// r2 = m2 * r0; // 2x3 = 2x3 * 3x3
|
|
r2[0][0] = mat[3*5+0] * r0[0][0] + mat[3*5+1] * r0[1][0] + mat[3*5+2] * r0[2][0];
|
|
r2[0][1] = mat[3*5+0] * r0[0][1] + mat[3*5+1] * r0[1][1] + mat[3*5+2] * r0[2][1];
|
|
r2[0][2] = mat[3*5+0] * r0[0][2] + mat[3*5+1] * r0[1][2] + mat[3*5+2] * r0[2][2];
|
|
r2[1][0] = mat[4*5+0] * r0[0][0] + mat[4*5+1] * r0[1][0] + mat[4*5+2] * r0[2][0];
|
|
r2[1][1] = mat[4*5+0] * r0[0][1] + mat[4*5+1] * r0[1][1] + mat[4*5+2] * r0[2][1];
|
|
r2[1][2] = mat[4*5+0] * r0[0][2] + mat[4*5+1] * r0[1][2] + mat[4*5+2] * r0[2][2];
|
|
|
|
// m2 = r3 * r2; // 2x3 = 2x2 * 2x3
|
|
mat[3*5+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0];
|
|
mat[3*5+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1];
|
|
mat[3*5+2] = r3[0][0] * r2[0][2] + r3[0][1] * r2[1][2];
|
|
mat[4*5+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0];
|
|
mat[4*5+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1];
|
|
mat[4*5+2] = r3[1][0] * r2[0][2] + r3[1][1] * r2[1][2];
|
|
|
|
// m0 = r0 - r1 * m2; // 3x3 = 3x3 - 3x2 * 2x3
|
|
mat[0*5+0] = r0[0][0] - r1[0][0] * mat[3*5+0] - r1[0][1] * mat[4*5+0];
|
|
mat[0*5+1] = r0[0][1] - r1[0][0] * mat[3*5+1] - r1[0][1] * mat[4*5+1];
|
|
mat[0*5+2] = r0[0][2] - r1[0][0] * mat[3*5+2] - r1[0][1] * mat[4*5+2];
|
|
mat[1*5+0] = r0[1][0] - r1[1][0] * mat[3*5+0] - r1[1][1] * mat[4*5+0];
|
|
mat[1*5+1] = r0[1][1] - r1[1][0] * mat[3*5+1] - r1[1][1] * mat[4*5+1];
|
|
mat[1*5+2] = r0[1][2] - r1[1][0] * mat[3*5+2] - r1[1][1] * mat[4*5+2];
|
|
mat[2*5+0] = r0[2][0] - r1[2][0] * mat[3*5+0] - r1[2][1] * mat[4*5+0];
|
|
mat[2*5+1] = r0[2][1] - r1[2][0] * mat[3*5+1] - r1[2][1] * mat[4*5+1];
|
|
mat[2*5+2] = r0[2][2] - r1[2][0] * mat[3*5+2] - r1[2][1] * mat[4*5+2];
|
|
|
|
// m1 = r1 * r3; // 3x2 = 3x2 * 2x2
|
|
mat[0*5+3] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0];
|
|
mat[0*5+4] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1];
|
|
mat[1*5+3] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0];
|
|
mat[1*5+4] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1];
|
|
mat[2*5+3] = r1[2][0] * r3[0][0] + r1[2][1] * r3[1][0];
|
|
mat[2*5+4] = r1[2][0] * r3[0][1] + r1[2][1] * r3[1][1];
|
|
|
|
// m3 = -r3; // 2x2 = - 2x2
|
|
mat[3*5+3] = -r3[0][0];
|
|
mat[3*5+4] = -r3[0][1];
|
|
mat[4*5+3] = -r3[1][0];
|
|
mat[4*5+4] = -r3[1][1];
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
=============
|
|
idMat5::ToString
|
|
=============
|
|
*/
|
|
const char *idMat5::ToString( int precision ) const {
|
|
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
|
|
}
|
|
|
|
|
|
//===============================================================
|
|
//
|
|
// idMat6
|
|
//
|
|
//===============================================================
|
|
|
|
idMat6 mat6_zero( idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ) );
|
|
idMat6 mat6_identity( idVec6( 1, 0, 0, 0, 0, 0 ), idVec6( 0, 1, 0, 0, 0, 0 ), idVec6( 0, 0, 1, 0, 0, 0 ), idVec6( 0, 0, 0, 1, 0, 0 ), idVec6( 0, 0, 0, 0, 1, 0 ), idVec6( 0, 0, 0, 0, 0, 1 ) );
|
|
|
|
/*
|
|
============
|
|
idMat6::Transpose
|
|
============
|
|
*/
|
|
idMat6 idMat6::Transpose( void ) const {
|
|
idMat6 transpose;
|
|
int i, j;
|
|
|
|
for( i = 0; i < 6; i++ ) {
|
|
for( j = 0; j < 6; j++ ) {
|
|
transpose[ i ][ j ] = mat[ j ][ i ];
|
|
}
|
|
}
|
|
return transpose;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat6::TransposeSelf
|
|
============
|
|
*/
|
|
idMat6 &idMat6::TransposeSelf( void ) {
|
|
float temp;
|
|
int i, j;
|
|
|
|
for( i = 0; i < 6; i++ ) {
|
|
for( j = i + 1; j < 6; j++ ) {
|
|
temp = mat[ i ][ j ];
|
|
mat[ i ][ j ] = mat[ j ][ i ];
|
|
mat[ j ][ i ] = temp;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat6::Determinant
|
|
============
|
|
*/
|
|
float idMat6::Determinant( void ) const {
|
|
|
|
// 2x2 sub-determinants required to calculate 6x6 determinant
|
|
float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0];
|
|
float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0];
|
|
float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0];
|
|
float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0];
|
|
float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0];
|
|
float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1];
|
|
float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1];
|
|
float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1];
|
|
float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1];
|
|
float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2];
|
|
float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2];
|
|
float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2];
|
|
float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3];
|
|
float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3];
|
|
float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4];
|
|
|
|
// 3x3 sub-determinants required to calculate 6x6 determinant
|
|
float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01;
|
|
float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01;
|
|
float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01;
|
|
float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01;
|
|
float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02;
|
|
float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02;
|
|
float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02;
|
|
float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03;
|
|
float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03;
|
|
float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04;
|
|
float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12;
|
|
float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12;
|
|
float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12;
|
|
float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13;
|
|
float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13;
|
|
float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14;
|
|
float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23;
|
|
float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23;
|
|
float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24;
|
|
float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34;
|
|
|
|
// 4x4 sub-determinants required to calculate 6x6 determinant
|
|
float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012;
|
|
float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012;
|
|
float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012;
|
|
float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013;
|
|
float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013;
|
|
float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014;
|
|
float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023;
|
|
float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023;
|
|
float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024;
|
|
float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034;
|
|
float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123;
|
|
float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123;
|
|
float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124;
|
|
float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134;
|
|
float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234;
|
|
|
|
// 5x5 sub-determinants required to calculate 6x6 determinant
|
|
float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123;
|
|
float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123;
|
|
float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124;
|
|
float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134;
|
|
float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234;
|
|
float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234;
|
|
|
|
// determinant of 6x6 matrix
|
|
return mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 -
|
|
mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat6::InverseSelf
|
|
============
|
|
*/
|
|
bool idMat6::InverseSelf( void ) {
|
|
// 810+6+36 = 852 multiplications
|
|
// 1 division
|
|
double det, invDet;
|
|
|
|
// 2x2 sub-determinants required to calculate 6x6 determinant
|
|
float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0];
|
|
float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0];
|
|
float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0];
|
|
float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0];
|
|
float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0];
|
|
float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1];
|
|
float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1];
|
|
float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1];
|
|
float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1];
|
|
float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2];
|
|
float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2];
|
|
float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2];
|
|
float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3];
|
|
float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3];
|
|
float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4];
|
|
|
|
// 3x3 sub-determinants required to calculate 6x6 determinant
|
|
float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01;
|
|
float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01;
|
|
float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01;
|
|
float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01;
|
|
float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02;
|
|
float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02;
|
|
float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02;
|
|
float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03;
|
|
float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03;
|
|
float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04;
|
|
float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12;
|
|
float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12;
|
|
float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12;
|
|
float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13;
|
|
float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13;
|
|
float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14;
|
|
float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23;
|
|
float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23;
|
|
float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24;
|
|
float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34;
|
|
|
|
// 4x4 sub-determinants required to calculate 6x6 determinant
|
|
float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012;
|
|
float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012;
|
|
float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012;
|
|
float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013;
|
|
float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013;
|
|
float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014;
|
|
float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023;
|
|
float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023;
|
|
float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024;
|
|
float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034;
|
|
float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123;
|
|
float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123;
|
|
float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124;
|
|
float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134;
|
|
float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234;
|
|
|
|
// 5x5 sub-determinants required to calculate 6x6 determinant
|
|
float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123;
|
|
float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123;
|
|
float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124;
|
|
float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134;
|
|
float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234;
|
|
float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234;
|
|
|
|
// determinant of 6x6 matrix
|
|
det = mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 -
|
|
mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234;
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
// remaining 2x2 sub-determinants
|
|
float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
|
|
float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
|
|
float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
|
|
float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
|
|
float det2_34_05 = mat[3][0] * mat[4][5] - mat[3][5] * mat[4][0];
|
|
float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
|
|
float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
|
|
float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
|
|
float det2_34_15 = mat[3][1] * mat[4][5] - mat[3][5] * mat[4][1];
|
|
float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
|
|
float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
|
|
float det2_34_25 = mat[3][2] * mat[4][5] - mat[3][5] * mat[4][2];
|
|
float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
|
|
float det2_34_35 = mat[3][3] * mat[4][5] - mat[3][5] * mat[4][3];
|
|
float det2_34_45 = mat[3][4] * mat[4][5] - mat[3][5] * mat[4][4];
|
|
float det2_35_01 = mat[3][0] * mat[5][1] - mat[3][1] * mat[5][0];
|
|
float det2_35_02 = mat[3][0] * mat[5][2] - mat[3][2] * mat[5][0];
|
|
float det2_35_03 = mat[3][0] * mat[5][3] - mat[3][3] * mat[5][0];
|
|
float det2_35_04 = mat[3][0] * mat[5][4] - mat[3][4] * mat[5][0];
|
|
float det2_35_05 = mat[3][0] * mat[5][5] - mat[3][5] * mat[5][0];
|
|
float det2_35_12 = mat[3][1] * mat[5][2] - mat[3][2] * mat[5][1];
|
|
float det2_35_13 = mat[3][1] * mat[5][3] - mat[3][3] * mat[5][1];
|
|
float det2_35_14 = mat[3][1] * mat[5][4] - mat[3][4] * mat[5][1];
|
|
float det2_35_15 = mat[3][1] * mat[5][5] - mat[3][5] * mat[5][1];
|
|
float det2_35_23 = mat[3][2] * mat[5][3] - mat[3][3] * mat[5][2];
|
|
float det2_35_24 = mat[3][2] * mat[5][4] - mat[3][4] * mat[5][2];
|
|
float det2_35_25 = mat[3][2] * mat[5][5] - mat[3][5] * mat[5][2];
|
|
float det2_35_34 = mat[3][3] * mat[5][4] - mat[3][4] * mat[5][3];
|
|
float det2_35_35 = mat[3][3] * mat[5][5] - mat[3][5] * mat[5][3];
|
|
float det2_35_45 = mat[3][4] * mat[5][5] - mat[3][5] * mat[5][4];
|
|
|
|
// remaining 3x3 sub-determinants
|
|
float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
|
|
float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
|
|
float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
|
|
float det3_234_015 = mat[2][0] * det2_34_15 - mat[2][1] * det2_34_05 + mat[2][5] * det2_34_01;
|
|
float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
|
|
float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
|
|
float det3_234_025 = mat[2][0] * det2_34_25 - mat[2][2] * det2_34_05 + mat[2][5] * det2_34_02;
|
|
float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
|
|
float det3_234_035 = mat[2][0] * det2_34_35 - mat[2][3] * det2_34_05 + mat[2][5] * det2_34_03;
|
|
float det3_234_045 = mat[2][0] * det2_34_45 - mat[2][4] * det2_34_05 + mat[2][5] * det2_34_04;
|
|
float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
|
|
float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
|
|
float det3_234_125 = mat[2][1] * det2_34_25 - mat[2][2] * det2_34_15 + mat[2][5] * det2_34_12;
|
|
float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
|
|
float det3_234_135 = mat[2][1] * det2_34_35 - mat[2][3] * det2_34_15 + mat[2][5] * det2_34_13;
|
|
float det3_234_145 = mat[2][1] * det2_34_45 - mat[2][4] * det2_34_15 + mat[2][5] * det2_34_14;
|
|
float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
|
|
float det3_234_235 = mat[2][2] * det2_34_35 - mat[2][3] * det2_34_25 + mat[2][5] * det2_34_23;
|
|
float det3_234_245 = mat[2][2] * det2_34_45 - mat[2][4] * det2_34_25 + mat[2][5] * det2_34_24;
|
|
float det3_234_345 = mat[2][3] * det2_34_45 - mat[2][4] * det2_34_35 + mat[2][5] * det2_34_34;
|
|
float det3_235_012 = mat[2][0] * det2_35_12 - mat[2][1] * det2_35_02 + mat[2][2] * det2_35_01;
|
|
float det3_235_013 = mat[2][0] * det2_35_13 - mat[2][1] * det2_35_03 + mat[2][3] * det2_35_01;
|
|
float det3_235_014 = mat[2][0] * det2_35_14 - mat[2][1] * det2_35_04 + mat[2][4] * det2_35_01;
|
|
float det3_235_015 = mat[2][0] * det2_35_15 - mat[2][1] * det2_35_05 + mat[2][5] * det2_35_01;
|
|
float det3_235_023 = mat[2][0] * det2_35_23 - mat[2][2] * det2_35_03 + mat[2][3] * det2_35_02;
|
|
float det3_235_024 = mat[2][0] * det2_35_24 - mat[2][2] * det2_35_04 + mat[2][4] * det2_35_02;
|
|
float det3_235_025 = mat[2][0] * det2_35_25 - mat[2][2] * det2_35_05 + mat[2][5] * det2_35_02;
|
|
float det3_235_034 = mat[2][0] * det2_35_34 - mat[2][3] * det2_35_04 + mat[2][4] * det2_35_03;
|
|
float det3_235_035 = mat[2][0] * det2_35_35 - mat[2][3] * det2_35_05 + mat[2][5] * det2_35_03;
|
|
float det3_235_045 = mat[2][0] * det2_35_45 - mat[2][4] * det2_35_05 + mat[2][5] * det2_35_04;
|
|
float det3_235_123 = mat[2][1] * det2_35_23 - mat[2][2] * det2_35_13 + mat[2][3] * det2_35_12;
|
|
float det3_235_124 = mat[2][1] * det2_35_24 - mat[2][2] * det2_35_14 + mat[2][4] * det2_35_12;
|
|
float det3_235_125 = mat[2][1] * det2_35_25 - mat[2][2] * det2_35_15 + mat[2][5] * det2_35_12;
|
|
float det3_235_134 = mat[2][1] * det2_35_34 - mat[2][3] * det2_35_14 + mat[2][4] * det2_35_13;
|
|
float det3_235_135 = mat[2][1] * det2_35_35 - mat[2][3] * det2_35_15 + mat[2][5] * det2_35_13;
|
|
float det3_235_145 = mat[2][1] * det2_35_45 - mat[2][4] * det2_35_15 + mat[2][5] * det2_35_14;
|
|
float det3_235_234 = mat[2][2] * det2_35_34 - mat[2][3] * det2_35_24 + mat[2][4] * det2_35_23;
|
|
float det3_235_235 = mat[2][2] * det2_35_35 - mat[2][3] * det2_35_25 + mat[2][5] * det2_35_23;
|
|
float det3_235_245 = mat[2][2] * det2_35_45 - mat[2][4] * det2_35_25 + mat[2][5] * det2_35_24;
|
|
float det3_235_345 = mat[2][3] * det2_35_45 - mat[2][4] * det2_35_35 + mat[2][5] * det2_35_34;
|
|
float det3_245_012 = mat[2][0] * det2_45_12 - mat[2][1] * det2_45_02 + mat[2][2] * det2_45_01;
|
|
float det3_245_013 = mat[2][0] * det2_45_13 - mat[2][1] * det2_45_03 + mat[2][3] * det2_45_01;
|
|
float det3_245_014 = mat[2][0] * det2_45_14 - mat[2][1] * det2_45_04 + mat[2][4] * det2_45_01;
|
|
float det3_245_015 = mat[2][0] * det2_45_15 - mat[2][1] * det2_45_05 + mat[2][5] * det2_45_01;
|
|
float det3_245_023 = mat[2][0] * det2_45_23 - mat[2][2] * det2_45_03 + mat[2][3] * det2_45_02;
|
|
float det3_245_024 = mat[2][0] * det2_45_24 - mat[2][2] * det2_45_04 + mat[2][4] * det2_45_02;
|
|
float det3_245_025 = mat[2][0] * det2_45_25 - mat[2][2] * det2_45_05 + mat[2][5] * det2_45_02;
|
|
float det3_245_034 = mat[2][0] * det2_45_34 - mat[2][3] * det2_45_04 + mat[2][4] * det2_45_03;
|
|
float det3_245_035 = mat[2][0] * det2_45_35 - mat[2][3] * det2_45_05 + mat[2][5] * det2_45_03;
|
|
float det3_245_045 = mat[2][0] * det2_45_45 - mat[2][4] * det2_45_05 + mat[2][5] * det2_45_04;
|
|
float det3_245_123 = mat[2][1] * det2_45_23 - mat[2][2] * det2_45_13 + mat[2][3] * det2_45_12;
|
|
float det3_245_124 = mat[2][1] * det2_45_24 - mat[2][2] * det2_45_14 + mat[2][4] * det2_45_12;
|
|
float det3_245_125 = mat[2][1] * det2_45_25 - mat[2][2] * det2_45_15 + mat[2][5] * det2_45_12;
|
|
float det3_245_134 = mat[2][1] * det2_45_34 - mat[2][3] * det2_45_14 + mat[2][4] * det2_45_13;
|
|
float det3_245_135 = mat[2][1] * det2_45_35 - mat[2][3] * det2_45_15 + mat[2][5] * det2_45_13;
|
|
float det3_245_145 = mat[2][1] * det2_45_45 - mat[2][4] * det2_45_15 + mat[2][5] * det2_45_14;
|
|
float det3_245_234 = mat[2][2] * det2_45_34 - mat[2][3] * det2_45_24 + mat[2][4] * det2_45_23;
|
|
float det3_245_235 = mat[2][2] * det2_45_35 - mat[2][3] * det2_45_25 + mat[2][5] * det2_45_23;
|
|
float det3_245_245 = mat[2][2] * det2_45_45 - mat[2][4] * det2_45_25 + mat[2][5] * det2_45_24;
|
|
float det3_245_345 = mat[2][3] * det2_45_45 - mat[2][4] * det2_45_35 + mat[2][5] * det2_45_34;
|
|
|
|
// remaining 4x4 sub-determinants
|
|
float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
|
|
float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
|
|
float det4_1234_0125 = mat[1][0] * det3_234_125 - mat[1][1] * det3_234_025 + mat[1][2] * det3_234_015 - mat[1][5] * det3_234_012;
|
|
float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
|
|
float det4_1234_0135 = mat[1][0] * det3_234_135 - mat[1][1] * det3_234_035 + mat[1][3] * det3_234_015 - mat[1][5] * det3_234_013;
|
|
float det4_1234_0145 = mat[1][0] * det3_234_145 - mat[1][1] * det3_234_045 + mat[1][4] * det3_234_015 - mat[1][5] * det3_234_014;
|
|
float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
|
|
float det4_1234_0235 = mat[1][0] * det3_234_235 - mat[1][2] * det3_234_035 + mat[1][3] * det3_234_025 - mat[1][5] * det3_234_023;
|
|
float det4_1234_0245 = mat[1][0] * det3_234_245 - mat[1][2] * det3_234_045 + mat[1][4] * det3_234_025 - mat[1][5] * det3_234_024;
|
|
float det4_1234_0345 = mat[1][0] * det3_234_345 - mat[1][3] * det3_234_045 + mat[1][4] * det3_234_035 - mat[1][5] * det3_234_034;
|
|
float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
|
|
float det4_1234_1235 = mat[1][1] * det3_234_235 - mat[1][2] * det3_234_135 + mat[1][3] * det3_234_125 - mat[1][5] * det3_234_123;
|
|
float det4_1234_1245 = mat[1][1] * det3_234_245 - mat[1][2] * det3_234_145 + mat[1][4] * det3_234_125 - mat[1][5] * det3_234_124;
|
|
float det4_1234_1345 = mat[1][1] * det3_234_345 - mat[1][3] * det3_234_145 + mat[1][4] * det3_234_135 - mat[1][5] * det3_234_134;
|
|
float det4_1234_2345 = mat[1][2] * det3_234_345 - mat[1][3] * det3_234_245 + mat[1][4] * det3_234_235 - mat[1][5] * det3_234_234;
|
|
float det4_1235_0123 = mat[1][0] * det3_235_123 - mat[1][1] * det3_235_023 + mat[1][2] * det3_235_013 - mat[1][3] * det3_235_012;
|
|
float det4_1235_0124 = mat[1][0] * det3_235_124 - mat[1][1] * det3_235_024 + mat[1][2] * det3_235_014 - mat[1][4] * det3_235_012;
|
|
float det4_1235_0125 = mat[1][0] * det3_235_125 - mat[1][1] * det3_235_025 + mat[1][2] * det3_235_015 - mat[1][5] * det3_235_012;
|
|
float det4_1235_0134 = mat[1][0] * det3_235_134 - mat[1][1] * det3_235_034 + mat[1][3] * det3_235_014 - mat[1][4] * det3_235_013;
|
|
float det4_1235_0135 = mat[1][0] * det3_235_135 - mat[1][1] * det3_235_035 + mat[1][3] * det3_235_015 - mat[1][5] * det3_235_013;
|
|
float det4_1235_0145 = mat[1][0] * det3_235_145 - mat[1][1] * det3_235_045 + mat[1][4] * det3_235_015 - mat[1][5] * det3_235_014;
|
|
float det4_1235_0234 = mat[1][0] * det3_235_234 - mat[1][2] * det3_235_034 + mat[1][3] * det3_235_024 - mat[1][4] * det3_235_023;
|
|
float det4_1235_0235 = mat[1][0] * det3_235_235 - mat[1][2] * det3_235_035 + mat[1][3] * det3_235_025 - mat[1][5] * det3_235_023;
|
|
float det4_1235_0245 = mat[1][0] * det3_235_245 - mat[1][2] * det3_235_045 + mat[1][4] * det3_235_025 - mat[1][5] * det3_235_024;
|
|
float det4_1235_0345 = mat[1][0] * det3_235_345 - mat[1][3] * det3_235_045 + mat[1][4] * det3_235_035 - mat[1][5] * det3_235_034;
|
|
float det4_1235_1234 = mat[1][1] * det3_235_234 - mat[1][2] * det3_235_134 + mat[1][3] * det3_235_124 - mat[1][4] * det3_235_123;
|
|
float det4_1235_1235 = mat[1][1] * det3_235_235 - mat[1][2] * det3_235_135 + mat[1][3] * det3_235_125 - mat[1][5] * det3_235_123;
|
|
float det4_1235_1245 = mat[1][1] * det3_235_245 - mat[1][2] * det3_235_145 + mat[1][4] * det3_235_125 - mat[1][5] * det3_235_124;
|
|
float det4_1235_1345 = mat[1][1] * det3_235_345 - mat[1][3] * det3_235_145 + mat[1][4] * det3_235_135 - mat[1][5] * det3_235_134;
|
|
float det4_1235_2345 = mat[1][2] * det3_235_345 - mat[1][3] * det3_235_245 + mat[1][4] * det3_235_235 - mat[1][5] * det3_235_234;
|
|
float det4_1245_0123 = mat[1][0] * det3_245_123 - mat[1][1] * det3_245_023 + mat[1][2] * det3_245_013 - mat[1][3] * det3_245_012;
|
|
float det4_1245_0124 = mat[1][0] * det3_245_124 - mat[1][1] * det3_245_024 + mat[1][2] * det3_245_014 - mat[1][4] * det3_245_012;
|
|
float det4_1245_0125 = mat[1][0] * det3_245_125 - mat[1][1] * det3_245_025 + mat[1][2] * det3_245_015 - mat[1][5] * det3_245_012;
|
|
float det4_1245_0134 = mat[1][0] * det3_245_134 - mat[1][1] * det3_245_034 + mat[1][3] * det3_245_014 - mat[1][4] * det3_245_013;
|
|
float det4_1245_0135 = mat[1][0] * det3_245_135 - mat[1][1] * det3_245_035 + mat[1][3] * det3_245_015 - mat[1][5] * det3_245_013;
|
|
float det4_1245_0145 = mat[1][0] * det3_245_145 - mat[1][1] * det3_245_045 + mat[1][4] * det3_245_015 - mat[1][5] * det3_245_014;
|
|
float det4_1245_0234 = mat[1][0] * det3_245_234 - mat[1][2] * det3_245_034 + mat[1][3] * det3_245_024 - mat[1][4] * det3_245_023;
|
|
float det4_1245_0235 = mat[1][0] * det3_245_235 - mat[1][2] * det3_245_035 + mat[1][3] * det3_245_025 - mat[1][5] * det3_245_023;
|
|
float det4_1245_0245 = mat[1][0] * det3_245_245 - mat[1][2] * det3_245_045 + mat[1][4] * det3_245_025 - mat[1][5] * det3_245_024;
|
|
float det4_1245_0345 = mat[1][0] * det3_245_345 - mat[1][3] * det3_245_045 + mat[1][4] * det3_245_035 - mat[1][5] * det3_245_034;
|
|
float det4_1245_1234 = mat[1][1] * det3_245_234 - mat[1][2] * det3_245_134 + mat[1][3] * det3_245_124 - mat[1][4] * det3_245_123;
|
|
float det4_1245_1235 = mat[1][1] * det3_245_235 - mat[1][2] * det3_245_135 + mat[1][3] * det3_245_125 - mat[1][5] * det3_245_123;
|
|
float det4_1245_1245 = mat[1][1] * det3_245_245 - mat[1][2] * det3_245_145 + mat[1][4] * det3_245_125 - mat[1][5] * det3_245_124;
|
|
float det4_1245_1345 = mat[1][1] * det3_245_345 - mat[1][3] * det3_245_145 + mat[1][4] * det3_245_135 - mat[1][5] * det3_245_134;
|
|
float det4_1245_2345 = mat[1][2] * det3_245_345 - mat[1][3] * det3_245_245 + mat[1][4] * det3_245_235 - mat[1][5] * det3_245_234;
|
|
float det4_1345_0123 = mat[1][0] * det3_345_123 - mat[1][1] * det3_345_023 + mat[1][2] * det3_345_013 - mat[1][3] * det3_345_012;
|
|
float det4_1345_0124 = mat[1][0] * det3_345_124 - mat[1][1] * det3_345_024 + mat[1][2] * det3_345_014 - mat[1][4] * det3_345_012;
|
|
float det4_1345_0125 = mat[1][0] * det3_345_125 - mat[1][1] * det3_345_025 + mat[1][2] * det3_345_015 - mat[1][5] * det3_345_012;
|
|
float det4_1345_0134 = mat[1][0] * det3_345_134 - mat[1][1] * det3_345_034 + mat[1][3] * det3_345_014 - mat[1][4] * det3_345_013;
|
|
float det4_1345_0135 = mat[1][0] * det3_345_135 - mat[1][1] * det3_345_035 + mat[1][3] * det3_345_015 - mat[1][5] * det3_345_013;
|
|
float det4_1345_0145 = mat[1][0] * det3_345_145 - mat[1][1] * det3_345_045 + mat[1][4] * det3_345_015 - mat[1][5] * det3_345_014;
|
|
float det4_1345_0234 = mat[1][0] * det3_345_234 - mat[1][2] * det3_345_034 + mat[1][3] * det3_345_024 - mat[1][4] * det3_345_023;
|
|
float det4_1345_0235 = mat[1][0] * det3_345_235 - mat[1][2] * det3_345_035 + mat[1][3] * det3_345_025 - mat[1][5] * det3_345_023;
|
|
float det4_1345_0245 = mat[1][0] * det3_345_245 - mat[1][2] * det3_345_045 + mat[1][4] * det3_345_025 - mat[1][5] * det3_345_024;
|
|
float det4_1345_0345 = mat[1][0] * det3_345_345 - mat[1][3] * det3_345_045 + mat[1][4] * det3_345_035 - mat[1][5] * det3_345_034;
|
|
float det4_1345_1234 = mat[1][1] * det3_345_234 - mat[1][2] * det3_345_134 + mat[1][3] * det3_345_124 - mat[1][4] * det3_345_123;
|
|
float det4_1345_1235 = mat[1][1] * det3_345_235 - mat[1][2] * det3_345_135 + mat[1][3] * det3_345_125 - mat[1][5] * det3_345_123;
|
|
float det4_1345_1245 = mat[1][1] * det3_345_245 - mat[1][2] * det3_345_145 + mat[1][4] * det3_345_125 - mat[1][5] * det3_345_124;
|
|
float det4_1345_1345 = mat[1][1] * det3_345_345 - mat[1][3] * det3_345_145 + mat[1][4] * det3_345_135 - mat[1][5] * det3_345_134;
|
|
float det4_1345_2345 = mat[1][2] * det3_345_345 - mat[1][3] * det3_345_245 + mat[1][4] * det3_345_235 - mat[1][5] * det3_345_234;
|
|
|
|
// remaining 5x5 sub-determinants
|
|
float det5_01234_01234 = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
|
|
float det5_01234_01235 = mat[0][0] * det4_1234_1235 - mat[0][1] * det4_1234_0235 + mat[0][2] * det4_1234_0135 - mat[0][3] * det4_1234_0125 + mat[0][5] * det4_1234_0123;
|
|
float det5_01234_01245 = mat[0][0] * det4_1234_1245 - mat[0][1] * det4_1234_0245 + mat[0][2] * det4_1234_0145 - mat[0][4] * det4_1234_0125 + mat[0][5] * det4_1234_0124;
|
|
float det5_01234_01345 = mat[0][0] * det4_1234_1345 - mat[0][1] * det4_1234_0345 + mat[0][3] * det4_1234_0145 - mat[0][4] * det4_1234_0135 + mat[0][5] * det4_1234_0134;
|
|
float det5_01234_02345 = mat[0][0] * det4_1234_2345 - mat[0][2] * det4_1234_0345 + mat[0][3] * det4_1234_0245 - mat[0][4] * det4_1234_0235 + mat[0][5] * det4_1234_0234;
|
|
float det5_01234_12345 = mat[0][1] * det4_1234_2345 - mat[0][2] * det4_1234_1345 + mat[0][3] * det4_1234_1245 - mat[0][4] * det4_1234_1235 + mat[0][5] * det4_1234_1234;
|
|
float det5_01235_01234 = mat[0][0] * det4_1235_1234 - mat[0][1] * det4_1235_0234 + mat[0][2] * det4_1235_0134 - mat[0][3] * det4_1235_0124 + mat[0][4] * det4_1235_0123;
|
|
float det5_01235_01235 = mat[0][0] * det4_1235_1235 - mat[0][1] * det4_1235_0235 + mat[0][2] * det4_1235_0135 - mat[0][3] * det4_1235_0125 + mat[0][5] * det4_1235_0123;
|
|
float det5_01235_01245 = mat[0][0] * det4_1235_1245 - mat[0][1] * det4_1235_0245 + mat[0][2] * det4_1235_0145 - mat[0][4] * det4_1235_0125 + mat[0][5] * det4_1235_0124;
|
|
float det5_01235_01345 = mat[0][0] * det4_1235_1345 - mat[0][1] * det4_1235_0345 + mat[0][3] * det4_1235_0145 - mat[0][4] * det4_1235_0135 + mat[0][5] * det4_1235_0134;
|
|
float det5_01235_02345 = mat[0][0] * det4_1235_2345 - mat[0][2] * det4_1235_0345 + mat[0][3] * det4_1235_0245 - mat[0][4] * det4_1235_0235 + mat[0][5] * det4_1235_0234;
|
|
float det5_01235_12345 = mat[0][1] * det4_1235_2345 - mat[0][2] * det4_1235_1345 + mat[0][3] * det4_1235_1245 - mat[0][4] * det4_1235_1235 + mat[0][5] * det4_1235_1234;
|
|
float det5_01245_01234 = mat[0][0] * det4_1245_1234 - mat[0][1] * det4_1245_0234 + mat[0][2] * det4_1245_0134 - mat[0][3] * det4_1245_0124 + mat[0][4] * det4_1245_0123;
|
|
float det5_01245_01235 = mat[0][0] * det4_1245_1235 - mat[0][1] * det4_1245_0235 + mat[0][2] * det4_1245_0135 - mat[0][3] * det4_1245_0125 + mat[0][5] * det4_1245_0123;
|
|
float det5_01245_01245 = mat[0][0] * det4_1245_1245 - mat[0][1] * det4_1245_0245 + mat[0][2] * det4_1245_0145 - mat[0][4] * det4_1245_0125 + mat[0][5] * det4_1245_0124;
|
|
float det5_01245_01345 = mat[0][0] * det4_1245_1345 - mat[0][1] * det4_1245_0345 + mat[0][3] * det4_1245_0145 - mat[0][4] * det4_1245_0135 + mat[0][5] * det4_1245_0134;
|
|
float det5_01245_02345 = mat[0][0] * det4_1245_2345 - mat[0][2] * det4_1245_0345 + mat[0][3] * det4_1245_0245 - mat[0][4] * det4_1245_0235 + mat[0][5] * det4_1245_0234;
|
|
float det5_01245_12345 = mat[0][1] * det4_1245_2345 - mat[0][2] * det4_1245_1345 + mat[0][3] * det4_1245_1245 - mat[0][4] * det4_1245_1235 + mat[0][5] * det4_1245_1234;
|
|
float det5_01345_01234 = mat[0][0] * det4_1345_1234 - mat[0][1] * det4_1345_0234 + mat[0][2] * det4_1345_0134 - mat[0][3] * det4_1345_0124 + mat[0][4] * det4_1345_0123;
|
|
float det5_01345_01235 = mat[0][0] * det4_1345_1235 - mat[0][1] * det4_1345_0235 + mat[0][2] * det4_1345_0135 - mat[0][3] * det4_1345_0125 + mat[0][5] * det4_1345_0123;
|
|
float det5_01345_01245 = mat[0][0] * det4_1345_1245 - mat[0][1] * det4_1345_0245 + mat[0][2] * det4_1345_0145 - mat[0][4] * det4_1345_0125 + mat[0][5] * det4_1345_0124;
|
|
float det5_01345_01345 = mat[0][0] * det4_1345_1345 - mat[0][1] * det4_1345_0345 + mat[0][3] * det4_1345_0145 - mat[0][4] * det4_1345_0135 + mat[0][5] * det4_1345_0134;
|
|
float det5_01345_02345 = mat[0][0] * det4_1345_2345 - mat[0][2] * det4_1345_0345 + mat[0][3] * det4_1345_0245 - mat[0][4] * det4_1345_0235 + mat[0][5] * det4_1345_0234;
|
|
float det5_01345_12345 = mat[0][1] * det4_1345_2345 - mat[0][2] * det4_1345_1345 + mat[0][3] * det4_1345_1245 - mat[0][4] * det4_1345_1235 + mat[0][5] * det4_1345_1234;
|
|
float det5_02345_01234 = mat[0][0] * det4_2345_1234 - mat[0][1] * det4_2345_0234 + mat[0][2] * det4_2345_0134 - mat[0][3] * det4_2345_0124 + mat[0][4] * det4_2345_0123;
|
|
float det5_02345_01235 = mat[0][0] * det4_2345_1235 - mat[0][1] * det4_2345_0235 + mat[0][2] * det4_2345_0135 - mat[0][3] * det4_2345_0125 + mat[0][5] * det4_2345_0123;
|
|
float det5_02345_01245 = mat[0][0] * det4_2345_1245 - mat[0][1] * det4_2345_0245 + mat[0][2] * det4_2345_0145 - mat[0][4] * det4_2345_0125 + mat[0][5] * det4_2345_0124;
|
|
float det5_02345_01345 = mat[0][0] * det4_2345_1345 - mat[0][1] * det4_2345_0345 + mat[0][3] * det4_2345_0145 - mat[0][4] * det4_2345_0135 + mat[0][5] * det4_2345_0134;
|
|
float det5_02345_02345 = mat[0][0] * det4_2345_2345 - mat[0][2] * det4_2345_0345 + mat[0][3] * det4_2345_0245 - mat[0][4] * det4_2345_0235 + mat[0][5] * det4_2345_0234;
|
|
float det5_02345_12345 = mat[0][1] * det4_2345_2345 - mat[0][2] * det4_2345_1345 + mat[0][3] * det4_2345_1245 - mat[0][4] * det4_2345_1235 + mat[0][5] * det4_2345_1234;
|
|
|
|
mat[0][0] = det5_12345_12345 * invDet;
|
|
mat[0][1] = -det5_02345_12345 * invDet;
|
|
mat[0][2] = det5_01345_12345 * invDet;
|
|
mat[0][3] = -det5_01245_12345 * invDet;
|
|
mat[0][4] = det5_01235_12345 * invDet;
|
|
mat[0][5] = -det5_01234_12345 * invDet;
|
|
|
|
mat[1][0] = -det5_12345_02345 * invDet;
|
|
mat[1][1] = det5_02345_02345 * invDet;
|
|
mat[1][2] = -det5_01345_02345 * invDet;
|
|
mat[1][3] = det5_01245_02345 * invDet;
|
|
mat[1][4] = -det5_01235_02345 * invDet;
|
|
mat[1][5] = det5_01234_02345 * invDet;
|
|
|
|
mat[2][0] = det5_12345_01345 * invDet;
|
|
mat[2][1] = -det5_02345_01345 * invDet;
|
|
mat[2][2] = det5_01345_01345 * invDet;
|
|
mat[2][3] = -det5_01245_01345 * invDet;
|
|
mat[2][4] = det5_01235_01345 * invDet;
|
|
mat[2][5] = -det5_01234_01345 * invDet;
|
|
|
|
mat[3][0] = -det5_12345_01245 * invDet;
|
|
mat[3][1] = det5_02345_01245 * invDet;
|
|
mat[3][2] = -det5_01345_01245 * invDet;
|
|
mat[3][3] = det5_01245_01245 * invDet;
|
|
mat[3][4] = -det5_01235_01245 * invDet;
|
|
mat[3][5] = det5_01234_01245 * invDet;
|
|
|
|
mat[4][0] = det5_12345_01235 * invDet;
|
|
mat[4][1] = -det5_02345_01235 * invDet;
|
|
mat[4][2] = det5_01345_01235 * invDet;
|
|
mat[4][3] = -det5_01245_01235 * invDet;
|
|
mat[4][4] = det5_01235_01235 * invDet;
|
|
mat[4][5] = -det5_01234_01235 * invDet;
|
|
|
|
mat[5][0] = -det5_12345_01234 * invDet;
|
|
mat[5][1] = det5_02345_01234 * invDet;
|
|
mat[5][2] = -det5_01345_01234 * invDet;
|
|
mat[5][3] = det5_01245_01234 * invDet;
|
|
mat[5][4] = -det5_01235_01234 * invDet;
|
|
mat[5][5] = det5_01234_01234 * invDet;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMat6::InverseFastSelf
|
|
============
|
|
*/
|
|
bool idMat6::InverseFastSelf( void ) {
|
|
#if 0
|
|
// 810+6+36 = 852 multiplications
|
|
// 1 division
|
|
double det, invDet;
|
|
|
|
// 2x2 sub-determinants required to calculate 6x6 determinant
|
|
float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0];
|
|
float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0];
|
|
float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0];
|
|
float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0];
|
|
float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0];
|
|
float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1];
|
|
float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1];
|
|
float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1];
|
|
float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1];
|
|
float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2];
|
|
float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2];
|
|
float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2];
|
|
float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3];
|
|
float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3];
|
|
float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4];
|
|
|
|
// 3x3 sub-determinants required to calculate 6x6 determinant
|
|
float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01;
|
|
float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01;
|
|
float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01;
|
|
float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01;
|
|
float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02;
|
|
float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02;
|
|
float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02;
|
|
float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03;
|
|
float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03;
|
|
float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04;
|
|
float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12;
|
|
float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12;
|
|
float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12;
|
|
float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13;
|
|
float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13;
|
|
float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14;
|
|
float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23;
|
|
float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23;
|
|
float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24;
|
|
float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34;
|
|
|
|
// 4x4 sub-determinants required to calculate 6x6 determinant
|
|
float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012;
|
|
float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012;
|
|
float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012;
|
|
float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013;
|
|
float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013;
|
|
float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014;
|
|
float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023;
|
|
float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023;
|
|
float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024;
|
|
float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034;
|
|
float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123;
|
|
float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123;
|
|
float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124;
|
|
float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134;
|
|
float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234;
|
|
|
|
// 5x5 sub-determinants required to calculate 6x6 determinant
|
|
float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123;
|
|
float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123;
|
|
float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124;
|
|
float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134;
|
|
float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234;
|
|
float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234;
|
|
|
|
// determinant of 6x6 matrix
|
|
det = mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 -
|
|
mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234;
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
// remaining 2x2 sub-determinants
|
|
float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
|
|
float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
|
|
float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
|
|
float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
|
|
float det2_34_05 = mat[3][0] * mat[4][5] - mat[3][5] * mat[4][0];
|
|
float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
|
|
float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
|
|
float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
|
|
float det2_34_15 = mat[3][1] * mat[4][5] - mat[3][5] * mat[4][1];
|
|
float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
|
|
float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
|
|
float det2_34_25 = mat[3][2] * mat[4][5] - mat[3][5] * mat[4][2];
|
|
float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
|
|
float det2_34_35 = mat[3][3] * mat[4][5] - mat[3][5] * mat[4][3];
|
|
float det2_34_45 = mat[3][4] * mat[4][5] - mat[3][5] * mat[4][4];
|
|
float det2_35_01 = mat[3][0] * mat[5][1] - mat[3][1] * mat[5][0];
|
|
float det2_35_02 = mat[3][0] * mat[5][2] - mat[3][2] * mat[5][0];
|
|
float det2_35_03 = mat[3][0] * mat[5][3] - mat[3][3] * mat[5][0];
|
|
float det2_35_04 = mat[3][0] * mat[5][4] - mat[3][4] * mat[5][0];
|
|
float det2_35_05 = mat[3][0] * mat[5][5] - mat[3][5] * mat[5][0];
|
|
float det2_35_12 = mat[3][1] * mat[5][2] - mat[3][2] * mat[5][1];
|
|
float det2_35_13 = mat[3][1] * mat[5][3] - mat[3][3] * mat[5][1];
|
|
float det2_35_14 = mat[3][1] * mat[5][4] - mat[3][4] * mat[5][1];
|
|
float det2_35_15 = mat[3][1] * mat[5][5] - mat[3][5] * mat[5][1];
|
|
float det2_35_23 = mat[3][2] * mat[5][3] - mat[3][3] * mat[5][2];
|
|
float det2_35_24 = mat[3][2] * mat[5][4] - mat[3][4] * mat[5][2];
|
|
float det2_35_25 = mat[3][2] * mat[5][5] - mat[3][5] * mat[5][2];
|
|
float det2_35_34 = mat[3][3] * mat[5][4] - mat[3][4] * mat[5][3];
|
|
float det2_35_35 = mat[3][3] * mat[5][5] - mat[3][5] * mat[5][3];
|
|
float det2_35_45 = mat[3][4] * mat[5][5] - mat[3][5] * mat[5][4];
|
|
|
|
// remaining 3x3 sub-determinants
|
|
float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
|
|
float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
|
|
float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
|
|
float det3_234_015 = mat[2][0] * det2_34_15 - mat[2][1] * det2_34_05 + mat[2][5] * det2_34_01;
|
|
float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
|
|
float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
|
|
float det3_234_025 = mat[2][0] * det2_34_25 - mat[2][2] * det2_34_05 + mat[2][5] * det2_34_02;
|
|
float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
|
|
float det3_234_035 = mat[2][0] * det2_34_35 - mat[2][3] * det2_34_05 + mat[2][5] * det2_34_03;
|
|
float det3_234_045 = mat[2][0] * det2_34_45 - mat[2][4] * det2_34_05 + mat[2][5] * det2_34_04;
|
|
float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
|
|
float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
|
|
float det3_234_125 = mat[2][1] * det2_34_25 - mat[2][2] * det2_34_15 + mat[2][5] * det2_34_12;
|
|
float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
|
|
float det3_234_135 = mat[2][1] * det2_34_35 - mat[2][3] * det2_34_15 + mat[2][5] * det2_34_13;
|
|
float det3_234_145 = mat[2][1] * det2_34_45 - mat[2][4] * det2_34_15 + mat[2][5] * det2_34_14;
|
|
float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
|
|
float det3_234_235 = mat[2][2] * det2_34_35 - mat[2][3] * det2_34_25 + mat[2][5] * det2_34_23;
|
|
float det3_234_245 = mat[2][2] * det2_34_45 - mat[2][4] * det2_34_25 + mat[2][5] * det2_34_24;
|
|
float det3_234_345 = mat[2][3] * det2_34_45 - mat[2][4] * det2_34_35 + mat[2][5] * det2_34_34;
|
|
float det3_235_012 = mat[2][0] * det2_35_12 - mat[2][1] * det2_35_02 + mat[2][2] * det2_35_01;
|
|
float det3_235_013 = mat[2][0] * det2_35_13 - mat[2][1] * det2_35_03 + mat[2][3] * det2_35_01;
|
|
float det3_235_014 = mat[2][0] * det2_35_14 - mat[2][1] * det2_35_04 + mat[2][4] * det2_35_01;
|
|
float det3_235_015 = mat[2][0] * det2_35_15 - mat[2][1] * det2_35_05 + mat[2][5] * det2_35_01;
|
|
float det3_235_023 = mat[2][0] * det2_35_23 - mat[2][2] * det2_35_03 + mat[2][3] * det2_35_02;
|
|
float det3_235_024 = mat[2][0] * det2_35_24 - mat[2][2] * det2_35_04 + mat[2][4] * det2_35_02;
|
|
float det3_235_025 = mat[2][0] * det2_35_25 - mat[2][2] * det2_35_05 + mat[2][5] * det2_35_02;
|
|
float det3_235_034 = mat[2][0] * det2_35_34 - mat[2][3] * det2_35_04 + mat[2][4] * det2_35_03;
|
|
float det3_235_035 = mat[2][0] * det2_35_35 - mat[2][3] * det2_35_05 + mat[2][5] * det2_35_03;
|
|
float det3_235_045 = mat[2][0] * det2_35_45 - mat[2][4] * det2_35_05 + mat[2][5] * det2_35_04;
|
|
float det3_235_123 = mat[2][1] * det2_35_23 - mat[2][2] * det2_35_13 + mat[2][3] * det2_35_12;
|
|
float det3_235_124 = mat[2][1] * det2_35_24 - mat[2][2] * det2_35_14 + mat[2][4] * det2_35_12;
|
|
float det3_235_125 = mat[2][1] * det2_35_25 - mat[2][2] * det2_35_15 + mat[2][5] * det2_35_12;
|
|
float det3_235_134 = mat[2][1] * det2_35_34 - mat[2][3] * det2_35_14 + mat[2][4] * det2_35_13;
|
|
float det3_235_135 = mat[2][1] * det2_35_35 - mat[2][3] * det2_35_15 + mat[2][5] * det2_35_13;
|
|
float det3_235_145 = mat[2][1] * det2_35_45 - mat[2][4] * det2_35_15 + mat[2][5] * det2_35_14;
|
|
float det3_235_234 = mat[2][2] * det2_35_34 - mat[2][3] * det2_35_24 + mat[2][4] * det2_35_23;
|
|
float det3_235_235 = mat[2][2] * det2_35_35 - mat[2][3] * det2_35_25 + mat[2][5] * det2_35_23;
|
|
float det3_235_245 = mat[2][2] * det2_35_45 - mat[2][4] * det2_35_25 + mat[2][5] * det2_35_24;
|
|
float det3_235_345 = mat[2][3] * det2_35_45 - mat[2][4] * det2_35_35 + mat[2][5] * det2_35_34;
|
|
float det3_245_012 = mat[2][0] * det2_45_12 - mat[2][1] * det2_45_02 + mat[2][2] * det2_45_01;
|
|
float det3_245_013 = mat[2][0] * det2_45_13 - mat[2][1] * det2_45_03 + mat[2][3] * det2_45_01;
|
|
float det3_245_014 = mat[2][0] * det2_45_14 - mat[2][1] * det2_45_04 + mat[2][4] * det2_45_01;
|
|
float det3_245_015 = mat[2][0] * det2_45_15 - mat[2][1] * det2_45_05 + mat[2][5] * det2_45_01;
|
|
float det3_245_023 = mat[2][0] * det2_45_23 - mat[2][2] * det2_45_03 + mat[2][3] * det2_45_02;
|
|
float det3_245_024 = mat[2][0] * det2_45_24 - mat[2][2] * det2_45_04 + mat[2][4] * det2_45_02;
|
|
float det3_245_025 = mat[2][0] * det2_45_25 - mat[2][2] * det2_45_05 + mat[2][5] * det2_45_02;
|
|
float det3_245_034 = mat[2][0] * det2_45_34 - mat[2][3] * det2_45_04 + mat[2][4] * det2_45_03;
|
|
float det3_245_035 = mat[2][0] * det2_45_35 - mat[2][3] * det2_45_05 + mat[2][5] * det2_45_03;
|
|
float det3_245_045 = mat[2][0] * det2_45_45 - mat[2][4] * det2_45_05 + mat[2][5] * det2_45_04;
|
|
float det3_245_123 = mat[2][1] * det2_45_23 - mat[2][2] * det2_45_13 + mat[2][3] * det2_45_12;
|
|
float det3_245_124 = mat[2][1] * det2_45_24 - mat[2][2] * det2_45_14 + mat[2][4] * det2_45_12;
|
|
float det3_245_125 = mat[2][1] * det2_45_25 - mat[2][2] * det2_45_15 + mat[2][5] * det2_45_12;
|
|
float det3_245_134 = mat[2][1] * det2_45_34 - mat[2][3] * det2_45_14 + mat[2][4] * det2_45_13;
|
|
float det3_245_135 = mat[2][1] * det2_45_35 - mat[2][3] * det2_45_15 + mat[2][5] * det2_45_13;
|
|
float det3_245_145 = mat[2][1] * det2_45_45 - mat[2][4] * det2_45_15 + mat[2][5] * det2_45_14;
|
|
float det3_245_234 = mat[2][2] * det2_45_34 - mat[2][3] * det2_45_24 + mat[2][4] * det2_45_23;
|
|
float det3_245_235 = mat[2][2] * det2_45_35 - mat[2][3] * det2_45_25 + mat[2][5] * det2_45_23;
|
|
float det3_245_245 = mat[2][2] * det2_45_45 - mat[2][4] * det2_45_25 + mat[2][5] * det2_45_24;
|
|
float det3_245_345 = mat[2][3] * det2_45_45 - mat[2][4] * det2_45_35 + mat[2][5] * det2_45_34;
|
|
|
|
// remaining 4x4 sub-determinants
|
|
float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
|
|
float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
|
|
float det4_1234_0125 = mat[1][0] * det3_234_125 - mat[1][1] * det3_234_025 + mat[1][2] * det3_234_015 - mat[1][5] * det3_234_012;
|
|
float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
|
|
float det4_1234_0135 = mat[1][0] * det3_234_135 - mat[1][1] * det3_234_035 + mat[1][3] * det3_234_015 - mat[1][5] * det3_234_013;
|
|
float det4_1234_0145 = mat[1][0] * det3_234_145 - mat[1][1] * det3_234_045 + mat[1][4] * det3_234_015 - mat[1][5] * det3_234_014;
|
|
float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
|
|
float det4_1234_0235 = mat[1][0] * det3_234_235 - mat[1][2] * det3_234_035 + mat[1][3] * det3_234_025 - mat[1][5] * det3_234_023;
|
|
float det4_1234_0245 = mat[1][0] * det3_234_245 - mat[1][2] * det3_234_045 + mat[1][4] * det3_234_025 - mat[1][5] * det3_234_024;
|
|
float det4_1234_0345 = mat[1][0] * det3_234_345 - mat[1][3] * det3_234_045 + mat[1][4] * det3_234_035 - mat[1][5] * det3_234_034;
|
|
float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
|
|
float det4_1234_1235 = mat[1][1] * det3_234_235 - mat[1][2] * det3_234_135 + mat[1][3] * det3_234_125 - mat[1][5] * det3_234_123;
|
|
float det4_1234_1245 = mat[1][1] * det3_234_245 - mat[1][2] * det3_234_145 + mat[1][4] * det3_234_125 - mat[1][5] * det3_234_124;
|
|
float det4_1234_1345 = mat[1][1] * det3_234_345 - mat[1][3] * det3_234_145 + mat[1][4] * det3_234_135 - mat[1][5] * det3_234_134;
|
|
float det4_1234_2345 = mat[1][2] * det3_234_345 - mat[1][3] * det3_234_245 + mat[1][4] * det3_234_235 - mat[1][5] * det3_234_234;
|
|
float det4_1235_0123 = mat[1][0] * det3_235_123 - mat[1][1] * det3_235_023 + mat[1][2] * det3_235_013 - mat[1][3] * det3_235_012;
|
|
float det4_1235_0124 = mat[1][0] * det3_235_124 - mat[1][1] * det3_235_024 + mat[1][2] * det3_235_014 - mat[1][4] * det3_235_012;
|
|
float det4_1235_0125 = mat[1][0] * det3_235_125 - mat[1][1] * det3_235_025 + mat[1][2] * det3_235_015 - mat[1][5] * det3_235_012;
|
|
float det4_1235_0134 = mat[1][0] * det3_235_134 - mat[1][1] * det3_235_034 + mat[1][3] * det3_235_014 - mat[1][4] * det3_235_013;
|
|
float det4_1235_0135 = mat[1][0] * det3_235_135 - mat[1][1] * det3_235_035 + mat[1][3] * det3_235_015 - mat[1][5] * det3_235_013;
|
|
float det4_1235_0145 = mat[1][0] * det3_235_145 - mat[1][1] * det3_235_045 + mat[1][4] * det3_235_015 - mat[1][5] * det3_235_014;
|
|
float det4_1235_0234 = mat[1][0] * det3_235_234 - mat[1][2] * det3_235_034 + mat[1][3] * det3_235_024 - mat[1][4] * det3_235_023;
|
|
float det4_1235_0235 = mat[1][0] * det3_235_235 - mat[1][2] * det3_235_035 + mat[1][3] * det3_235_025 - mat[1][5] * det3_235_023;
|
|
float det4_1235_0245 = mat[1][0] * det3_235_245 - mat[1][2] * det3_235_045 + mat[1][4] * det3_235_025 - mat[1][5] * det3_235_024;
|
|
float det4_1235_0345 = mat[1][0] * det3_235_345 - mat[1][3] * det3_235_045 + mat[1][4] * det3_235_035 - mat[1][5] * det3_235_034;
|
|
float det4_1235_1234 = mat[1][1] * det3_235_234 - mat[1][2] * det3_235_134 + mat[1][3] * det3_235_124 - mat[1][4] * det3_235_123;
|
|
float det4_1235_1235 = mat[1][1] * det3_235_235 - mat[1][2] * det3_235_135 + mat[1][3] * det3_235_125 - mat[1][5] * det3_235_123;
|
|
float det4_1235_1245 = mat[1][1] * det3_235_245 - mat[1][2] * det3_235_145 + mat[1][4] * det3_235_125 - mat[1][5] * det3_235_124;
|
|
float det4_1235_1345 = mat[1][1] * det3_235_345 - mat[1][3] * det3_235_145 + mat[1][4] * det3_235_135 - mat[1][5] * det3_235_134;
|
|
float det4_1235_2345 = mat[1][2] * det3_235_345 - mat[1][3] * det3_235_245 + mat[1][4] * det3_235_235 - mat[1][5] * det3_235_234;
|
|
float det4_1245_0123 = mat[1][0] * det3_245_123 - mat[1][1] * det3_245_023 + mat[1][2] * det3_245_013 - mat[1][3] * det3_245_012;
|
|
float det4_1245_0124 = mat[1][0] * det3_245_124 - mat[1][1] * det3_245_024 + mat[1][2] * det3_245_014 - mat[1][4] * det3_245_012;
|
|
float det4_1245_0125 = mat[1][0] * det3_245_125 - mat[1][1] * det3_245_025 + mat[1][2] * det3_245_015 - mat[1][5] * det3_245_012;
|
|
float det4_1245_0134 = mat[1][0] * det3_245_134 - mat[1][1] * det3_245_034 + mat[1][3] * det3_245_014 - mat[1][4] * det3_245_013;
|
|
float det4_1245_0135 = mat[1][0] * det3_245_135 - mat[1][1] * det3_245_035 + mat[1][3] * det3_245_015 - mat[1][5] * det3_245_013;
|
|
float det4_1245_0145 = mat[1][0] * det3_245_145 - mat[1][1] * det3_245_045 + mat[1][4] * det3_245_015 - mat[1][5] * det3_245_014;
|
|
float det4_1245_0234 = mat[1][0] * det3_245_234 - mat[1][2] * det3_245_034 + mat[1][3] * det3_245_024 - mat[1][4] * det3_245_023;
|
|
float det4_1245_0235 = mat[1][0] * det3_245_235 - mat[1][2] * det3_245_035 + mat[1][3] * det3_245_025 - mat[1][5] * det3_245_023;
|
|
float det4_1245_0245 = mat[1][0] * det3_245_245 - mat[1][2] * det3_245_045 + mat[1][4] * det3_245_025 - mat[1][5] * det3_245_024;
|
|
float det4_1245_0345 = mat[1][0] * det3_245_345 - mat[1][3] * det3_245_045 + mat[1][4] * det3_245_035 - mat[1][5] * det3_245_034;
|
|
float det4_1245_1234 = mat[1][1] * det3_245_234 - mat[1][2] * det3_245_134 + mat[1][3] * det3_245_124 - mat[1][4] * det3_245_123;
|
|
float det4_1245_1235 = mat[1][1] * det3_245_235 - mat[1][2] * det3_245_135 + mat[1][3] * det3_245_125 - mat[1][5] * det3_245_123;
|
|
float det4_1245_1245 = mat[1][1] * det3_245_245 - mat[1][2] * det3_245_145 + mat[1][4] * det3_245_125 - mat[1][5] * det3_245_124;
|
|
float det4_1245_1345 = mat[1][1] * det3_245_345 - mat[1][3] * det3_245_145 + mat[1][4] * det3_245_135 - mat[1][5] * det3_245_134;
|
|
float det4_1245_2345 = mat[1][2] * det3_245_345 - mat[1][3] * det3_245_245 + mat[1][4] * det3_245_235 - mat[1][5] * det3_245_234;
|
|
float det4_1345_0123 = mat[1][0] * det3_345_123 - mat[1][1] * det3_345_023 + mat[1][2] * det3_345_013 - mat[1][3] * det3_345_012;
|
|
float det4_1345_0124 = mat[1][0] * det3_345_124 - mat[1][1] * det3_345_024 + mat[1][2] * det3_345_014 - mat[1][4] * det3_345_012;
|
|
float det4_1345_0125 = mat[1][0] * det3_345_125 - mat[1][1] * det3_345_025 + mat[1][2] * det3_345_015 - mat[1][5] * det3_345_012;
|
|
float det4_1345_0134 = mat[1][0] * det3_345_134 - mat[1][1] * det3_345_034 + mat[1][3] * det3_345_014 - mat[1][4] * det3_345_013;
|
|
float det4_1345_0135 = mat[1][0] * det3_345_135 - mat[1][1] * det3_345_035 + mat[1][3] * det3_345_015 - mat[1][5] * det3_345_013;
|
|
float det4_1345_0145 = mat[1][0] * det3_345_145 - mat[1][1] * det3_345_045 + mat[1][4] * det3_345_015 - mat[1][5] * det3_345_014;
|
|
float det4_1345_0234 = mat[1][0] * det3_345_234 - mat[1][2] * det3_345_034 + mat[1][3] * det3_345_024 - mat[1][4] * det3_345_023;
|
|
float det4_1345_0235 = mat[1][0] * det3_345_235 - mat[1][2] * det3_345_035 + mat[1][3] * det3_345_025 - mat[1][5] * det3_345_023;
|
|
float det4_1345_0245 = mat[1][0] * det3_345_245 - mat[1][2] * det3_345_045 + mat[1][4] * det3_345_025 - mat[1][5] * det3_345_024;
|
|
float det4_1345_0345 = mat[1][0] * det3_345_345 - mat[1][3] * det3_345_045 + mat[1][4] * det3_345_035 - mat[1][5] * det3_345_034;
|
|
float det4_1345_1234 = mat[1][1] * det3_345_234 - mat[1][2] * det3_345_134 + mat[1][3] * det3_345_124 - mat[1][4] * det3_345_123;
|
|
float det4_1345_1235 = mat[1][1] * det3_345_235 - mat[1][2] * det3_345_135 + mat[1][3] * det3_345_125 - mat[1][5] * det3_345_123;
|
|
float det4_1345_1245 = mat[1][1] * det3_345_245 - mat[1][2] * det3_345_145 + mat[1][4] * det3_345_125 - mat[1][5] * det3_345_124;
|
|
float det4_1345_1345 = mat[1][1] * det3_345_345 - mat[1][3] * det3_345_145 + mat[1][4] * det3_345_135 - mat[1][5] * det3_345_134;
|
|
float det4_1345_2345 = mat[1][2] * det3_345_345 - mat[1][3] * det3_345_245 + mat[1][4] * det3_345_235 - mat[1][5] * det3_345_234;
|
|
|
|
// remaining 5x5 sub-determinants
|
|
float det5_01234_01234 = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
|
|
float det5_01234_01235 = mat[0][0] * det4_1234_1235 - mat[0][1] * det4_1234_0235 + mat[0][2] * det4_1234_0135 - mat[0][3] * det4_1234_0125 + mat[0][5] * det4_1234_0123;
|
|
float det5_01234_01245 = mat[0][0] * det4_1234_1245 - mat[0][1] * det4_1234_0245 + mat[0][2] * det4_1234_0145 - mat[0][4] * det4_1234_0125 + mat[0][5] * det4_1234_0124;
|
|
float det5_01234_01345 = mat[0][0] * det4_1234_1345 - mat[0][1] * det4_1234_0345 + mat[0][3] * det4_1234_0145 - mat[0][4] * det4_1234_0135 + mat[0][5] * det4_1234_0134;
|
|
float det5_01234_02345 = mat[0][0] * det4_1234_2345 - mat[0][2] * det4_1234_0345 + mat[0][3] * det4_1234_0245 - mat[0][4] * det4_1234_0235 + mat[0][5] * det4_1234_0234;
|
|
float det5_01234_12345 = mat[0][1] * det4_1234_2345 - mat[0][2] * det4_1234_1345 + mat[0][3] * det4_1234_1245 - mat[0][4] * det4_1234_1235 + mat[0][5] * det4_1234_1234;
|
|
float det5_01235_01234 = mat[0][0] * det4_1235_1234 - mat[0][1] * det4_1235_0234 + mat[0][2] * det4_1235_0134 - mat[0][3] * det4_1235_0124 + mat[0][4] * det4_1235_0123;
|
|
float det5_01235_01235 = mat[0][0] * det4_1235_1235 - mat[0][1] * det4_1235_0235 + mat[0][2] * det4_1235_0135 - mat[0][3] * det4_1235_0125 + mat[0][5] * det4_1235_0123;
|
|
float det5_01235_01245 = mat[0][0] * det4_1235_1245 - mat[0][1] * det4_1235_0245 + mat[0][2] * det4_1235_0145 - mat[0][4] * det4_1235_0125 + mat[0][5] * det4_1235_0124;
|
|
float det5_01235_01345 = mat[0][0] * det4_1235_1345 - mat[0][1] * det4_1235_0345 + mat[0][3] * det4_1235_0145 - mat[0][4] * det4_1235_0135 + mat[0][5] * det4_1235_0134;
|
|
float det5_01235_02345 = mat[0][0] * det4_1235_2345 - mat[0][2] * det4_1235_0345 + mat[0][3] * det4_1235_0245 - mat[0][4] * det4_1235_0235 + mat[0][5] * det4_1235_0234;
|
|
float det5_01235_12345 = mat[0][1] * det4_1235_2345 - mat[0][2] * det4_1235_1345 + mat[0][3] * det4_1235_1245 - mat[0][4] * det4_1235_1235 + mat[0][5] * det4_1235_1234;
|
|
float det5_01245_01234 = mat[0][0] * det4_1245_1234 - mat[0][1] * det4_1245_0234 + mat[0][2] * det4_1245_0134 - mat[0][3] * det4_1245_0124 + mat[0][4] * det4_1245_0123;
|
|
float det5_01245_01235 = mat[0][0] * det4_1245_1235 - mat[0][1] * det4_1245_0235 + mat[0][2] * det4_1245_0135 - mat[0][3] * det4_1245_0125 + mat[0][5] * det4_1245_0123;
|
|
float det5_01245_01245 = mat[0][0] * det4_1245_1245 - mat[0][1] * det4_1245_0245 + mat[0][2] * det4_1245_0145 - mat[0][4] * det4_1245_0125 + mat[0][5] * det4_1245_0124;
|
|
float det5_01245_01345 = mat[0][0] * det4_1245_1345 - mat[0][1] * det4_1245_0345 + mat[0][3] * det4_1245_0145 - mat[0][4] * det4_1245_0135 + mat[0][5] * det4_1245_0134;
|
|
float det5_01245_02345 = mat[0][0] * det4_1245_2345 - mat[0][2] * det4_1245_0345 + mat[0][3] * det4_1245_0245 - mat[0][4] * det4_1245_0235 + mat[0][5] * det4_1245_0234;
|
|
float det5_01245_12345 = mat[0][1] * det4_1245_2345 - mat[0][2] * det4_1245_1345 + mat[0][3] * det4_1245_1245 - mat[0][4] * det4_1245_1235 + mat[0][5] * det4_1245_1234;
|
|
float det5_01345_01234 = mat[0][0] * det4_1345_1234 - mat[0][1] * det4_1345_0234 + mat[0][2] * det4_1345_0134 - mat[0][3] * det4_1345_0124 + mat[0][4] * det4_1345_0123;
|
|
float det5_01345_01235 = mat[0][0] * det4_1345_1235 - mat[0][1] * det4_1345_0235 + mat[0][2] * det4_1345_0135 - mat[0][3] * det4_1345_0125 + mat[0][5] * det4_1345_0123;
|
|
float det5_01345_01245 = mat[0][0] * det4_1345_1245 - mat[0][1] * det4_1345_0245 + mat[0][2] * det4_1345_0145 - mat[0][4] * det4_1345_0125 + mat[0][5] * det4_1345_0124;
|
|
float det5_01345_01345 = mat[0][0] * det4_1345_1345 - mat[0][1] * det4_1345_0345 + mat[0][3] * det4_1345_0145 - mat[0][4] * det4_1345_0135 + mat[0][5] * det4_1345_0134;
|
|
float det5_01345_02345 = mat[0][0] * det4_1345_2345 - mat[0][2] * det4_1345_0345 + mat[0][3] * det4_1345_0245 - mat[0][4] * det4_1345_0235 + mat[0][5] * det4_1345_0234;
|
|
float det5_01345_12345 = mat[0][1] * det4_1345_2345 - mat[0][2] * det4_1345_1345 + mat[0][3] * det4_1345_1245 - mat[0][4] * det4_1345_1235 + mat[0][5] * det4_1345_1234;
|
|
float det5_02345_01234 = mat[0][0] * det4_2345_1234 - mat[0][1] * det4_2345_0234 + mat[0][2] * det4_2345_0134 - mat[0][3] * det4_2345_0124 + mat[0][4] * det4_2345_0123;
|
|
float det5_02345_01235 = mat[0][0] * det4_2345_1235 - mat[0][1] * det4_2345_0235 + mat[0][2] * det4_2345_0135 - mat[0][3] * det4_2345_0125 + mat[0][5] * det4_2345_0123;
|
|
float det5_02345_01245 = mat[0][0] * det4_2345_1245 - mat[0][1] * det4_2345_0245 + mat[0][2] * det4_2345_0145 - mat[0][4] * det4_2345_0125 + mat[0][5] * det4_2345_0124;
|
|
float det5_02345_01345 = mat[0][0] * det4_2345_1345 - mat[0][1] * det4_2345_0345 + mat[0][3] * det4_2345_0145 - mat[0][4] * det4_2345_0135 + mat[0][5] * det4_2345_0134;
|
|
float det5_02345_02345 = mat[0][0] * det4_2345_2345 - mat[0][2] * det4_2345_0345 + mat[0][3] * det4_2345_0245 - mat[0][4] * det4_2345_0235 + mat[0][5] * det4_2345_0234;
|
|
float det5_02345_12345 = mat[0][1] * det4_2345_2345 - mat[0][2] * det4_2345_1345 + mat[0][3] * det4_2345_1245 - mat[0][4] * det4_2345_1235 + mat[0][5] * det4_2345_1234;
|
|
|
|
mat[0][0] = det5_12345_12345 * invDet;
|
|
mat[0][1] = -det5_02345_12345 * invDet;
|
|
mat[0][2] = det5_01345_12345 * invDet;
|
|
mat[0][3] = -det5_01245_12345 * invDet;
|
|
mat[0][4] = det5_01235_12345 * invDet;
|
|
mat[0][5] = -det5_01234_12345 * invDet;
|
|
|
|
mat[1][0] = -det5_12345_02345 * invDet;
|
|
mat[1][1] = det5_02345_02345 * invDet;
|
|
mat[1][2] = -det5_01345_02345 * invDet;
|
|
mat[1][3] = det5_01245_02345 * invDet;
|
|
mat[1][4] = -det5_01235_02345 * invDet;
|
|
mat[1][5] = det5_01234_02345 * invDet;
|
|
|
|
mat[2][0] = det5_12345_01345 * invDet;
|
|
mat[2][1] = -det5_02345_01345 * invDet;
|
|
mat[2][2] = det5_01345_01345 * invDet;
|
|
mat[2][3] = -det5_01245_01345 * invDet;
|
|
mat[2][4] = det5_01235_01345 * invDet;
|
|
mat[2][5] = -det5_01234_01345 * invDet;
|
|
|
|
mat[3][0] = -det5_12345_01245 * invDet;
|
|
mat[3][1] = det5_02345_01245 * invDet;
|
|
mat[3][2] = -det5_01345_01245 * invDet;
|
|
mat[3][3] = det5_01245_01245 * invDet;
|
|
mat[3][4] = -det5_01235_01245 * invDet;
|
|
mat[3][5] = det5_01234_01245 * invDet;
|
|
|
|
mat[4][0] = det5_12345_01235 * invDet;
|
|
mat[4][1] = -det5_02345_01235 * invDet;
|
|
mat[4][2] = det5_01345_01235 * invDet;
|
|
mat[4][3] = -det5_01245_01235 * invDet;
|
|
mat[4][4] = det5_01235_01235 * invDet;
|
|
mat[4][5] = -det5_01234_01235 * invDet;
|
|
|
|
mat[5][0] = -det5_12345_01234 * invDet;
|
|
mat[5][1] = det5_02345_01234 * invDet;
|
|
mat[5][2] = -det5_01345_01234 * invDet;
|
|
mat[5][3] = det5_01245_01234 * invDet;
|
|
mat[5][4] = -det5_01235_01234 * invDet;
|
|
mat[5][5] = det5_01234_01234 * invDet;
|
|
|
|
return true;
|
|
#elif 0
|
|
// 6*40 = 240 multiplications
|
|
// 6 divisions
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
float s;
|
|
double d, di;
|
|
|
|
di = mat[0];
|
|
s = di;
|
|
mat[0] = d = 1.0f / di;
|
|
mat[1] *= d;
|
|
mat[2] *= d;
|
|
mat[3] *= d;
|
|
mat[4] *= d;
|
|
mat[5] *= d;
|
|
d = -d;
|
|
mat[6] *= d;
|
|
mat[12] *= d;
|
|
mat[18] *= d;
|
|
mat[24] *= d;
|
|
mat[30] *= d;
|
|
d = mat[6] * di;
|
|
mat[7] += mat[1] * d;
|
|
mat[8] += mat[2] * d;
|
|
mat[9] += mat[3] * d;
|
|
mat[10] += mat[4] * d;
|
|
mat[11] += mat[5] * d;
|
|
d = mat[12] * di;
|
|
mat[13] += mat[1] * d;
|
|
mat[14] += mat[2] * d;
|
|
mat[15] += mat[3] * d;
|
|
mat[16] += mat[4] * d;
|
|
mat[17] += mat[5] * d;
|
|
d = mat[18] * di;
|
|
mat[19] += mat[1] * d;
|
|
mat[20] += mat[2] * d;
|
|
mat[21] += mat[3] * d;
|
|
mat[22] += mat[4] * d;
|
|
mat[23] += mat[5] * d;
|
|
d = mat[24] * di;
|
|
mat[25] += mat[1] * d;
|
|
mat[26] += mat[2] * d;
|
|
mat[27] += mat[3] * d;
|
|
mat[28] += mat[4] * d;
|
|
mat[29] += mat[5] * d;
|
|
d = mat[30] * di;
|
|
mat[31] += mat[1] * d;
|
|
mat[32] += mat[2] * d;
|
|
mat[33] += mat[3] * d;
|
|
mat[34] += mat[4] * d;
|
|
mat[35] += mat[5] * d;
|
|
di = mat[7];
|
|
s *= di;
|
|
mat[7] = d = 1.0f / di;
|
|
mat[6] *= d;
|
|
mat[8] *= d;
|
|
mat[9] *= d;
|
|
mat[10] *= d;
|
|
mat[11] *= d;
|
|
d = -d;
|
|
mat[1] *= d;
|
|
mat[13] *= d;
|
|
mat[19] *= d;
|
|
mat[25] *= d;
|
|
mat[31] *= d;
|
|
d = mat[1] * di;
|
|
mat[0] += mat[6] * d;
|
|
mat[2] += mat[8] * d;
|
|
mat[3] += mat[9] * d;
|
|
mat[4] += mat[10] * d;
|
|
mat[5] += mat[11] * d;
|
|
d = mat[13] * di;
|
|
mat[12] += mat[6] * d;
|
|
mat[14] += mat[8] * d;
|
|
mat[15] += mat[9] * d;
|
|
mat[16] += mat[10] * d;
|
|
mat[17] += mat[11] * d;
|
|
d = mat[19] * di;
|
|
mat[18] += mat[6] * d;
|
|
mat[20] += mat[8] * d;
|
|
mat[21] += mat[9] * d;
|
|
mat[22] += mat[10] * d;
|
|
mat[23] += mat[11] * d;
|
|
d = mat[25] * di;
|
|
mat[24] += mat[6] * d;
|
|
mat[26] += mat[8] * d;
|
|
mat[27] += mat[9] * d;
|
|
mat[28] += mat[10] * d;
|
|
mat[29] += mat[11] * d;
|
|
d = mat[31] * di;
|
|
mat[30] += mat[6] * d;
|
|
mat[32] += mat[8] * d;
|
|
mat[33] += mat[9] * d;
|
|
mat[34] += mat[10] * d;
|
|
mat[35] += mat[11] * d;
|
|
di = mat[14];
|
|
s *= di;
|
|
mat[14] = d = 1.0f / di;
|
|
mat[12] *= d;
|
|
mat[13] *= d;
|
|
mat[15] *= d;
|
|
mat[16] *= d;
|
|
mat[17] *= d;
|
|
d = -d;
|
|
mat[2] *= d;
|
|
mat[8] *= d;
|
|
mat[20] *= d;
|
|
mat[26] *= d;
|
|
mat[32] *= d;
|
|
d = mat[2] * di;
|
|
mat[0] += mat[12] * d;
|
|
mat[1] += mat[13] * d;
|
|
mat[3] += mat[15] * d;
|
|
mat[4] += mat[16] * d;
|
|
mat[5] += mat[17] * d;
|
|
d = mat[8] * di;
|
|
mat[6] += mat[12] * d;
|
|
mat[7] += mat[13] * d;
|
|
mat[9] += mat[15] * d;
|
|
mat[10] += mat[16] * d;
|
|
mat[11] += mat[17] * d;
|
|
d = mat[20] * di;
|
|
mat[18] += mat[12] * d;
|
|
mat[19] += mat[13] * d;
|
|
mat[21] += mat[15] * d;
|
|
mat[22] += mat[16] * d;
|
|
mat[23] += mat[17] * d;
|
|
d = mat[26] * di;
|
|
mat[24] += mat[12] * d;
|
|
mat[25] += mat[13] * d;
|
|
mat[27] += mat[15] * d;
|
|
mat[28] += mat[16] * d;
|
|
mat[29] += mat[17] * d;
|
|
d = mat[32] * di;
|
|
mat[30] += mat[12] * d;
|
|
mat[31] += mat[13] * d;
|
|
mat[33] += mat[15] * d;
|
|
mat[34] += mat[16] * d;
|
|
mat[35] += mat[17] * d;
|
|
di = mat[21];
|
|
s *= di;
|
|
mat[21] = d = 1.0f / di;
|
|
mat[18] *= d;
|
|
mat[19] *= d;
|
|
mat[20] *= d;
|
|
mat[22] *= d;
|
|
mat[23] *= d;
|
|
d = -d;
|
|
mat[3] *= d;
|
|
mat[9] *= d;
|
|
mat[15] *= d;
|
|
mat[27] *= d;
|
|
mat[33] *= d;
|
|
d = mat[3] * di;
|
|
mat[0] += mat[18] * d;
|
|
mat[1] += mat[19] * d;
|
|
mat[2] += mat[20] * d;
|
|
mat[4] += mat[22] * d;
|
|
mat[5] += mat[23] * d;
|
|
d = mat[9] * di;
|
|
mat[6] += mat[18] * d;
|
|
mat[7] += mat[19] * d;
|
|
mat[8] += mat[20] * d;
|
|
mat[10] += mat[22] * d;
|
|
mat[11] += mat[23] * d;
|
|
d = mat[15] * di;
|
|
mat[12] += mat[18] * d;
|
|
mat[13] += mat[19] * d;
|
|
mat[14] += mat[20] * d;
|
|
mat[16] += mat[22] * d;
|
|
mat[17] += mat[23] * d;
|
|
d = mat[27] * di;
|
|
mat[24] += mat[18] * d;
|
|
mat[25] += mat[19] * d;
|
|
mat[26] += mat[20] * d;
|
|
mat[28] += mat[22] * d;
|
|
mat[29] += mat[23] * d;
|
|
d = mat[33] * di;
|
|
mat[30] += mat[18] * d;
|
|
mat[31] += mat[19] * d;
|
|
mat[32] += mat[20] * d;
|
|
mat[34] += mat[22] * d;
|
|
mat[35] += mat[23] * d;
|
|
di = mat[28];
|
|
s *= di;
|
|
mat[28] = d = 1.0f / di;
|
|
mat[24] *= d;
|
|
mat[25] *= d;
|
|
mat[26] *= d;
|
|
mat[27] *= d;
|
|
mat[29] *= d;
|
|
d = -d;
|
|
mat[4] *= d;
|
|
mat[10] *= d;
|
|
mat[16] *= d;
|
|
mat[22] *= d;
|
|
mat[34] *= d;
|
|
d = mat[4] * di;
|
|
mat[0] += mat[24] * d;
|
|
mat[1] += mat[25] * d;
|
|
mat[2] += mat[26] * d;
|
|
mat[3] += mat[27] * d;
|
|
mat[5] += mat[29] * d;
|
|
d = mat[10] * di;
|
|
mat[6] += mat[24] * d;
|
|
mat[7] += mat[25] * d;
|
|
mat[8] += mat[26] * d;
|
|
mat[9] += mat[27] * d;
|
|
mat[11] += mat[29] * d;
|
|
d = mat[16] * di;
|
|
mat[12] += mat[24] * d;
|
|
mat[13] += mat[25] * d;
|
|
mat[14] += mat[26] * d;
|
|
mat[15] += mat[27] * d;
|
|
mat[17] += mat[29] * d;
|
|
d = mat[22] * di;
|
|
mat[18] += mat[24] * d;
|
|
mat[19] += mat[25] * d;
|
|
mat[20] += mat[26] * d;
|
|
mat[21] += mat[27] * d;
|
|
mat[23] += mat[29] * d;
|
|
d = mat[34] * di;
|
|
mat[30] += mat[24] * d;
|
|
mat[31] += mat[25] * d;
|
|
mat[32] += mat[26] * d;
|
|
mat[33] += mat[27] * d;
|
|
mat[35] += mat[29] * d;
|
|
di = mat[35];
|
|
s *= di;
|
|
mat[35] = d = 1.0f / di;
|
|
mat[30] *= d;
|
|
mat[31] *= d;
|
|
mat[32] *= d;
|
|
mat[33] *= d;
|
|
mat[34] *= d;
|
|
d = -d;
|
|
mat[5] *= d;
|
|
mat[11] *= d;
|
|
mat[17] *= d;
|
|
mat[23] *= d;
|
|
mat[29] *= d;
|
|
d = mat[5] * di;
|
|
mat[0] += mat[30] * d;
|
|
mat[1] += mat[31] * d;
|
|
mat[2] += mat[32] * d;
|
|
mat[3] += mat[33] * d;
|
|
mat[4] += mat[34] * d;
|
|
d = mat[11] * di;
|
|
mat[6] += mat[30] * d;
|
|
mat[7] += mat[31] * d;
|
|
mat[8] += mat[32] * d;
|
|
mat[9] += mat[33] * d;
|
|
mat[10] += mat[34] * d;
|
|
d = mat[17] * di;
|
|
mat[12] += mat[30] * d;
|
|
mat[13] += mat[31] * d;
|
|
mat[14] += mat[32] * d;
|
|
mat[15] += mat[33] * d;
|
|
mat[16] += mat[34] * d;
|
|
d = mat[23] * di;
|
|
mat[18] += mat[30] * d;
|
|
mat[19] += mat[31] * d;
|
|
mat[20] += mat[32] * d;
|
|
mat[21] += mat[33] * d;
|
|
mat[22] += mat[34] * d;
|
|
d = mat[29] * di;
|
|
mat[24] += mat[30] * d;
|
|
mat[25] += mat[31] * d;
|
|
mat[26] += mat[32] * d;
|
|
mat[27] += mat[33] * d;
|
|
mat[28] += mat[34] * d;
|
|
|
|
return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
|
|
#else
|
|
// 6*27+2*30 = 222 multiplications
|
|
// 2*1 = 2 divisions
|
|
idMat3 r0, r1, r2, r3;
|
|
float c0, c1, c2, det, invDet;
|
|
float *mat = reinterpret_cast<float *>(this);
|
|
|
|
// r0 = m0.Inverse();
|
|
c0 = mat[1*6+1] * mat[2*6+2] - mat[1*6+2] * mat[2*6+1];
|
|
c1 = mat[1*6+2] * mat[2*6+0] - mat[1*6+0] * mat[2*6+2];
|
|
c2 = mat[1*6+0] * mat[2*6+1] - mat[1*6+1] * mat[2*6+0];
|
|
|
|
det = mat[0*6+0] * c0 + mat[0*6+1] * c1 + mat[0*6+2] * c2;
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
r0[0][0] = c0 * invDet;
|
|
r0[0][1] = ( mat[0*6+2] * mat[2*6+1] - mat[0*6+1] * mat[2*6+2] ) * invDet;
|
|
r0[0][2] = ( mat[0*6+1] * mat[1*6+2] - mat[0*6+2] * mat[1*6+1] ) * invDet;
|
|
r0[1][0] = c1 * invDet;
|
|
r0[1][1] = ( mat[0*6+0] * mat[2*6+2] - mat[0*6+2] * mat[2*6+0] ) * invDet;
|
|
r0[1][2] = ( mat[0*6+2] * mat[1*6+0] - mat[0*6+0] * mat[1*6+2] ) * invDet;
|
|
r0[2][0] = c2 * invDet;
|
|
r0[2][1] = ( mat[0*6+1] * mat[2*6+0] - mat[0*6+0] * mat[2*6+1] ) * invDet;
|
|
r0[2][2] = ( mat[0*6+0] * mat[1*6+1] - mat[0*6+1] * mat[1*6+0] ) * invDet;
|
|
|
|
// r1 = r0 * m1;
|
|
r1[0][0] = r0[0][0] * mat[0*6+3] + r0[0][1] * mat[1*6+3] + r0[0][2] * mat[2*6+3];
|
|
r1[0][1] = r0[0][0] * mat[0*6+4] + r0[0][1] * mat[1*6+4] + r0[0][2] * mat[2*6+4];
|
|
r1[0][2] = r0[0][0] * mat[0*6+5] + r0[0][1] * mat[1*6+5] + r0[0][2] * mat[2*6+5];
|
|
r1[1][0] = r0[1][0] * mat[0*6+3] + r0[1][1] * mat[1*6+3] + r0[1][2] * mat[2*6+3];
|
|
r1[1][1] = r0[1][0] * mat[0*6+4] + r0[1][1] * mat[1*6+4] + r0[1][2] * mat[2*6+4];
|
|
r1[1][2] = r0[1][0] * mat[0*6+5] + r0[1][1] * mat[1*6+5] + r0[1][2] * mat[2*6+5];
|
|
r1[2][0] = r0[2][0] * mat[0*6+3] + r0[2][1] * mat[1*6+3] + r0[2][2] * mat[2*6+3];
|
|
r1[2][1] = r0[2][0] * mat[0*6+4] + r0[2][1] * mat[1*6+4] + r0[2][2] * mat[2*6+4];
|
|
r1[2][2] = r0[2][0] * mat[0*6+5] + r0[2][1] * mat[1*6+5] + r0[2][2] * mat[2*6+5];
|
|
|
|
// r2 = m2 * r1;
|
|
r2[0][0] = mat[3*6+0] * r1[0][0] + mat[3*6+1] * r1[1][0] + mat[3*6+2] * r1[2][0];
|
|
r2[0][1] = mat[3*6+0] * r1[0][1] + mat[3*6+1] * r1[1][1] + mat[3*6+2] * r1[2][1];
|
|
r2[0][2] = mat[3*6+0] * r1[0][2] + mat[3*6+1] * r1[1][2] + mat[3*6+2] * r1[2][2];
|
|
r2[1][0] = mat[4*6+0] * r1[0][0] + mat[4*6+1] * r1[1][0] + mat[4*6+2] * r1[2][0];
|
|
r2[1][1] = mat[4*6+0] * r1[0][1] + mat[4*6+1] * r1[1][1] + mat[4*6+2] * r1[2][1];
|
|
r2[1][2] = mat[4*6+0] * r1[0][2] + mat[4*6+1] * r1[1][2] + mat[4*6+2] * r1[2][2];
|
|
r2[2][0] = mat[5*6+0] * r1[0][0] + mat[5*6+1] * r1[1][0] + mat[5*6+2] * r1[2][0];
|
|
r2[2][1] = mat[5*6+0] * r1[0][1] + mat[5*6+1] * r1[1][1] + mat[5*6+2] * r1[2][1];
|
|
r2[2][2] = mat[5*6+0] * r1[0][2] + mat[5*6+1] * r1[1][2] + mat[5*6+2] * r1[2][2];
|
|
|
|
// r3 = r2 - m3;
|
|
r3[0][0] = r2[0][0] - mat[3*6+3];
|
|
r3[0][1] = r2[0][1] - mat[3*6+4];
|
|
r3[0][2] = r2[0][2] - mat[3*6+5];
|
|
r3[1][0] = r2[1][0] - mat[4*6+3];
|
|
r3[1][1] = r2[1][1] - mat[4*6+4];
|
|
r3[1][2] = r2[1][2] - mat[4*6+5];
|
|
r3[2][0] = r2[2][0] - mat[5*6+3];
|
|
r3[2][1] = r2[2][1] - mat[5*6+4];
|
|
r3[2][2] = r2[2][2] - mat[5*6+5];
|
|
|
|
// r3.InverseSelf();
|
|
r2[0][0] = r3[1][1] * r3[2][2] - r3[1][2] * r3[2][1];
|
|
r2[1][0] = r3[1][2] * r3[2][0] - r3[1][0] * r3[2][2];
|
|
r2[2][0] = r3[1][0] * r3[2][1] - r3[1][1] * r3[2][0];
|
|
|
|
det = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0] + r3[0][2] * r2[2][0];
|
|
|
|
if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
|
|
return false;
|
|
}
|
|
|
|
invDet = 1.0f / det;
|
|
|
|
r2[0][1] = r3[0][2] * r3[2][1] - r3[0][1] * r3[2][2];
|
|
r2[0][2] = r3[0][1] * r3[1][2] - r3[0][2] * r3[1][1];
|
|
r2[1][1] = r3[0][0] * r3[2][2] - r3[0][2] * r3[2][0];
|
|
r2[1][2] = r3[0][2] * r3[1][0] - r3[0][0] * r3[1][2];
|
|
r2[2][1] = r3[0][1] * r3[2][0] - r3[0][0] * r3[2][1];
|
|
r2[2][2] = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
|
|
|
|
r3[0][0] = r2[0][0] * invDet;
|
|
r3[0][1] = r2[0][1] * invDet;
|
|
r3[0][2] = r2[0][2] * invDet;
|
|
r3[1][0] = r2[1][0] * invDet;
|
|
r3[1][1] = r2[1][1] * invDet;
|
|
r3[1][2] = r2[1][2] * invDet;
|
|
r3[2][0] = r2[2][0] * invDet;
|
|
r3[2][1] = r2[2][1] * invDet;
|
|
r3[2][2] = r2[2][2] * invDet;
|
|
|
|
// r2 = m2 * r0;
|
|
r2[0][0] = mat[3*6+0] * r0[0][0] + mat[3*6+1] * r0[1][0] + mat[3*6+2] * r0[2][0];
|
|
r2[0][1] = mat[3*6+0] * r0[0][1] + mat[3*6+1] * r0[1][1] + mat[3*6+2] * r0[2][1];
|
|
r2[0][2] = mat[3*6+0] * r0[0][2] + mat[3*6+1] * r0[1][2] + mat[3*6+2] * r0[2][2];
|
|
r2[1][0] = mat[4*6+0] * r0[0][0] + mat[4*6+1] * r0[1][0] + mat[4*6+2] * r0[2][0];
|
|
r2[1][1] = mat[4*6+0] * r0[0][1] + mat[4*6+1] * r0[1][1] + mat[4*6+2] * r0[2][1];
|
|
r2[1][2] = mat[4*6+0] * r0[0][2] + mat[4*6+1] * r0[1][2] + mat[4*6+2] * r0[2][2];
|
|
r2[2][0] = mat[5*6+0] * r0[0][0] + mat[5*6+1] * r0[1][0] + mat[5*6+2] * r0[2][0];
|
|
r2[2][1] = mat[5*6+0] * r0[0][1] + mat[5*6+1] * r0[1][1] + mat[5*6+2] * r0[2][1];
|
|
r2[2][2] = mat[5*6+0] * r0[0][2] + mat[5*6+1] * r0[1][2] + mat[5*6+2] * r0[2][2];
|
|
|
|
// m2 = r3 * r2;
|
|
mat[3*6+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0] + r3[0][2] * r2[2][0];
|
|
mat[3*6+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1] + r3[0][2] * r2[2][1];
|
|
mat[3*6+2] = r3[0][0] * r2[0][2] + r3[0][1] * r2[1][2] + r3[0][2] * r2[2][2];
|
|
mat[4*6+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0] + r3[1][2] * r2[2][0];
|
|
mat[4*6+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1] + r3[1][2] * r2[2][1];
|
|
mat[4*6+2] = r3[1][0] * r2[0][2] + r3[1][1] * r2[1][2] + r3[1][2] * r2[2][2];
|
|
mat[5*6+0] = r3[2][0] * r2[0][0] + r3[2][1] * r2[1][0] + r3[2][2] * r2[2][0];
|
|
mat[5*6+1] = r3[2][0] * r2[0][1] + r3[2][1] * r2[1][1] + r3[2][2] * r2[2][1];
|
|
mat[5*6+2] = r3[2][0] * r2[0][2] + r3[2][1] * r2[1][2] + r3[2][2] * r2[2][2];
|
|
|
|
// m0 = r0 - r1 * m2;
|
|
mat[0*6+0] = r0[0][0] - r1[0][0] * mat[3*6+0] - r1[0][1] * mat[4*6+0] - r1[0][2] * mat[5*6+0];
|
|
mat[0*6+1] = r0[0][1] - r1[0][0] * mat[3*6+1] - r1[0][1] * mat[4*6+1] - r1[0][2] * mat[5*6+1];
|
|
mat[0*6+2] = r0[0][2] - r1[0][0] * mat[3*6+2] - r1[0][1] * mat[4*6+2] - r1[0][2] * mat[5*6+2];
|
|
mat[1*6+0] = r0[1][0] - r1[1][0] * mat[3*6+0] - r1[1][1] * mat[4*6+0] - r1[1][2] * mat[5*6+0];
|
|
mat[1*6+1] = r0[1][1] - r1[1][0] * mat[3*6+1] - r1[1][1] * mat[4*6+1] - r1[1][2] * mat[5*6+1];
|
|
mat[1*6+2] = r0[1][2] - r1[1][0] * mat[3*6+2] - r1[1][1] * mat[4*6+2] - r1[1][2] * mat[5*6+2];
|
|
mat[2*6+0] = r0[2][0] - r1[2][0] * mat[3*6+0] - r1[2][1] * mat[4*6+0] - r1[2][2] * mat[5*6+0];
|
|
mat[2*6+1] = r0[2][1] - r1[2][0] * mat[3*6+1] - r1[2][1] * mat[4*6+1] - r1[2][2] * mat[5*6+1];
|
|
mat[2*6+2] = r0[2][2] - r1[2][0] * mat[3*6+2] - r1[2][1] * mat[4*6+2] - r1[2][2] * mat[5*6+2];
|
|
|
|
// m1 = r1 * r3;
|
|
mat[0*6+3] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0] + r1[0][2] * r3[2][0];
|
|
mat[0*6+4] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1] + r1[0][2] * r3[2][1];
|
|
mat[0*6+5] = r1[0][0] * r3[0][2] + r1[0][1] * r3[1][2] + r1[0][2] * r3[2][2];
|
|
mat[1*6+3] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0] + r1[1][2] * r3[2][0];
|
|
mat[1*6+4] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1] + r1[1][2] * r3[2][1];
|
|
mat[1*6+5] = r1[1][0] * r3[0][2] + r1[1][1] * r3[1][2] + r1[1][2] * r3[2][2];
|
|
mat[2*6+3] = r1[2][0] * r3[0][0] + r1[2][1] * r3[1][0] + r1[2][2] * r3[2][0];
|
|
mat[2*6+4] = r1[2][0] * r3[0][1] + r1[2][1] * r3[1][1] + r1[2][2] * r3[2][1];
|
|
mat[2*6+5] = r1[2][0] * r3[0][2] + r1[2][1] * r3[1][2] + r1[2][2] * r3[2][2];
|
|
|
|
// m3 = -r3;
|
|
mat[3*6+3] = -r3[0][0];
|
|
mat[3*6+4] = -r3[0][1];
|
|
mat[3*6+5] = -r3[0][2];
|
|
mat[4*6+3] = -r3[1][0];
|
|
mat[4*6+4] = -r3[1][1];
|
|
mat[4*6+5] = -r3[1][2];
|
|
mat[5*6+3] = -r3[2][0];
|
|
mat[5*6+4] = -r3[2][1];
|
|
mat[5*6+5] = -r3[2][2];
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
=============
|
|
idMat6::ToString
|
|
=============
|
|
*/
|
|
const char *idMat6::ToString( int precision ) const {
|
|
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
|
|
}
|
|
|
|
|
|
//===============================================================
|
|
//
|
|
// idMatX
|
|
//
|
|
//===============================================================
|
|
|
|
float idMatX::temp[MATX_MAX_TEMP+4];
|
|
float * idMatX::tempPtr = (float *) ( ( (intptr_t) idMatX::temp + 15 ) & ~15 );
|
|
int idMatX::tempIndex = 0;
|
|
|
|
|
|
/*
|
|
============
|
|
idMatX::ChangeSize
|
|
============
|
|
*/
|
|
void idMatX::ChangeSize( int rows, int columns, bool makeZero ) {
|
|
int alloc = ( rows * columns + 3 ) & ~3;
|
|
if ( alloc > alloced && alloced != -1 ) {
|
|
float *oldMat = mat;
|
|
mat = (float *) Mem_Alloc16( alloc * sizeof( float ) );
|
|
if ( makeZero ) {
|
|
memset( mat, 0, alloc * sizeof( float ) );
|
|
}
|
|
alloced = alloc;
|
|
if ( oldMat ) {
|
|
int minRow = Min( numRows, rows );
|
|
int minColumn = Min( numColumns, columns );
|
|
for ( int i = 0; i < minRow; i++ ) {
|
|
for ( int j = 0; j < minColumn; j++ ) {
|
|
mat[ i * columns + j ] = oldMat[ i * numColumns + j ];
|
|
}
|
|
}
|
|
Mem_Free16( oldMat );
|
|
}
|
|
} else {
|
|
if ( columns < numColumns ) {
|
|
int minRow = Min( numRows, rows );
|
|
for ( int i = 0; i < minRow; i++ ) {
|
|
for ( int j = 0; j < columns; j++ ) {
|
|
mat[ i * columns + j ] = mat[ i * numColumns + j ];
|
|
}
|
|
}
|
|
} else if ( columns > numColumns ) {
|
|
for ( int i = Min( numRows, rows ) - 1; i >= 0; i-- ) {
|
|
if ( makeZero ) {
|
|
for ( int j = columns - 1; j >= numColumns; j-- ) {
|
|
mat[ i * columns + j ] = 0.0f;
|
|
}
|
|
}
|
|
for ( int j = numColumns - 1; j >= 0; j-- ) {
|
|
mat[ i * columns + j ] = mat[ i * numColumns + j ];
|
|
}
|
|
}
|
|
}
|
|
if ( makeZero && rows > numRows ) {
|
|
memset( mat + numRows * columns, 0, ( rows - numRows ) * columns * sizeof( float ) );
|
|
}
|
|
}
|
|
numRows = rows;
|
|
numColumns = columns;
|
|
MATX_CLEAREND();
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::RemoveRow
|
|
============
|
|
*/
|
|
idMatX &idMatX::RemoveRow( int r ) {
|
|
int i;
|
|
|
|
assert( r < numRows );
|
|
|
|
numRows--;
|
|
|
|
for ( i = r; i < numRows; i++ ) {
|
|
memcpy( &mat[i * numColumns], &mat[( i + 1 ) * numColumns], numColumns * sizeof( float ) );
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::RemoveColumn
|
|
============
|
|
*/
|
|
idMatX &idMatX::RemoveColumn( int r ) {
|
|
int i;
|
|
|
|
assert( r < numColumns );
|
|
|
|
numColumns--;
|
|
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) );
|
|
}
|
|
memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) );
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::RemoveRowColumn
|
|
============
|
|
*/
|
|
idMatX &idMatX::RemoveRowColumn( int r ) {
|
|
int i;
|
|
|
|
assert( r < numRows && r < numColumns );
|
|
|
|
numRows--;
|
|
numColumns--;
|
|
|
|
if ( r > 0 ) {
|
|
for ( i = 0; i < r - 1; i++ ) {
|
|
memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) );
|
|
}
|
|
memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) );
|
|
}
|
|
|
|
memcpy( &mat[r * numColumns], &mat[( r + 1 ) * ( numColumns + 1 )], r * sizeof( float ) );
|
|
|
|
for ( i = r; i < numRows - 1; i++ ) {
|
|
memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) );
|
|
}
|
|
memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) );
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsOrthogonal
|
|
|
|
returns true if (*this) * this->Transpose() == Identity
|
|
============
|
|
*/
|
|
bool idMatX::IsOrthogonal( const float epsilon ) const {
|
|
float *ptr1, *ptr2, sum;
|
|
|
|
if ( !IsSquare() ) {
|
|
return false;
|
|
}
|
|
|
|
ptr1 = mat;
|
|
for ( int i = 0; i < numRows; i++ ) {
|
|
for ( int j = 0; j < numColumns; j++ ) {
|
|
ptr2 = mat + j;
|
|
sum = ptr1[0] * ptr2[0] - (float) ( i == j );
|
|
for ( int n = 1; n < numColumns; n++ ) {
|
|
ptr2 += numColumns;
|
|
sum += ptr1[n] * ptr2[0];
|
|
}
|
|
if ( idMath::Fabs( sum ) > epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
ptr1 += numColumns;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsOrthonormal
|
|
|
|
returns true if (*this) * this->Transpose() == Identity and the length of each column vector is 1
|
|
============
|
|
*/
|
|
bool idMatX::IsOrthonormal( const float epsilon ) const {
|
|
float *ptr1, *ptr2, sum;
|
|
|
|
if ( !IsSquare() ) {
|
|
return false;
|
|
}
|
|
|
|
ptr1 = mat;
|
|
for ( int i = 0; i < numRows; i++ ) {
|
|
for ( int j = 0; j < numColumns; j++ ) {
|
|
ptr2 = mat + j;
|
|
sum = ptr1[0] * ptr2[0] - (float) ( i == j );
|
|
for ( int n = 1; n < numColumns; n++ ) {
|
|
ptr2 += numColumns;
|
|
sum += ptr1[n] * ptr2[0];
|
|
}
|
|
if ( idMath::Fabs( sum ) > epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
ptr1 += numColumns;
|
|
|
|
ptr2 = mat + i;
|
|
sum = ptr2[0] * ptr2[0] - 1.0f;
|
|
for ( int j = 1; j < numRows; j++ ) {
|
|
ptr2 += numColumns;
|
|
sum += ptr2[i] * ptr2[j];
|
|
}
|
|
if ( idMath::Fabs( sum ) > epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsPMatrix
|
|
|
|
returns true if the matrix is a P-matrix
|
|
A square matrix is a P-matrix if all its principal minors are positive.
|
|
============
|
|
*/
|
|
bool idMatX::IsPMatrix( const float epsilon ) const {
|
|
int i, j;
|
|
float d;
|
|
idMatX m;
|
|
|
|
if ( !IsSquare() ) {
|
|
return false;
|
|
}
|
|
|
|
if ( numRows <= 0 ) {
|
|
return true;
|
|
}
|
|
|
|
if ( (*this)[0][0] <= epsilon ) {
|
|
return false;
|
|
}
|
|
|
|
if ( numRows <= 1 ) {
|
|
return true;
|
|
}
|
|
|
|
m.SetData( numRows - 1, numColumns - 1, MATX_ALLOCA( ( numRows - 1 ) * ( numColumns - 1 ) ) );
|
|
|
|
for ( i = 1; i < numRows; i++ ) {
|
|
for ( j = 1; j < numColumns; j++ ) {
|
|
m[i-1][j-1] = (*this)[i][j];
|
|
}
|
|
}
|
|
|
|
if ( !m.IsPMatrix( epsilon ) ) {
|
|
return false;
|
|
}
|
|
|
|
for ( i = 1; i < numRows; i++ ) {
|
|
d = (*this)[i][0] / (*this)[0][0];
|
|
for ( j = 1; j < numColumns; j++ ) {
|
|
m[i-1][j-1] = (*this)[i][j] - d * (*this)[0][j];
|
|
}
|
|
}
|
|
|
|
if ( !m.IsPMatrix( epsilon ) ) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsZMatrix
|
|
|
|
returns true if the matrix is a Z-matrix
|
|
A square matrix M is a Z-matrix if M[i][j] <= 0 for all i != j.
|
|
============
|
|
*/
|
|
bool idMatX::IsZMatrix( const float epsilon ) const {
|
|
int i, j;
|
|
|
|
if ( !IsSquare() ) {
|
|
return false;
|
|
}
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
if ( (*this)[i][j] > epsilon && i != j ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsPositiveDefinite
|
|
|
|
returns true if the matrix is Positive Definite (PD)
|
|
A square matrix M of order n is said to be PD if y'My > 0 for all vectors y of dimension n, y != 0.
|
|
============
|
|
*/
|
|
bool idMatX::IsPositiveDefinite( const float epsilon ) const {
|
|
int i, j, k;
|
|
float d, s;
|
|
idMatX m;
|
|
|
|
// the matrix must be square
|
|
if ( !IsSquare() ) {
|
|
return false;
|
|
}
|
|
|
|
// copy matrix
|
|
m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
|
|
m = *this;
|
|
|
|
// add transpose
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
m[i][j] += (*this)[j][i];
|
|
}
|
|
}
|
|
|
|
// test Positive Definiteness with Gaussian pivot steps
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
for ( j = i; j < numColumns; j++ ) {
|
|
if ( m[j][j] <= epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
d = 1.0f / m[i][i];
|
|
for ( j = i + 1; j < numColumns; j++ ) {
|
|
s = d * m[j][i];
|
|
m[j][i] = 0.0f;
|
|
for ( k = i + 1; k < numRows; k++ ) {
|
|
m[j][k] -= s * m[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsSymmetricPositiveDefinite
|
|
|
|
returns true if the matrix is Symmetric Positive Definite (PD)
|
|
============
|
|
*/
|
|
bool idMatX::IsSymmetricPositiveDefinite( const float epsilon ) const {
|
|
idMatX m;
|
|
|
|
// the matrix must be symmetric
|
|
if ( !IsSymmetric( epsilon ) ) {
|
|
return false;
|
|
}
|
|
|
|
// copy matrix
|
|
m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
|
|
m = *this;
|
|
|
|
// being able to obtain Cholesky factors is both a necessary and sufficient condition for positive definiteness
|
|
return m.Cholesky_Factor();
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsPositiveSemiDefinite
|
|
|
|
returns true if the matrix is Positive Semi Definite (PSD)
|
|
A square matrix M of order n is said to be PSD if y'My >= 0 for all vectors y of dimension n, y != 0.
|
|
============
|
|
*/
|
|
bool idMatX::IsPositiveSemiDefinite( const float epsilon ) const {
|
|
int i, j, k;
|
|
float d, s;
|
|
idMatX m;
|
|
|
|
// the matrix must be square
|
|
if ( !IsSquare() ) {
|
|
return false;
|
|
}
|
|
|
|
// copy original matrix
|
|
m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
|
|
m = *this;
|
|
|
|
// add transpose
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
m[i][j] += (*this)[j][i];
|
|
}
|
|
}
|
|
|
|
// test Positive Semi Definiteness with Gaussian pivot steps
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
for ( j = i; j < numColumns; j++ ) {
|
|
if ( m[j][j] < -epsilon ) {
|
|
return false;
|
|
}
|
|
if ( m[j][j] > epsilon ) {
|
|
continue;
|
|
}
|
|
for ( k = 0; k < numRows; k++ ) {
|
|
if ( idMath::Fabs( m[k][j] ) > epsilon ) {
|
|
return false;
|
|
}
|
|
if ( idMath::Fabs( m[j][k] ) > epsilon ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( m[i][i] <= epsilon ) {
|
|
continue;
|
|
}
|
|
|
|
d = 1.0f / m[i][i];
|
|
for ( j = i + 1; j < numColumns; j++ ) {
|
|
s = d * m[j][i];
|
|
m[j][i] = 0.0f;
|
|
for ( k = i + 1; k < numRows; k++ ) {
|
|
m[j][k] -= s * m[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::IsSymmetricPositiveSemiDefinite
|
|
|
|
returns true if the matrix is Symmetric Positive Semi Definite (PSD)
|
|
============
|
|
*/
|
|
bool idMatX::IsSymmetricPositiveSemiDefinite( const float epsilon ) const {
|
|
|
|
// the matrix must be symmetric
|
|
if ( !IsSymmetric( epsilon ) ) {
|
|
return false;
|
|
}
|
|
|
|
return IsPositiveSemiDefinite( epsilon );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LowerTriangularInverse
|
|
|
|
in-place inversion of the lower triangular matrix
|
|
============
|
|
*/
|
|
bool idMatX::LowerTriangularInverse( void ) {
|
|
int i, j, k;
|
|
double d, sum;
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
d = (*this)[i][i];
|
|
if ( d == 0.0f ) {
|
|
return false;
|
|
}
|
|
(*this)[i][i] = d = 1.0f / d;
|
|
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum = 0.0f;
|
|
for ( k = j; k < i; k++ ) {
|
|
sum -= (*this)[i][k] * (*this)[k][j];
|
|
}
|
|
(*this)[i][j] = sum * d;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::UpperTriangularInverse
|
|
|
|
in-place inversion of the upper triangular matrix
|
|
============
|
|
*/
|
|
bool idMatX::UpperTriangularInverse( void ) {
|
|
int i, j, k;
|
|
double d, sum;
|
|
|
|
for ( i = numRows-1; i >= 0; i-- ) {
|
|
d = (*this)[i][i];
|
|
if ( d == 0.0f ) {
|
|
return false;
|
|
}
|
|
(*this)[i][i] = d = 1.0f / d;
|
|
|
|
for ( j = numRows-1; j > i; j-- ) {
|
|
sum = 0.0f;
|
|
for ( k = j; k > i; k-- ) {
|
|
sum -= (*this)[i][k] * (*this)[k][j];
|
|
}
|
|
(*this)[i][j] = sum * d;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
idMatX::ToString
|
|
=============
|
|
*/
|
|
const char *idMatX::ToString( int precision ) const {
|
|
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_RankOne
|
|
|
|
Updates the matrix to obtain the matrix: A + alpha * v * w'
|
|
============
|
|
*/
|
|
void idMatX::Update_RankOne( const idVecX &v, const idVecX &w, float alpha ) {
|
|
int i, j;
|
|
float s;
|
|
|
|
assert( v.GetSize() >= numRows );
|
|
assert( w.GetSize() >= numColumns );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
s = alpha * v[i];
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
(*this)[i][j] += s * w[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_RankOneSymmetric
|
|
|
|
Updates the matrix to obtain the matrix: A + alpha * v * v'
|
|
============
|
|
*/
|
|
void idMatX::Update_RankOneSymmetric( const idVecX &v, float alpha ) {
|
|
int i, j;
|
|
float s;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
s = alpha * v[i];
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
(*this)[i][j] += s * v[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_RowColumn
|
|
|
|
Updates the matrix to obtain the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
A + [ d b e ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
|
|
============
|
|
*/
|
|
void idMatX::Update_RowColumn( const idVecX &v, const idVecX &w, int r ) {
|
|
int i;
|
|
|
|
assert( w[r] == 0.0f );
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
(*this)[i][r] += v[i];
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
(*this)[r][i] += w[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_RowColumnSymmetric
|
|
|
|
Updates the matrix to obtain the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
A + [ a b c ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1]
|
|
============
|
|
*/
|
|
void idMatX::Update_RowColumnSymmetric( const idVecX &v, int r ) {
|
|
int i;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
|
|
for ( i = 0; i < r; i++ ) {
|
|
(*this)[i][r] += v[i];
|
|
(*this)[r][i] += v[i];
|
|
}
|
|
(*this)[r][r] += v[r];
|
|
for ( i = r+1; i < numRows; i++ ) {
|
|
(*this)[i][r] += v[i];
|
|
(*this)[r][i] += v[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_Increment
|
|
|
|
Updates the matrix to obtain the matrix:
|
|
|
|
[ A a ]
|
|
[ c b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1]], w[numColumns] = 0
|
|
============
|
|
*/
|
|
void idMatX::Update_Increment( const idVecX &v, const idVecX &w ) {
|
|
int i;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
assert( w.GetSize() >= numColumns+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, false );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
(*this)[i][numColumns-1] = v[i];
|
|
}
|
|
for ( i = 0; i < numColumns-1; i++ ) {
|
|
(*this)[numRows-1][i] = w[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_IncrementSymmetric
|
|
|
|
Updates the matrix to obtain the matrix:
|
|
|
|
[ A a ]
|
|
[ a b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows]
|
|
============
|
|
*/
|
|
void idMatX::Update_IncrementSymmetric( const idVecX &v ) {
|
|
int i;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, false );
|
|
|
|
for ( i = 0; i < numRows-1; i++ ) {
|
|
(*this)[i][numColumns-1] = v[i];
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
(*this)[numRows-1][i] = v[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Update_Decrement
|
|
|
|
Updates the matrix to obtain a matrix with row r and column r removed.
|
|
============
|
|
*/
|
|
void idMatX::Update_Decrement( int r ) {
|
|
RemoveRowColumn( r );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Inverse_GaussJordan
|
|
|
|
in-place inversion using Gauss-Jordan elimination
|
|
============
|
|
*/
|
|
bool idMatX::Inverse_GaussJordan( void ) {
|
|
int i, j, k, r, c;
|
|
float d, max;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
int *columnIndex = (int *) _alloca16( numRows * sizeof( int ) );
|
|
int *rowIndex = (int *) _alloca16( numRows * sizeof( int ) );
|
|
bool *pivot = (bool *) _alloca16( numRows * sizeof( bool ) );
|
|
|
|
memset( pivot, 0, numRows * sizeof( bool ) );
|
|
|
|
// elimination with full pivoting
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
// search the whole matrix except for pivoted rows for the maximum absolute value
|
|
max = 0.0f;
|
|
r = c = 0;
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
if ( !pivot[j] ) {
|
|
for ( k = 0; k < numRows; k++ ) {
|
|
if ( !pivot[k] ) {
|
|
d = idMath::Fabs( (*this)[j][k] );
|
|
if ( d > max ) {
|
|
max = d;
|
|
r = j;
|
|
c = k;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( max == 0.0f ) {
|
|
// matrix is not invertible
|
|
return false;
|
|
}
|
|
|
|
pivot[c] = true;
|
|
|
|
// swap rows such that entry (c,c) has the pivot entry
|
|
if ( r != c ) {
|
|
SwapRows( r, c );
|
|
}
|
|
|
|
// keep track of the row permutation
|
|
rowIndex[i] = r;
|
|
columnIndex[i] = c;
|
|
|
|
// scale the row to make the pivot entry equal to 1
|
|
d = 1.0f / (*this)[c][c];
|
|
(*this)[c][c] = 1.0f;
|
|
for ( k = 0; k < numRows; k++ ) {
|
|
(*this)[c][k] *= d;
|
|
}
|
|
|
|
// zero out the pivot column entries in the other rows
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
if ( j != c ) {
|
|
d = (*this)[j][c];
|
|
(*this)[j][c] = 0.0f;
|
|
for ( k = 0; k < numRows; k++ ) {
|
|
(*this)[j][k] -= (*this)[c][k] * d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// reorder rows to store the inverse of the original matrix
|
|
for ( j = numRows - 1; j >= 0; j-- ) {
|
|
if ( rowIndex[j] != columnIndex[j] ) {
|
|
for ( k = 0; k < numRows; k++ ) {
|
|
d = (*this)[k][rowIndex[j]];
|
|
(*this)[k][rowIndex[j]] = (*this)[k][columnIndex[j]];
|
|
(*this)[k][columnIndex[j]] = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Inverse_UpdateRankOne
|
|
|
|
Updates the in-place inverse using the Sherman-Morrison formula to obtain the inverse for the matrix: A + alpha * v * w'
|
|
============
|
|
*/
|
|
bool idMatX::Inverse_UpdateRankOne( const idVecX &v, const idVecX &w, float alpha ) {
|
|
int i, j;
|
|
float beta, s;
|
|
idVecX y, z;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
|
|
y.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
z.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
Multiply( y, v );
|
|
TransposeMultiply( z, w );
|
|
beta = 1.0f + ( w * y );
|
|
|
|
if ( beta == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
alpha /= beta;
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
s = y[i] * alpha;
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
(*this)[i][j] -= s * z[j];
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Inverse_UpdateRowColumn
|
|
|
|
Updates the in-place inverse to obtain the inverse for the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
A + [ d b e ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
|
|
============
|
|
*/
|
|
bool idMatX::Inverse_UpdateRowColumn( const idVecX &v, const idVecX &w, int r ) {
|
|
idVecX s;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows && r < numColumns );
|
|
assert( w[r] == 0.0f );
|
|
|
|
s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) );
|
|
s.Zero();
|
|
s[r] = 1.0f;
|
|
|
|
if ( !Inverse_UpdateRankOne( v, s, 1.0f ) ) {
|
|
return false;
|
|
}
|
|
if ( !Inverse_UpdateRankOne( s, w, 1.0f ) ) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Inverse_UpdateIncrement
|
|
|
|
Updates the in-place inverse to obtain the inverse for the matrix:
|
|
|
|
[ A a ]
|
|
[ c b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0
|
|
============
|
|
*/
|
|
bool idMatX::Inverse_UpdateIncrement( const idVecX &v, const idVecX &w ) {
|
|
idVecX v2;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
assert( w.GetSize() >= numColumns+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, true );
|
|
(*this)[numRows-1][numRows-1] = 1.0f;
|
|
|
|
v2.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
v2 = v;
|
|
v2[numRows-1] -= 1.0f;
|
|
|
|
return Inverse_UpdateRowColumn( v2, w, numRows-1 );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Inverse_UpdateDecrement
|
|
|
|
Updates the in-place inverse to obtain the inverse of the matrix with row r and column r removed.
|
|
v and w should store the column and row of the original matrix respectively.
|
|
============
|
|
*/
|
|
bool idMatX::Inverse_UpdateDecrement( const idVecX &v, const idVecX &w, int r ) {
|
|
idVecX v1, w1;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( w.GetSize() >= numColumns );
|
|
assert( r >= 0 && r < numRows && r < numColumns );
|
|
|
|
v1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
w1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
// update the row and column to identity
|
|
v1 = -v;
|
|
w1 = -w;
|
|
v1[r] += 1.0f;
|
|
w1[r] = 0.0f;
|
|
|
|
if ( !Inverse_UpdateRowColumn( v1, w1, r ) ) {
|
|
return false;
|
|
}
|
|
|
|
// physically remove the row and column
|
|
Update_Decrement( r );
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Inverse_Solve
|
|
|
|
Solve Ax = b with A inverted
|
|
============
|
|
*/
|
|
void idMatX::Inverse_Solve( idVecX &x, const idVecX &b ) const {
|
|
Multiply( x, b );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_Factor
|
|
|
|
in-place factorization: LU
|
|
L is a triangular matrix stored in the lower triangle.
|
|
L has ones on the diagonal that are not stored.
|
|
U is a triangular matrix stored in the upper triangle.
|
|
If index != NULL partial pivoting is used for numerical stability.
|
|
If index != NULL it must point to an array of numRow integers and is used to keep track of the row permutation.
|
|
If det != NULL the determinant of the matrix is calculated and stored.
|
|
============
|
|
*/
|
|
bool idMatX::LU_Factor( int *index, float *det ) {
|
|
int i, j, k, newi, min;
|
|
double s, t, d, w;
|
|
|
|
// if partial pivoting should be used
|
|
if ( index ) {
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
index[i] = i;
|
|
}
|
|
}
|
|
|
|
w = 1.0f;
|
|
min = Min( numRows, numColumns );
|
|
for ( i = 0; i < min; i++ ) {
|
|
|
|
newi = i;
|
|
s = idMath::Fabs( (*this)[i][i] );
|
|
|
|
if ( index ) {
|
|
// find the largest absolute pivot
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
t = idMath::Fabs( (*this)[j][i] );
|
|
if ( t > s ) {
|
|
newi = j;
|
|
s = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( s == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
if ( newi != i ) {
|
|
|
|
w = -w;
|
|
|
|
// swap index elements
|
|
k = index[i];
|
|
index[i] = index[newi];
|
|
index[newi] = k;
|
|
|
|
// swap rows
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
t = (*this)[newi][j];
|
|
(*this)[newi][j] = (*this)[i][j];
|
|
(*this)[i][j] = t;
|
|
}
|
|
}
|
|
|
|
if ( i < numRows ) {
|
|
d = 1.0f / (*this)[i][i];
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
(*this)[j][i] *= d;
|
|
}
|
|
}
|
|
|
|
if ( i < min-1 ) {
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
d = (*this)[j][i];
|
|
for ( k = i + 1; k < numColumns; k++ ) {
|
|
(*this)[j][k] -= d * (*this)[i][k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( det ) {
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
w *= (*this)[i][i];
|
|
}
|
|
*det = w;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_UpdateRankOne
|
|
|
|
Updates the in-place LU factorization to obtain the factors for the matrix: LU + alpha * v * w'
|
|
============
|
|
*/
|
|
bool idMatX::LU_UpdateRankOne( const idVecX &v, const idVecX &w, float alpha, int *index ) {
|
|
int i, j, max;
|
|
float *y, *z;
|
|
double diag, beta, p0, p1, d;
|
|
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
|
|
y = (float *) _alloca16( v.GetSize() * sizeof( float ) );
|
|
z = (float *) _alloca16( w.GetSize() * sizeof( float ) );
|
|
|
|
if ( index != NULL ) {
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
y[i] = alpha * v[index[i]];
|
|
}
|
|
} else {
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
y[i] = alpha * v[i];
|
|
}
|
|
}
|
|
|
|
memcpy( z, w.ToFloatPtr(), w.GetSize() * sizeof( float ) );
|
|
|
|
max = Min( numRows, numColumns );
|
|
for ( i = 0; i < max; i++ ) {
|
|
diag = (*this)[i][i];
|
|
|
|
p0 = y[i];
|
|
p1 = z[i];
|
|
diag += p0 * p1;
|
|
|
|
if ( diag == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
beta = p1 / diag;
|
|
|
|
(*this)[i][i] = diag;
|
|
|
|
for ( j = i+1; j < numColumns; j++ ) {
|
|
|
|
d = (*this)[i][j];
|
|
|
|
d += p0 * z[j];
|
|
z[j] -= beta * d;
|
|
|
|
(*this)[i][j] = d;
|
|
}
|
|
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
|
|
d = (*this)[j][i];
|
|
|
|
y[j] -= p0 * d;
|
|
d += beta * y[j];
|
|
|
|
(*this)[j][i] = d;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_UpdateRowColumn
|
|
|
|
Updates the in-place LU factorization to obtain the factors for the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
LU + [ d b e ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
|
|
============
|
|
*/
|
|
bool idMatX::LU_UpdateRowColumn( const idVecX &v, const idVecX &w, int r, int *index ) {
|
|
#if 0
|
|
|
|
idVecX s;
|
|
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows && r < numColumns );
|
|
assert( w[r] == 0.0f );
|
|
|
|
s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) );
|
|
s.Zero();
|
|
s[r] = 1.0f;
|
|
|
|
if ( !LU_UpdateRankOne( v, s, 1.0f, index ) ) {
|
|
return false;
|
|
}
|
|
if ( !LU_UpdateRankOne( s, w, 1.0f, index ) ) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
#else
|
|
|
|
int i, j, min, max, rp;
|
|
float *y0, *y1, *z0, *z1;
|
|
double diag, beta0, beta1, p0, p1, q0, q1, d;
|
|
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numColumns && r < numRows );
|
|
assert( w[r] == 0.0f );
|
|
|
|
y0 = (float *) _alloca16( v.GetSize() * sizeof( float ) );
|
|
z0 = (float *) _alloca16( w.GetSize() * sizeof( float ) );
|
|
y1 = (float *) _alloca16( v.GetSize() * sizeof( float ) );
|
|
z1 = (float *) _alloca16( w.GetSize() * sizeof( float ) );
|
|
|
|
if ( index != NULL ) {
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
y0[i] = v[index[i]];
|
|
}
|
|
rp = r;
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
if ( index[i] == r ) {
|
|
rp = i;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
memcpy( y0, v.ToFloatPtr(), v.GetSize() * sizeof( float ) );
|
|
rp = r;
|
|
}
|
|
|
|
memset( y1, 0, v.GetSize() * sizeof( float ) );
|
|
y1[rp] = 1.0f;
|
|
|
|
memset( z0, 0, w.GetSize() * sizeof( float ) );
|
|
z0[r] = 1.0f;
|
|
|
|
memcpy( z1, w.ToFloatPtr(), w.GetSize() * sizeof( float ) );
|
|
|
|
// update the beginning of the to be updated row and column
|
|
min = Min( r, rp );
|
|
for ( i = 0; i < min; i++ ) {
|
|
p0 = y0[i];
|
|
beta1 = z1[i] / (*this)[i][i];
|
|
|
|
(*this)[i][r] += p0;
|
|
for ( j = i+1; j < numColumns; j++ ) {
|
|
z1[j] -= beta1 * (*this)[i][j];
|
|
}
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
y0[j] -= p0 * (*this)[j][i];
|
|
}
|
|
(*this)[rp][i] += beta1;
|
|
}
|
|
|
|
// update the lower right corner starting at r,r
|
|
max = Min( numRows, numColumns );
|
|
for ( i = min; i < max; i++ ) {
|
|
diag = (*this)[i][i];
|
|
|
|
p0 = y0[i];
|
|
p1 = z0[i];
|
|
diag += p0 * p1;
|
|
|
|
if ( diag == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
beta0 = p1 / diag;
|
|
|
|
q0 = y1[i];
|
|
q1 = z1[i];
|
|
diag += q0 * q1;
|
|
|
|
if ( diag == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
beta1 = q1 / diag;
|
|
|
|
(*this)[i][i] = diag;
|
|
|
|
for ( j = i+1; j < numColumns; j++ ) {
|
|
|
|
d = (*this)[i][j];
|
|
|
|
d += p0 * z0[j];
|
|
z0[j] -= beta0 * d;
|
|
|
|
d += q0 * z1[j];
|
|
z1[j] -= beta1 * d;
|
|
|
|
(*this)[i][j] = d;
|
|
}
|
|
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
|
|
d = (*this)[j][i];
|
|
|
|
y0[j] -= p0 * d;
|
|
d += beta0 * y0[j];
|
|
|
|
y1[j] -= q0 * d;
|
|
d += beta1 * y1[j];
|
|
|
|
(*this)[j][i] = d;
|
|
}
|
|
}
|
|
return true;
|
|
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_UpdateIncrement
|
|
|
|
Updates the in-place LU factorization to obtain the factors for the matrix:
|
|
|
|
[ A a ]
|
|
[ c b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0
|
|
============
|
|
*/
|
|
bool idMatX::LU_UpdateIncrement( const idVecX &v, const idVecX &w, int *index ) {
|
|
int i, j;
|
|
float sum;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
assert( w.GetSize() >= numColumns+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, true );
|
|
|
|
// add row to L
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
sum = w[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[numRows - 1][j] * (*this)[j][i];
|
|
}
|
|
(*this)[numRows - 1 ][i] = sum / (*this)[i][i];
|
|
}
|
|
|
|
// add row to the permutation index
|
|
if ( index != NULL ) {
|
|
index[numRows - 1] = numRows - 1;
|
|
}
|
|
|
|
// add column to U
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
if ( index != NULL ) {
|
|
sum = v[index[i]];
|
|
} else {
|
|
sum = v[i];
|
|
}
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * (*this)[j][numRows - 1];
|
|
}
|
|
(*this)[i][numRows - 1] = sum;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_UpdateDecrement
|
|
|
|
Updates the in-place LU factorization to obtain the factors for the matrix with row r and column r removed.
|
|
v and w should store the column and row of the original matrix respectively.
|
|
If index != NULL then u should store row index[r] of the original matrix. If index == NULL then u = w.
|
|
============
|
|
*/
|
|
bool idMatX::LU_UpdateDecrement( const idVecX &v, const idVecX &w, const idVecX &u, int r, int *index ) {
|
|
int i, p;
|
|
idVecX v1, w1;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows && r < numColumns );
|
|
|
|
v1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
w1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
if ( index != NULL ) {
|
|
|
|
// find the pivot row
|
|
for ( p = i = 0; i < numRows; i++ ) {
|
|
if ( index[i] == r ) {
|
|
p = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update the row and column to identity
|
|
v1 = -v;
|
|
w1 = -u;
|
|
|
|
if ( p != r ) {
|
|
idSwap( v1[index[r]], v1[index[p]] );
|
|
idSwap( index[r], index[p] );
|
|
}
|
|
|
|
v1[r] += 1.0f;
|
|
w1[r] = 0.0f;
|
|
|
|
if ( !LU_UpdateRowColumn( v1, w1, r, index ) ) {
|
|
return false;
|
|
}
|
|
|
|
if ( p != r ) {
|
|
|
|
if ( idMath::Fabs( u[p] ) < 1e-4f ) {
|
|
// NOTE: an additional row interchange is required for numerical stability
|
|
}
|
|
|
|
// move row index[r] of the original matrix to row index[p] of the original matrix
|
|
v1.Zero();
|
|
v1[index[p]] = 1.0f;
|
|
w1 = u - w;
|
|
|
|
if ( !LU_UpdateRankOne( v1, w1, 1.0f, index ) ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// remove the row from the permutation index
|
|
for ( i = r; i < numRows - 1; i++ ) {
|
|
index[i] = index[i+1];
|
|
}
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
if ( index[i] > r ) {
|
|
index[i]--;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
v1 = -v;
|
|
w1 = -w;
|
|
v1[r] += 1.0f;
|
|
w1[r] = 0.0f;
|
|
|
|
if ( !LU_UpdateRowColumn( v1, w1, r, index ) ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// physically remove the row and column
|
|
Update_Decrement( r );
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_Solve
|
|
|
|
Solve Ax = b with A factored in-place as: LU
|
|
============
|
|
*/
|
|
void idMatX::LU_Solve( idVecX &x, const idVecX &b, const int *index ) const {
|
|
int i, j;
|
|
double sum;
|
|
|
|
assert( x.GetSize() == numColumns && b.GetSize() == numRows );
|
|
|
|
// solve L
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
if ( index != NULL ) {
|
|
sum = b[index[i]];
|
|
} else {
|
|
sum = b[i];
|
|
}
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum;
|
|
}
|
|
|
|
// solve U
|
|
for ( i = numRows - 1; i >= 0; i-- ) {
|
|
sum = x[i];
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum / (*this)[i][i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_Inverse
|
|
|
|
Calculates the inverse of the matrix which is factored in-place as LU
|
|
============
|
|
*/
|
|
void idMatX::LU_Inverse( idMatX &inv, const int *index ) const {
|
|
int i, j;
|
|
idVecX x, b;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
x.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.Zero();
|
|
inv.SetSize( numRows, numColumns );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
b[i] = 1.0f;
|
|
LU_Solve( x, b, index );
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
inv[j][i] = x[j];
|
|
}
|
|
b[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_UnpackFactors
|
|
|
|
Unpacks the in-place LU factorization.
|
|
============
|
|
*/
|
|
void idMatX::LU_UnpackFactors( idMatX &L, idMatX &U ) const {
|
|
int i, j;
|
|
|
|
L.Zero( numRows, numColumns );
|
|
U.Zero( numRows, numColumns );
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < i; j++ ) {
|
|
L[i][j] = (*this)[i][j];
|
|
}
|
|
L[i][i] = 1.0f;
|
|
for ( j = i; j < numColumns; j++ ) {
|
|
U[i][j] = (*this)[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LU_MultiplyFactors
|
|
|
|
Multiplies the factors of the in-place LU factorization to form the original matrix.
|
|
============
|
|
*/
|
|
void idMatX::LU_MultiplyFactors( idMatX &m, const int *index ) const {
|
|
int r, rp, i, j;
|
|
double sum;
|
|
|
|
m.SetSize( numRows, numColumns );
|
|
|
|
for ( r = 0; r < numRows; r++ ) {
|
|
|
|
if ( index != NULL ) {
|
|
rp = index[r];
|
|
} else {
|
|
rp = r;
|
|
}
|
|
|
|
// calculate row of matrix
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
if ( i >= r ) {
|
|
sum = (*this)[r][i];
|
|
} else {
|
|
sum = 0.0f;
|
|
}
|
|
for ( j = 0; j <= i && j < r; j++ ) {
|
|
sum += (*this)[r][j] * (*this)[j][i];
|
|
}
|
|
m[rp][i] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_Factor
|
|
|
|
in-place factorization: QR
|
|
Q is an orthogonal matrix represented as a product of Householder matrices stored in the lower triangle and c.
|
|
R is a triangular matrix stored in the upper triangle except for the diagonal elements which are stored in d.
|
|
The initial matrix has to be square.
|
|
============
|
|
*/
|
|
bool idMatX::QR_Factor( idVecX &c, idVecX &d ) {
|
|
int i, j, k;
|
|
double scale, s, t, sum;
|
|
bool singular = false;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( c.GetSize() >= numRows && d.GetSize() >= numRows );
|
|
|
|
for ( k = 0; k < numRows-1; k++ ) {
|
|
|
|
scale = 0.0f;
|
|
for ( i = k; i < numRows; i++ ) {
|
|
s = idMath::Fabs( (*this)[i][k] );
|
|
if ( s > scale ) {
|
|
scale = s;
|
|
}
|
|
}
|
|
if ( scale == 0.0f ) {
|
|
singular = true;
|
|
c[k] = d[k] = 0.0f;
|
|
} else {
|
|
|
|
s = 1.0f / scale;
|
|
for ( i = k; i < numRows; i++ ) {
|
|
(*this)[i][k] *= s;
|
|
}
|
|
|
|
sum = 0.0f;
|
|
for ( i = k; i < numRows; i++ ) {
|
|
s = (*this)[i][k];
|
|
sum += s * s;
|
|
}
|
|
|
|
s = idMath::Sqrt( sum );
|
|
if ( (*this)[k][k] < 0.0f ) {
|
|
s = -s;
|
|
}
|
|
(*this)[k][k] += s;
|
|
c[k] = s * (*this)[k][k];
|
|
d[k] = -scale * s;
|
|
|
|
for ( j = k+1; j < numRows; j++ ) {
|
|
|
|
sum = 0.0f;
|
|
for ( i = k; i < numRows; i++ ) {
|
|
sum += (*this)[i][k] * (*this)[i][j];
|
|
}
|
|
t = sum / c[k];
|
|
for ( i = k; i < numRows; i++ ) {
|
|
(*this)[i][j] -= t * (*this)[i][k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
d[numRows-1] = (*this)[ (numRows-1) ][ (numRows-1) ];
|
|
if ( d[numRows-1] == 0.0f ) {
|
|
singular = true;
|
|
}
|
|
|
|
return !singular;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_Rotate
|
|
|
|
Performs a Jacobi rotation on the rows i and i+1 of the unpacked QR factors.
|
|
============
|
|
*/
|
|
void idMatX::QR_Rotate( idMatX &R, int i, float a, float b ) {
|
|
int j;
|
|
float f, c, s, w, y;
|
|
|
|
if ( a == 0.0f ) {
|
|
c = 0.0f;
|
|
s = ( b >= 0.0f ) ? 1.0f : -1.0f;
|
|
} else if ( idMath::Fabs( a ) > idMath::Fabs( b ) ) {
|
|
f = b / a;
|
|
c = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) );
|
|
if ( a < 0.0f ) {
|
|
c = -c;
|
|
}
|
|
s = f * c;
|
|
} else {
|
|
f = a / b;
|
|
s = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) );
|
|
if ( b < 0.0f ) {
|
|
s = -s;
|
|
}
|
|
c = f * s;
|
|
}
|
|
for ( j = i; j < numRows; j++ ) {
|
|
y = R[i][j];
|
|
w = R[i+1][j];
|
|
R[i][j] = c * y - s * w;
|
|
R[i+1][j] = s * y + c * w;
|
|
}
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
y = (*this)[j][i];
|
|
w = (*this)[j][i+1];
|
|
(*this)[j][i] = c * y - s * w;
|
|
(*this)[j][i+1] = s * y + c * w;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_UpdateRankOne
|
|
|
|
Updates the unpacked QR factorization to obtain the factors for the matrix: QR + alpha * v * w'
|
|
============
|
|
*/
|
|
bool idMatX::QR_UpdateRankOne( idMatX &R, const idVecX &v, const idVecX &w, float alpha ) {
|
|
int i, k;
|
|
float f;
|
|
idVecX u;
|
|
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
|
|
u.SetData( v.GetSize(), VECX_ALLOCA( v.GetSize() ) );
|
|
TransposeMultiply( u, v );
|
|
u *= alpha;
|
|
|
|
for ( k = v.GetSize()-1; k > 0; k-- ) {
|
|
if ( u[k] != 0.0f ) {
|
|
break;
|
|
}
|
|
}
|
|
for ( i = k-1; i >= 0; i-- ) {
|
|
QR_Rotate( R, i, u[i], -u[i+1] );
|
|
if ( u[i] == 0.0f ) {
|
|
u[i] = idMath::Fabs( u[i+1] );
|
|
} else if ( idMath::Fabs( u[i] ) > idMath::Fabs( u[i+1] ) ) {
|
|
f = u[i+1] / u[i];
|
|
u[i] = idMath::Fabs( u[i] ) * idMath::Sqrt( 1.0f + f * f );
|
|
} else {
|
|
f = u[i] / u[i+1];
|
|
u[i] = idMath::Fabs( u[i+1] ) * idMath::Sqrt( 1.0f + f * f );
|
|
}
|
|
}
|
|
for ( i = 0; i < v.GetSize(); i++ ) {
|
|
R[0][i] += u[0] * w[i];
|
|
}
|
|
for ( i = 0; i < k; i++ ) {
|
|
QR_Rotate( R, i, -R[i][i], R[i+1][i] );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_UpdateRowColumn
|
|
|
|
Updates the unpacked QR factorization to obtain the factors for the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
QR + [ d b e ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
|
|
============
|
|
*/
|
|
bool idMatX::QR_UpdateRowColumn( idMatX &R, const idVecX &v, const idVecX &w, int r ) {
|
|
idVecX s;
|
|
|
|
assert( v.GetSize() >= numColumns );
|
|
assert( w.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows && r < numColumns );
|
|
assert( w[r] == 0.0f );
|
|
|
|
s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) );
|
|
s.Zero();
|
|
s[r] = 1.0f;
|
|
|
|
if ( !QR_UpdateRankOne( R, v, s, 1.0f ) ) {
|
|
return false;
|
|
}
|
|
if ( !QR_UpdateRankOne( R, s, w, 1.0f ) ) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_UpdateIncrement
|
|
|
|
Updates the unpacked QR factorization to obtain the factors for the matrix:
|
|
|
|
[ A a ]
|
|
[ c b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0
|
|
============
|
|
*/
|
|
bool idMatX::QR_UpdateIncrement( idMatX &R, const idVecX &v, const idVecX &w ) {
|
|
idVecX v2;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
assert( w.GetSize() >= numColumns+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, true );
|
|
(*this)[numRows-1][numRows-1] = 1.0f;
|
|
|
|
R.ChangeSize( R.numRows+1, R.numColumns+1, true );
|
|
R[R.numRows-1][R.numRows-1] = 1.0f;
|
|
|
|
v2.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
v2 = v;
|
|
v2[numRows-1] -= 1.0f;
|
|
|
|
return QR_UpdateRowColumn( R, v2, w, numRows-1 );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_UpdateDecrement
|
|
|
|
Updates the unpacked QR factorization to obtain the factors for the matrix with row r and column r removed.
|
|
v and w should store the column and row of the original matrix respectively.
|
|
============
|
|
*/
|
|
bool idMatX::QR_UpdateDecrement( idMatX &R, const idVecX &v, const idVecX &w, int r ) {
|
|
idVecX v1, w1;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( w.GetSize() >= numColumns );
|
|
assert( r >= 0 && r < numRows && r < numColumns );
|
|
|
|
v1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
w1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
// update the row and column to identity
|
|
v1 = -v;
|
|
w1 = -w;
|
|
v1[r] += 1.0f;
|
|
w1[r] = 0.0f;
|
|
|
|
if ( !QR_UpdateRowColumn( R, v1, w1, r ) ) {
|
|
return false;
|
|
}
|
|
|
|
// physically remove the row and column
|
|
Update_Decrement( r );
|
|
R.Update_Decrement( r );
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_Solve
|
|
|
|
Solve Ax = b with A factored in-place as: QR
|
|
============
|
|
*/
|
|
void idMatX::QR_Solve( idVecX &x, const idVecX &b, const idVecX &c, const idVecX &d ) const {
|
|
int i, j;
|
|
double sum, t;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
|
|
assert( c.GetSize() >= numRows && d.GetSize() >= numRows );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
x[i] = b[i];
|
|
}
|
|
|
|
// multiply b with transpose of Q
|
|
for ( i = 0; i < numRows-1; i++ ) {
|
|
|
|
sum = 0.0f;
|
|
for ( j = i; j < numRows; j++ ) {
|
|
sum += (*this)[j][i] * x[j];
|
|
}
|
|
t = sum / c[i];
|
|
for ( j = i; j < numRows; j++ ) {
|
|
x[j] -= t * (*this)[j][i];
|
|
}
|
|
}
|
|
|
|
// backsubstitution with R
|
|
for ( i = numRows-1; i >= 0; i-- ) {
|
|
|
|
sum = x[i];
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum / d[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_Solve
|
|
|
|
Solve Ax = b with A factored as: QR
|
|
============
|
|
*/
|
|
void idMatX::QR_Solve( idVecX &x, const idVecX &b, const idMatX &R ) const {
|
|
int i, j;
|
|
double sum;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
// multiply b with transpose of Q
|
|
TransposeMultiply( x, b );
|
|
|
|
// backsubstitution with R
|
|
for ( i = numRows-1; i >= 0; i-- ) {
|
|
|
|
sum = x[i];
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
sum -= R[i][j] * x[j];
|
|
}
|
|
x[i] = sum / R[i][i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_Inverse
|
|
|
|
Calculates the inverse of the matrix which is factored in-place as: QR
|
|
============
|
|
*/
|
|
void idMatX::QR_Inverse( idMatX &inv, const idVecX &c, const idVecX &d ) const {
|
|
int i, j;
|
|
idVecX x, b;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
x.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.Zero();
|
|
inv.SetSize( numRows, numColumns );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
b[i] = 1.0f;
|
|
QR_Solve( x, b, c, d );
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
inv[j][i] = x[j];
|
|
}
|
|
b[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_UnpackFactors
|
|
|
|
Unpacks the in-place QR factorization.
|
|
============
|
|
*/
|
|
void idMatX::QR_UnpackFactors( idMatX &Q, idMatX &R, const idVecX &c, const idVecX &d ) const {
|
|
int i, j, k;
|
|
double sum;
|
|
|
|
Q.Identity( numRows, numColumns );
|
|
for ( i = 0; i < numColumns-1; i++ ) {
|
|
if ( c[i] == 0.0f ) {
|
|
continue;
|
|
}
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
sum = 0.0f;
|
|
for ( k = i; k < numColumns; k++ ) {
|
|
sum += (*this)[k][i] * Q[j][k];
|
|
}
|
|
sum /= c[i];
|
|
for ( k = i; k < numColumns; k++ ) {
|
|
Q[j][k] -= sum * (*this)[k][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
R.Zero( numRows, numColumns );
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
R[i][i] = d[i];
|
|
for ( j = i+1; j < numColumns; j++ ) {
|
|
R[i][j] = (*this)[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QR_MultiplyFactors
|
|
|
|
Multiplies the factors of the in-place QR factorization to form the original matrix.
|
|
============
|
|
*/
|
|
void idMatX::QR_MultiplyFactors( idMatX &m, const idVecX &c, const idVecX &d ) const {
|
|
int i, j, k;
|
|
double sum;
|
|
idMatX Q;
|
|
|
|
Q.Identity( numRows, numColumns );
|
|
for ( i = 0; i < numColumns-1; i++ ) {
|
|
if ( c[i] == 0.0f ) {
|
|
continue;
|
|
}
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
sum = 0.0f;
|
|
for ( k = i; k < numColumns; k++ ) {
|
|
sum += (*this)[k][i] * Q[j][k];
|
|
}
|
|
sum /= c[i];
|
|
for ( k = i; k < numColumns; k++ ) {
|
|
Q[j][k] -= sum * (*this)[k][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
sum = Q[i][j] * d[i];
|
|
for ( k = 0; k < i; k++ ) {
|
|
sum += Q[i][k] * (*this)[j][k];
|
|
}
|
|
m[i][j] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Pythag
|
|
|
|
Computes (a^2 + b^2)^1/2 without underflow or overflow.
|
|
============
|
|
*/
|
|
float idMatX::Pythag( float a, float b ) const {
|
|
double at, bt, ct;
|
|
|
|
at = idMath::Fabs( a );
|
|
bt = idMath::Fabs( b );
|
|
if ( at > bt ) {
|
|
ct = bt / at;
|
|
return at * idMath::Sqrt( 1.0f + ct * ct );
|
|
} else {
|
|
if ( bt ) {
|
|
ct = at / bt;
|
|
return bt * idMath::Sqrt( 1.0f + ct * ct );
|
|
} else {
|
|
return 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::SVD_BiDiag
|
|
============
|
|
*/
|
|
void idMatX::SVD_BiDiag( idVecX &w, idVecX &rv1, float &anorm ) {
|
|
int i, j, k, l;
|
|
double f, h, r, g, s, scale;
|
|
|
|
anorm = 0.0f;
|
|
g = s = scale = 0.0f;
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
l = i + 1;
|
|
rv1[i] = scale * g;
|
|
g = s = scale = 0.0f;
|
|
if ( i < numRows ) {
|
|
for ( k = i; k < numRows; k++ ) {
|
|
scale += idMath::Fabs( (*this)[k][i] );
|
|
}
|
|
if ( scale ) {
|
|
for ( k = i; k < numRows; k++ ) {
|
|
(*this)[k][i] /= scale;
|
|
s += (*this)[k][i] * (*this)[k][i];
|
|
}
|
|
f = (*this)[i][i];
|
|
g = idMath::Sqrt( s );
|
|
if ( f >= 0.0f ) {
|
|
g = -g;
|
|
}
|
|
h = f * g - s;
|
|
(*this)[i][i] = f - g;
|
|
if ( i != (numColumns-1) ) {
|
|
for ( j = l; j < numColumns; j++ ) {
|
|
for ( s = 0.0f, k = i; k < numRows; k++ ) {
|
|
s += (*this)[k][i] * (*this)[k][j];
|
|
}
|
|
f = s / h;
|
|
for ( k = i; k < numRows; k++ ) {
|
|
(*this)[k][j] += f * (*this)[k][i];
|
|
}
|
|
}
|
|
}
|
|
for ( k = i; k < numRows; k++ ) {
|
|
(*this)[k][i] *= scale;
|
|
}
|
|
}
|
|
}
|
|
w[i] = scale * g;
|
|
g = s = scale = 0.0f;
|
|
if ( i < numRows && i != (numColumns-1) ) {
|
|
for ( k = l; k < numColumns; k++ ) {
|
|
scale += idMath::Fabs( (*this)[i][k] );
|
|
}
|
|
if ( scale ) {
|
|
for ( k = l; k < numColumns; k++ ) {
|
|
(*this)[i][k] /= scale;
|
|
s += (*this)[i][k] * (*this)[i][k];
|
|
}
|
|
f = (*this)[i][l];
|
|
g = idMath::Sqrt( s );
|
|
if ( f >= 0.0f ) {
|
|
g = -g;
|
|
}
|
|
h = 1.0f / ( f * g - s );
|
|
(*this)[i][l] = f - g;
|
|
for ( k = l; k < numColumns; k++ ) {
|
|
rv1[k] = (*this)[i][k] * h;
|
|
}
|
|
if ( i != (numRows-1) ) {
|
|
for ( j = l; j < numRows; j++ ) {
|
|
for ( s = 0.0f, k = l; k < numColumns; k++ ) {
|
|
s += (*this)[j][k] * (*this)[i][k];
|
|
}
|
|
for ( k = l; k < numColumns; k++ ) {
|
|
(*this)[j][k] += s * rv1[k];
|
|
}
|
|
}
|
|
}
|
|
for ( k = l; k < numColumns; k++ ) {
|
|
(*this)[i][k] *= scale;
|
|
}
|
|
}
|
|
}
|
|
r = idMath::Fabs( w[i] ) + idMath::Fabs( rv1[i] );
|
|
if ( r > anorm ) {
|
|
anorm = r;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::SVD_InitialWV
|
|
============
|
|
*/
|
|
void idMatX::SVD_InitialWV( idVecX &w, idMatX &V, idVecX &rv1 ) {
|
|
int i, j, k, l;
|
|
double f, g, s;
|
|
|
|
g = 0.0f;
|
|
for ( i = (numColumns-1); i >= 0; i-- ) {
|
|
l = i + 1;
|
|
if ( i < ( numColumns - 1 ) ) {
|
|
if ( g ) {
|
|
for ( j = l; j < numColumns; j++ ) {
|
|
V[j][i] = ((*this)[i][j] / (*this)[i][l]) / g;
|
|
}
|
|
// double division to reduce underflow
|
|
for ( j = l; j < numColumns; j++ ) {
|
|
for ( s = 0.0f, k = l; k < numColumns; k++ ) {
|
|
s += (*this)[i][k] * V[k][j];
|
|
}
|
|
for ( k = l; k < numColumns; k++ ) {
|
|
V[k][j] += s * V[k][i];
|
|
}
|
|
}
|
|
}
|
|
for ( j = l; j < numColumns; j++ ) {
|
|
V[i][j] = V[j][i] = 0.0f;
|
|
}
|
|
}
|
|
V[i][i] = 1.0f;
|
|
g = rv1[i];
|
|
}
|
|
for ( i = numColumns - 1 ; i >= 0; i-- ) {
|
|
l = i + 1;
|
|
g = w[i];
|
|
if ( i < (numColumns-1) ) {
|
|
for ( j = l; j < numColumns; j++ ) {
|
|
(*this)[i][j] = 0.0f;
|
|
}
|
|
}
|
|
if ( g ) {
|
|
g = 1.0f / g;
|
|
if ( i != (numColumns-1) ) {
|
|
for ( j = l; j < numColumns; j++ ) {
|
|
for ( s = 0.0f, k = l; k < numRows; k++ ) {
|
|
s += (*this)[k][i] * (*this)[k][j];
|
|
}
|
|
f = (s / (*this)[i][i]) * g;
|
|
for ( k = i; k < numRows; k++ ) {
|
|
(*this)[k][j] += f * (*this)[k][i];
|
|
}
|
|
}
|
|
}
|
|
for ( j = i; j < numRows; j++ ) {
|
|
(*this)[j][i] *= g;
|
|
}
|
|
}
|
|
else {
|
|
for ( j = i; j < numRows; j++ ) {
|
|
(*this)[j][i] = 0.0f;
|
|
}
|
|
}
|
|
(*this)[i][i] += 1.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::SVD_Factor
|
|
|
|
in-place factorization: U * Diag(w) * V.Transpose()
|
|
known as the Singular Value Decomposition.
|
|
U is a column-orthogonal matrix which overwrites the original matrix.
|
|
w is a diagonal matrix with all elements >= 0 which are the singular values.
|
|
V is the transpose of an orthogonal matrix.
|
|
============
|
|
*/
|
|
bool idMatX::SVD_Factor( idVecX &w, idMatX &V ) {
|
|
int flag, i, its, j, jj, k, l, nm;
|
|
double c, f, h, s, x, y, z, r, g = 0.0f;
|
|
float anorm = 0.0f;
|
|
idVecX rv1;
|
|
|
|
if ( numRows < numColumns ) {
|
|
return false;
|
|
}
|
|
|
|
rv1.SetData( numColumns, VECX_ALLOCA( numColumns ) );
|
|
rv1.Zero();
|
|
w.Zero( numColumns );
|
|
V.Zero( numColumns, numColumns );
|
|
|
|
SVD_BiDiag( w, rv1, anorm );
|
|
SVD_InitialWV( w, V, rv1 );
|
|
|
|
for ( k = numColumns - 1; k >= 0; k-- ) {
|
|
for ( its = 1; its <= 30; its++ ) {
|
|
flag = 1;
|
|
nm = 0;
|
|
for ( l = k; l >= 0; l-- ) {
|
|
nm = l - 1;
|
|
if ( ( idMath::Fabs( rv1[l] ) + anorm ) == anorm /* idMath::Fabs( rv1[l] ) < idMath::FLT_EPSILON */ ) {
|
|
flag = 0;
|
|
break;
|
|
}
|
|
if ( ( idMath::Fabs( w[nm] ) + anorm ) == anorm /* idMath::Fabs( w[nm] ) < idMath::FLT_EPSILON */ ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( flag ) {
|
|
c = 0.0f;
|
|
s = 1.0f;
|
|
for ( i = l; i <= k; i++ ) {
|
|
f = s * rv1[i];
|
|
|
|
if ( ( idMath::Fabs( f ) + anorm ) != anorm /* idMath::Fabs( f ) > idMath::FLT_EPSILON */ ) {
|
|
g = w[i];
|
|
h = Pythag( f, g );
|
|
w[i] = h;
|
|
h = 1.0f / h;
|
|
c = g * h;
|
|
s = -f * h;
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
y = (*this)[j][nm];
|
|
z = (*this)[j][i];
|
|
(*this)[j][nm] = y * c + z * s;
|
|
(*this)[j][i] = z * c - y * s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
z = w[k];
|
|
if ( l == k ) {
|
|
if ( z < 0.0f ) {
|
|
w[k] = -z;
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
V[j][k] = -V[j][k];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if ( its == 30 ) {
|
|
return false; // no convergence
|
|
}
|
|
x = w[l];
|
|
nm = k - 1;
|
|
y = w[nm];
|
|
g = rv1[nm];
|
|
h = rv1[k];
|
|
f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0f * h * y );
|
|
g = Pythag( f, 1.0f );
|
|
r = ( f >= 0.0f ? g : - g );
|
|
f= ( ( x - z ) * ( x + z ) + h * ( ( y / ( f + r ) ) - h ) ) / x;
|
|
c = s = 1.0f;
|
|
for ( j = l; j <= nm; j++ ) {
|
|
i = j + 1;
|
|
g = rv1[i];
|
|
y = w[i];
|
|
h = s * g;
|
|
g = c * g;
|
|
z = Pythag( f, h );
|
|
rv1[j] = z;
|
|
c = f / z;
|
|
s = h / z;
|
|
f = x * c + g * s;
|
|
g = g * c - x * s;
|
|
h = y * s;
|
|
y = y * c;
|
|
for ( jj = 0; jj < numColumns; jj++ ) {
|
|
x = V[jj][j];
|
|
z = V[jj][i];
|
|
V[jj][j] = x * c + z * s;
|
|
V[jj][i] = z * c - x * s;
|
|
}
|
|
z = Pythag( f, h );
|
|
w[j] = z;
|
|
if ( z ) {
|
|
z = 1.0f / z;
|
|
c = f * z;
|
|
s = h * z;
|
|
}
|
|
f = ( c * g ) + ( s * y );
|
|
x = ( c * y ) - ( s * g );
|
|
for ( jj = 0; jj < numRows; jj++ ) {
|
|
y = (*this)[jj][j];
|
|
z = (*this)[jj][i];
|
|
(*this)[jj][j] = y * c + z * s;
|
|
(*this)[jj][i] = z * c - y * s;
|
|
}
|
|
}
|
|
rv1[l] = 0.0f;
|
|
rv1[k] = f;
|
|
w[k] = x;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::SVD_Solve
|
|
|
|
Solve Ax = b with A factored as: U * Diag(w) * V.Transpose()
|
|
============
|
|
*/
|
|
void idMatX::SVD_Solve( idVecX &x, const idVecX &b, const idVecX &w, const idMatX &V ) const {
|
|
int i, j;
|
|
double sum;
|
|
idVecX tmp;
|
|
|
|
assert( x.GetSize() >= numColumns );
|
|
assert( b.GetSize() >= numColumns );
|
|
assert( w.GetSize() == numColumns );
|
|
assert( V.GetNumRows() == numColumns && V.GetNumColumns() == numColumns );
|
|
|
|
tmp.SetData( numColumns, VECX_ALLOCA( numColumns ) );
|
|
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
sum = 0.0f;
|
|
if ( w[i] >= idMath::FLT_EPSILON ) {
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
sum += (*this)[j][i] * b[j];
|
|
}
|
|
sum /= w[i];
|
|
}
|
|
tmp[i] = sum;
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
sum = 0.0f;
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
sum += V[i][j] * tmp[j];
|
|
}
|
|
x[i] = sum;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::SVD_Inverse
|
|
|
|
Calculates the inverse of the matrix which is factored in-place as: U * Diag(w) * V.Transpose()
|
|
============
|
|
*/
|
|
void idMatX::SVD_Inverse( idMatX &inv, const idVecX &w, const idMatX &V ) const {
|
|
int i, j, k;
|
|
double wi, sum;
|
|
idMatX V2;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
V2 = V;
|
|
|
|
// V * [diag(1/w[i])]
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
wi = w[i];
|
|
wi = ( wi < idMath::FLT_EPSILON ) ? 0.0f : 1.0f / wi;
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
V2[j][i] *= wi;
|
|
}
|
|
}
|
|
|
|
// V * [diag(1/w[i])] * Ut
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
sum = V2[i][0] * (*this)[j][0];
|
|
for ( k = 1; k < numColumns; k++ ) {
|
|
sum += V2[i][k] * (*this)[j][k];
|
|
}
|
|
inv[i][j] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::SVD_MultiplyFactors
|
|
|
|
Multiplies the factors of the in-place SVD factorization to form the original matrix.
|
|
============
|
|
*/
|
|
void idMatX::SVD_MultiplyFactors( idMatX &m, const idVecX &w, const idMatX &V ) const {
|
|
int r, i, j;
|
|
double sum;
|
|
|
|
m.SetSize( numRows, V.GetNumRows() );
|
|
|
|
for ( r = 0; r < numRows; r++ ) {
|
|
// calculate row of matrix
|
|
if ( w[r] >= idMath::FLT_EPSILON ) {
|
|
for ( i = 0; i < V.GetNumRows(); i++ ) {
|
|
sum = 0.0f;
|
|
for ( j = 0; j < numColumns; j++ ) {
|
|
sum += (*this)[r][j] * V[i][j];
|
|
}
|
|
m[r][i] = sum * w[r];
|
|
}
|
|
} else {
|
|
for ( i = 0; i < V.GetNumRows(); i++ ) {
|
|
m[r][i] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_Factor
|
|
|
|
in-place Cholesky factorization: LL'
|
|
L is a triangular matrix stored in the lower triangle.
|
|
The upper triangle is not cleared.
|
|
The initial matrix has to be symmetric positive definite.
|
|
============
|
|
*/
|
|
bool idMatX::Cholesky_Factor( void ) {
|
|
int i, j, k;
|
|
float *invSqrt;
|
|
double sum;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
invSqrt = (float *) _alloca16( numRows * sizeof( float ) );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
for ( j = 0; j < i; j++ ) {
|
|
|
|
sum = (*this)[i][j];
|
|
for ( k = 0; k < j; k++ ) {
|
|
sum -= (*this)[i][k] * (*this)[j][k];
|
|
}
|
|
(*this)[i][j] = sum * invSqrt[j];
|
|
}
|
|
|
|
sum = (*this)[i][i];
|
|
for ( k = 0; k < i; k++ ) {
|
|
sum -= (*this)[i][k] * (*this)[i][k];
|
|
}
|
|
|
|
if ( sum <= 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
invSqrt[i] = idMath::InvSqrt( sum );
|
|
(*this)[i][i] = invSqrt[i] * sum;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_UpdateRankOne
|
|
|
|
Updates the in-place Cholesky factorization to obtain the factors for the matrix: LL' + alpha * v * v'
|
|
If offset > 0 only the lower right corner starting at (offset, offset) is updated.
|
|
============
|
|
*/
|
|
bool idMatX::Cholesky_UpdateRankOne( const idVecX &v, float alpha, int offset ) {
|
|
int i, j;
|
|
float *y;
|
|
double diag, invDiag, diagSqr, newDiag, newDiagSqr, beta, p, d;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( offset >= 0 && offset < numRows );
|
|
|
|
y = (float *) _alloca16( v.GetSize() * sizeof( float ) );
|
|
memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) );
|
|
|
|
for ( i = offset; i < numColumns; i++ ) {
|
|
p = y[i];
|
|
diag = (*this)[i][i];
|
|
invDiag = 1.0f / diag;
|
|
diagSqr = diag * diag;
|
|
newDiagSqr = diagSqr + alpha * p * p;
|
|
|
|
if ( newDiagSqr <= 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
(*this)[i][i] = newDiag = idMath::Sqrt( newDiagSqr );
|
|
|
|
alpha /= newDiagSqr;
|
|
beta = p * alpha;
|
|
alpha *= diagSqr;
|
|
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
|
|
d = (*this)[j][i] * invDiag;
|
|
|
|
y[j] -= p * d;
|
|
d += beta * y[j];
|
|
|
|
(*this)[j][i] = d * newDiag;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_UpdateRowColumn
|
|
|
|
Updates the in-place Cholesky factorization to obtain the factors for the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
LL' + [ a b c ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1]
|
|
============
|
|
*/
|
|
bool idMatX::Cholesky_UpdateRowColumn( const idVecX &v, int r ) {
|
|
int i, j;
|
|
double sum;
|
|
float *original;
|
|
idVecX addSub;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows );
|
|
|
|
addSub.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
|
|
|
|
if ( r == 0 ) {
|
|
|
|
if ( numColumns == 1 ) {
|
|
double v0 = v[0];
|
|
sum = (*this)[0][0];
|
|
sum = sum * sum;
|
|
sum = sum + v0;
|
|
if ( sum <= 0.0f ) {
|
|
return false;
|
|
}
|
|
(*this)[0][0] = idMath::Sqrt( sum );
|
|
return true;
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
addSub[i] = v[i];
|
|
}
|
|
|
|
} else {
|
|
|
|
original = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
|
|
// calculate original row/column of matrix
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
sum = 0.0f;
|
|
for ( j = 0; j <= i; j++ ) {
|
|
sum += (*this)[r][j] * (*this)[i][j];
|
|
}
|
|
original[i] = sum;
|
|
}
|
|
|
|
// solve for y in L * y = original + v
|
|
for ( i = 0; i < r; i++ ) {
|
|
sum = original[i] + v[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[r][j] * (*this)[i][j];
|
|
}
|
|
(*this)[r][i] = sum / (*this)[i][i];
|
|
}
|
|
|
|
// if the last row/column of the matrix is updated
|
|
if ( r == numColumns - 1 ) {
|
|
// only calculate new diagonal
|
|
sum = original[r] + v[r];
|
|
for ( j = 0; j < r; j++) {
|
|
sum -= (*this)[r][j] * (*this)[r][j];
|
|
}
|
|
if ( sum <= 0.0f ) {
|
|
return false;
|
|
}
|
|
(*this)[r][r] = idMath::Sqrt( sum );
|
|
return true;
|
|
}
|
|
|
|
// calculate the row/column to be added to the lower right sub matrix starting at (r, r)
|
|
for ( i = r; i < numColumns; i++ ) {
|
|
sum = 0.0f;
|
|
for ( j = 0; j <= r; j++ ) {
|
|
sum += (*this)[r][j] * (*this)[i][j];
|
|
}
|
|
addSub[i] = v[i] - ( sum - original[i] );
|
|
}
|
|
}
|
|
|
|
// add row/column to the lower right sub matrix starting at (r, r)
|
|
|
|
#if 0
|
|
|
|
idVecX v1, v2;
|
|
double d;
|
|
|
|
v1.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
|
|
v2.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
|
|
|
|
d = idMath::SQRT_1OVER2;
|
|
v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
|
|
v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
|
|
for ( i = r+1; i < numColumns; i++ ) {
|
|
v1[i] = v2[i] = addSub[i] * d;
|
|
}
|
|
|
|
// update
|
|
if ( !Cholesky_UpdateRankOne( v1, 1.0f, r ) ) {
|
|
return false;
|
|
}
|
|
// downdate
|
|
if ( !Cholesky_UpdateRankOne( v2, -1.0f, r ) ) {
|
|
return false;
|
|
}
|
|
|
|
#else
|
|
|
|
float *v1, *v2;
|
|
double diag, invDiag, diagSqr, newDiag, newDiagSqr;
|
|
double alpha1, alpha2, beta1, beta2, p1, p2, d;
|
|
|
|
v1 = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
v2 = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
|
|
d = idMath::SQRT_1OVER2;
|
|
v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
|
|
v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
|
|
for ( i = r+1; i < numColumns; i++ ) {
|
|
v1[i] = v2[i] = addSub[i] * d;
|
|
}
|
|
|
|
alpha1 = 1.0f;
|
|
alpha2 = -1.0f;
|
|
|
|
// simultaneous update/downdate of the sub matrix starting at (r, r)
|
|
for ( i = r; i < numColumns; i++ ) {
|
|
p1 = v1[i];
|
|
diag = (*this)[i][i];
|
|
invDiag = 1.0f / diag;
|
|
diagSqr = diag * diag;
|
|
newDiagSqr = diagSqr + alpha1 * p1 * p1;
|
|
|
|
if ( newDiagSqr <= 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
alpha1 /= newDiagSqr;
|
|
beta1 = p1 * alpha1;
|
|
alpha1 *= diagSqr;
|
|
|
|
p2 = v2[i];
|
|
diagSqr = newDiagSqr;
|
|
newDiagSqr = diagSqr + alpha2 * p2 * p2;
|
|
|
|
if ( newDiagSqr <= 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
(*this)[i][i] = newDiag = idMath::Sqrt( newDiagSqr );
|
|
|
|
alpha2 /= newDiagSqr;
|
|
beta2 = p2 * alpha2;
|
|
alpha2 *= diagSqr;
|
|
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
|
|
d = (*this)[j][i] * invDiag;
|
|
|
|
v1[j] -= p1 * d;
|
|
d += beta1 * v1[j];
|
|
|
|
v2[j] -= p2 * d;
|
|
d += beta2 * v2[j];
|
|
|
|
(*this)[j][i] = d * newDiag;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_UpdateIncrement
|
|
|
|
Updates the in-place Cholesky factorization to obtain the factors for the matrix:
|
|
|
|
[ A a ]
|
|
[ a b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows]
|
|
============
|
|
*/
|
|
bool idMatX::Cholesky_UpdateIncrement( const idVecX &v ) {
|
|
int i, j;
|
|
float *x;
|
|
double sum;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, false );
|
|
|
|
x = (float *) _alloca16( numRows * sizeof( float ) );
|
|
|
|
// solve for x in L * x = v
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
sum = v[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum / (*this)[i][i];
|
|
}
|
|
|
|
// calculate new row of L and calculate the square of the diagonal entry
|
|
sum = v[numRows - 1];
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
(*this)[numRows - 1][i] = x[i];
|
|
sum -= x[i] * x[i];
|
|
}
|
|
|
|
if ( sum <= 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
// store the diagonal entry
|
|
(*this)[numRows - 1][numRows - 1] = idMath::Sqrt( sum );
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_UpdateDecrement
|
|
|
|
Updates the in-place Cholesky factorization to obtain the factors for the matrix with row r and column r removed.
|
|
v should store the row of the original matrix.
|
|
============
|
|
*/
|
|
bool idMatX::Cholesky_UpdateDecrement( const idVecX &v, int r ) {
|
|
idVecX v1;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows );
|
|
|
|
v1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
// update the row and column to identity
|
|
v1 = -v;
|
|
v1[r] += 1.0f;
|
|
|
|
// NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay
|
|
// untouched when calling Cholesky_UpdateRowColumn in the if statement
|
|
#if 0
|
|
if ( !Cholesky_UpdateRowColumn( v1, r ) ) {
|
|
#else
|
|
bool ret = Cholesky_UpdateRowColumn( v1, r );
|
|
if ( !ret ) {
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// physically remove the row and column
|
|
Update_Decrement( r );
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_Solve
|
|
|
|
Solve Ax = b with A factored in-place as: LL'
|
|
============
|
|
*/
|
|
void idMatX::Cholesky_Solve( idVecX &x, const idVecX &b ) const {
|
|
int i, j;
|
|
double sum;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
|
|
|
|
// solve L
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
sum = b[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum / (*this)[i][i];
|
|
}
|
|
|
|
// solve Lt
|
|
for ( i = numRows - 1; i >= 0; i-- ) {
|
|
sum = x[i];
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
sum -= (*this)[j][i] * x[j];
|
|
}
|
|
x[i] = sum / (*this)[i][i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_Inverse
|
|
|
|
Calculates the inverse of the matrix which is factored in-place as: LL'
|
|
============
|
|
*/
|
|
void idMatX::Cholesky_Inverse( idMatX &inv ) const {
|
|
int i, j;
|
|
idVecX x, b;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
x.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.Zero();
|
|
inv.SetSize( numRows, numColumns );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
b[i] = 1.0f;
|
|
Cholesky_Solve( x, b );
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
inv[j][i] = x[j];
|
|
}
|
|
b[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Cholesky_MultiplyFactors
|
|
|
|
Multiplies the factors of the in-place Cholesky factorization to form the original matrix.
|
|
============
|
|
*/
|
|
void idMatX::Cholesky_MultiplyFactors( idMatX &m ) const {
|
|
int r, i, j;
|
|
double sum;
|
|
|
|
m.SetSize( numRows, numColumns );
|
|
|
|
for ( r = 0; r < numRows; r++ ) {
|
|
|
|
// calculate row of matrix
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
sum = 0.0f;
|
|
for ( j = 0; j <= i && j <= r; j++ ) {
|
|
sum += (*this)[r][j] * (*this)[i][j];
|
|
}
|
|
m[r][i] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_Factor
|
|
|
|
in-place factorization: LDL'
|
|
L is a triangular matrix stored in the lower triangle.
|
|
L has ones on the diagonal that are not stored.
|
|
D is a diagonal matrix stored on the diagonal.
|
|
The upper triangle is not cleared.
|
|
The initial matrix has to be symmetric.
|
|
============
|
|
*/
|
|
bool idMatX::LDLT_Factor( void ) {
|
|
int i, j, k;
|
|
float *v;
|
|
double d, sum;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
v = (float *) _alloca16( numRows * sizeof( float ) );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
sum = (*this)[i][i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
d = (*this)[i][j];
|
|
v[j] = (*this)[j][j] * d;
|
|
sum -= v[j] * d;
|
|
}
|
|
|
|
if ( sum == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
(*this)[i][i] = sum;
|
|
d = 1.0f / sum;
|
|
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
sum = (*this)[j][i];
|
|
for ( k = 0; k < i; k++ ) {
|
|
sum -= (*this)[j][k] * v[k];
|
|
}
|
|
(*this)[j][i] = sum * d;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_UpdateRankOne
|
|
|
|
Updates the in-place LDL' factorization to obtain the factors for the matrix: LDL' + alpha * v * v'
|
|
If offset > 0 only the lower right corner starting at (offset, offset) is updated.
|
|
============
|
|
*/
|
|
bool idMatX::LDLT_UpdateRankOne( const idVecX &v, float alpha, int offset ) {
|
|
int i, j;
|
|
float *y;
|
|
double diag, newDiag, beta, p, d;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( offset >= 0 && offset < numRows );
|
|
|
|
y = (float *) _alloca16( v.GetSize() * sizeof( float ) );
|
|
memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) );
|
|
|
|
for ( i = offset; i < numColumns; i++ ) {
|
|
p = y[i];
|
|
diag = (*this)[i][i];
|
|
(*this)[i][i] = newDiag = diag + alpha * p * p;
|
|
|
|
if ( newDiag == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
alpha /= newDiag;
|
|
beta = p * alpha;
|
|
alpha *= diag;
|
|
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
|
|
d = (*this)[j][i];
|
|
|
|
y[j] -= p * d;
|
|
d += beta * y[j];
|
|
|
|
(*this)[j][i] = d;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_UpdateRowColumn
|
|
|
|
Updates the in-place LDL' factorization to obtain the factors for the matrix:
|
|
|
|
[ 0 a 0 ]
|
|
LDL' + [ a b c ]
|
|
[ 0 c 0 ]
|
|
|
|
where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1]
|
|
============
|
|
*/
|
|
bool idMatX::LDLT_UpdateRowColumn( const idVecX &v, int r ) {
|
|
int i, j;
|
|
double sum;
|
|
float *original, *y;
|
|
idVecX addSub;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows );
|
|
|
|
addSub.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
|
|
|
|
if ( r == 0 ) {
|
|
|
|
if ( numColumns == 1 ) {
|
|
(*this)[0][0] += v[0];
|
|
return true;
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
addSub[i] = v[i];
|
|
}
|
|
|
|
} else {
|
|
|
|
original = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
y = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
|
|
// calculate original row/column of matrix
|
|
for ( i = 0; i < r; i++ ) {
|
|
y[i] = (*this)[r][i] * (*this)[i][i];
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
if ( i < r ) {
|
|
sum = (*this)[i][i] * (*this)[r][i];
|
|
} else if ( i == r ) {
|
|
sum = (*this)[r][r];
|
|
} else {
|
|
sum = (*this)[r][r] * (*this)[i][r];
|
|
}
|
|
for ( j = 0; j < i && j < r; j++ ) {
|
|
sum += (*this)[i][j] * y[j];
|
|
}
|
|
original[i] = sum;
|
|
}
|
|
|
|
// solve for y in L * y = original + v
|
|
for ( i = 0; i < r; i++ ) {
|
|
sum = original[i] + v[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * y[j];
|
|
}
|
|
y[i] = sum;
|
|
}
|
|
|
|
// calculate new row of L
|
|
for ( i = 0; i < r; i++ ) {
|
|
(*this)[r][i] = y[i] / (*this)[i][i];
|
|
}
|
|
|
|
// if the last row/column of the matrix is updated
|
|
if ( r == numColumns - 1 ) {
|
|
// only calculate new diagonal
|
|
sum = original[r] + v[r];
|
|
for ( j = 0; j < r; j++ ) {
|
|
sum -= (*this)[r][j] * y[j];
|
|
}
|
|
if ( sum == 0.0f ) {
|
|
return false;
|
|
}
|
|
(*this)[r][r] = sum;
|
|
return true;
|
|
}
|
|
|
|
// calculate the row/column to be added to the lower right sub matrix starting at (r, r)
|
|
for ( i = 0; i < r; i++ ) {
|
|
y[i] = (*this)[r][i] * (*this)[i][i];
|
|
}
|
|
for ( i = r; i < numColumns; i++ ) {
|
|
if ( i == r ) {
|
|
sum = (*this)[r][r];
|
|
} else {
|
|
sum = (*this)[r][r] * (*this)[i][r];
|
|
}
|
|
for ( j = 0; j < r; j++ ) {
|
|
sum += (*this)[i][j] * y[j];
|
|
}
|
|
addSub[i] = v[i] - ( sum - original[i] );
|
|
}
|
|
}
|
|
|
|
// add row/column to the lower right sub matrix starting at (r, r)
|
|
|
|
#if 0
|
|
|
|
idVecX v1, v2;
|
|
double d;
|
|
|
|
v1.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
|
|
v2.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
|
|
|
|
d = idMath::SQRT_1OVER2;
|
|
v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
|
|
v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
|
|
for ( i = r+1; i < numColumns; i++ ) {
|
|
v1[i] = v2[i] = addSub[i] * d;
|
|
}
|
|
|
|
// update
|
|
if ( !LDLT_UpdateRankOne( v1, 1.0f, r ) ) {
|
|
return false;
|
|
}
|
|
// downdate
|
|
if ( !LDLT_UpdateRankOne( v2, -1.0f, r ) ) {
|
|
return false;
|
|
}
|
|
|
|
#else
|
|
|
|
float *v1, *v2;
|
|
double d, diag, newDiag, p1, p2, alpha1, alpha2, beta1, beta2;
|
|
|
|
v1 = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
v2 = (float *) _alloca16( numColumns * sizeof( float ) );
|
|
|
|
d = idMath::SQRT_1OVER2;
|
|
v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
|
|
v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
|
|
for ( i = r+1; i < numColumns; i++ ) {
|
|
v1[i] = v2[i] = addSub[i] * d;
|
|
}
|
|
|
|
alpha1 = 1.0f;
|
|
alpha2 = -1.0f;
|
|
|
|
// simultaneous update/downdate of the sub matrix starting at (r, r)
|
|
for ( i = r; i < numColumns; i++ ) {
|
|
|
|
diag = (*this)[i][i];
|
|
p1 = v1[i];
|
|
newDiag = diag + alpha1 * p1 * p1;
|
|
|
|
if ( newDiag == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
alpha1 /= newDiag;
|
|
beta1 = p1 * alpha1;
|
|
alpha1 *= diag;
|
|
|
|
diag = newDiag;
|
|
p2 = v2[i];
|
|
newDiag = diag + alpha2 * p2 * p2;
|
|
|
|
if ( newDiag == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
alpha2 /= newDiag;
|
|
beta2 = p2 * alpha2;
|
|
alpha2 *= diag;
|
|
|
|
(*this)[i][i] = newDiag;
|
|
|
|
for ( j = i+1; j < numRows; j++ ) {
|
|
|
|
d = (*this)[j][i];
|
|
|
|
v1[j] -= p1 * d;
|
|
d += beta1 * v1[j];
|
|
|
|
v2[j] -= p2 * d;
|
|
d += beta2 * v2[j];
|
|
|
|
(*this)[j][i] = d;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_UpdateIncrement
|
|
|
|
Updates the in-place LDL' factorization to obtain the factors for the matrix:
|
|
|
|
[ A a ]
|
|
[ a b ]
|
|
|
|
where: a = v[0,numRows-1], b = v[numRows]
|
|
============
|
|
*/
|
|
bool idMatX::LDLT_UpdateIncrement( const idVecX &v ) {
|
|
int i, j;
|
|
float *x;
|
|
double sum, d;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows+1 );
|
|
|
|
ChangeSize( numRows+1, numColumns+1, false );
|
|
|
|
x = (float *) _alloca16( numRows * sizeof( float ) );
|
|
|
|
// solve for x in L * x = v
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
sum = v[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum;
|
|
}
|
|
|
|
// calculate new row of L and calculate the diagonal entry
|
|
sum = v[numRows - 1];
|
|
for ( i = 0; i < numRows - 1; i++ ) {
|
|
(*this)[numRows - 1][i] = d = x[i] / (*this)[i][i];
|
|
sum -= d * x[i];
|
|
}
|
|
|
|
if ( sum == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
// store the diagonal entry
|
|
(*this)[numRows - 1][numRows - 1] = sum;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_UpdateDecrement
|
|
|
|
Updates the in-place LDL' factorization to obtain the factors for the matrix with row r and column r removed.
|
|
v should store the row of the original matrix.
|
|
============
|
|
*/
|
|
bool idMatX::LDLT_UpdateDecrement( const idVecX &v, int r ) {
|
|
idVecX v1;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( v.GetSize() >= numRows );
|
|
assert( r >= 0 && r < numRows );
|
|
|
|
v1.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
// update the row and column to identity
|
|
v1 = -v;
|
|
v1[r] += 1.0f;
|
|
|
|
// NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay
|
|
// untouched when calling LDLT_UpdateRowColumn in the if statement
|
|
#if 0
|
|
if ( !LDLT_UpdateRowColumn( v1, r ) ) {
|
|
#else
|
|
bool ret = LDLT_UpdateRowColumn( v1, r );
|
|
if ( !ret ) {
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// physically remove the row and column
|
|
Update_Decrement( r );
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_Solve
|
|
|
|
Solve Ax = b with A factored in-place as: LDL'
|
|
============
|
|
*/
|
|
void idMatX::LDLT_Solve( idVecX &x, const idVecX &b ) const {
|
|
int i, j;
|
|
double sum;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
|
|
|
|
// solve L
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
sum = b[i];
|
|
for ( j = 0; j < i; j++ ) {
|
|
sum -= (*this)[i][j] * x[j];
|
|
}
|
|
x[i] = sum;
|
|
}
|
|
|
|
// solve D
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
x[i] /= (*this)[i][i];
|
|
}
|
|
|
|
// solve Lt
|
|
for ( i = numRows - 2; i >= 0; i-- ) {
|
|
sum = x[i];
|
|
for ( j = i + 1; j < numRows; j++ ) {
|
|
sum -= (*this)[j][i] * x[j];
|
|
}
|
|
x[i] = sum;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_Inverse
|
|
|
|
Calculates the inverse of the matrix which is factored in-place as: LDL'
|
|
============
|
|
*/
|
|
void idMatX::LDLT_Inverse( idMatX &inv ) const {
|
|
int i, j;
|
|
idVecX x, b;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
x.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.Zero();
|
|
inv.SetSize( numRows, numColumns );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
b[i] = 1.0f;
|
|
LDLT_Solve( x, b );
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
inv[j][i] = x[j];
|
|
}
|
|
b[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_UnpackFactors
|
|
|
|
Unpacks the in-place LDL' factorization.
|
|
============
|
|
*/
|
|
void idMatX::LDLT_UnpackFactors( idMatX &L, idMatX &D ) const {
|
|
int i, j;
|
|
|
|
L.Zero( numRows, numColumns );
|
|
D.Zero( numRows, numColumns );
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
for ( j = 0; j < i; j++ ) {
|
|
L[i][j] = (*this)[i][j];
|
|
}
|
|
L[i][i] = 1.0f;
|
|
D[i][i] = (*this)[i][i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::LDLT_MultiplyFactors
|
|
|
|
Multiplies the factors of the in-place LDL' factorization to form the original matrix.
|
|
============
|
|
*/
|
|
void idMatX::LDLT_MultiplyFactors( idMatX &m ) const {
|
|
int r, i, j;
|
|
float *v;
|
|
double sum;
|
|
|
|
v = (float *) _alloca16( numRows * sizeof( float ) );
|
|
m.SetSize( numRows, numColumns );
|
|
|
|
for ( r = 0; r < numRows; r++ ) {
|
|
|
|
// calculate row of matrix
|
|
for ( i = 0; i < r; i++ ) {
|
|
v[i] = (*this)[r][i] * (*this)[i][i];
|
|
}
|
|
for ( i = 0; i < numColumns; i++ ) {
|
|
if ( i < r ) {
|
|
sum = (*this)[i][i] * (*this)[r][i];
|
|
} else if ( i == r ) {
|
|
sum = (*this)[r][r];
|
|
} else {
|
|
sum = (*this)[r][r] * (*this)[i][r];
|
|
}
|
|
for ( j = 0; j < i && j < r; j++ ) {
|
|
sum += (*this)[i][j] * v[j];
|
|
}
|
|
m[r][i] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::TriDiagonal_ClearTriangles
|
|
============
|
|
*/
|
|
void idMatX::TriDiagonal_ClearTriangles( void ) {
|
|
int i, j;
|
|
|
|
assert( numRows == numColumns );
|
|
for ( i = 0; i < numRows-2; i++ ) {
|
|
for ( j = i+2; j < numColumns; j++ ) {
|
|
(*this)[i][j] = 0.0f;
|
|
(*this)[j][i] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::TriDiagonal_Solve
|
|
|
|
Solve Ax = b with A being tridiagonal.
|
|
============
|
|
*/
|
|
bool idMatX::TriDiagonal_Solve( idVecX &x, const idVecX &b ) const {
|
|
int i;
|
|
float d;
|
|
idVecX tmp;
|
|
|
|
assert( numRows == numColumns );
|
|
assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
|
|
|
|
tmp.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
d = (*this)[0][0];
|
|
if ( d == 0.0f ) {
|
|
return false;
|
|
}
|
|
d = 1.0f / d;
|
|
x[0] = b[0] * d;
|
|
for ( i = 1; i < numRows; i++ ) {
|
|
tmp[i] = (*this)[i-1][i] * d;
|
|
d = (*this)[i][i] - (*this)[i][i-1] * tmp[i];
|
|
if ( d == 0.0f ) {
|
|
return false;
|
|
}
|
|
d = 1.0f / d;
|
|
x[i] = ( b[i] - (*this)[i][i-1] * x[i-1] ) * d;
|
|
}
|
|
for ( i = numRows - 2; i >= 0; i-- ) {
|
|
x[i] -= tmp[i+1] * x[i+1];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::TriDiagonal_Inverse
|
|
|
|
Calculates the inverse of a tri-diagonal matrix.
|
|
============
|
|
*/
|
|
void idMatX::TriDiagonal_Inverse( idMatX &inv ) const {
|
|
int i, j;
|
|
idVecX x, b;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
x.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.Zero();
|
|
inv.SetSize( numRows, numColumns );
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
b[i] = 1.0f;
|
|
TriDiagonal_Solve( x, b );
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
inv[j][i] = x[j];
|
|
}
|
|
b[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::HouseholderReduction
|
|
|
|
Householder reduction to symmetric tri-diagonal form.
|
|
The original matrix is replaced by an orthogonal matrix effecting the accumulated householder transformations.
|
|
The diagonal elements of the diagonal matrix are stored in diag.
|
|
The off-diagonal elements of the diagonal matrix are stored in subd.
|
|
The initial matrix has to be symmetric.
|
|
============
|
|
*/
|
|
void idMatX::HouseholderReduction( idVecX &diag, idVecX &subd ) {
|
|
int i0, i1, i2, i3;
|
|
float h, f, g, invH, halfFdivH, scale, invScale, sum;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
diag.SetSize( numRows );
|
|
subd.SetSize( numRows );
|
|
|
|
for ( i0 = numRows-1, i3 = numRows-2; i0 >= 1; i0--, i3-- ) {
|
|
h = 0.0f;
|
|
scale = 0.0f;
|
|
|
|
if ( i3 > 0 ) {
|
|
for ( i2 = 0; i2 <= i3; i2++ ) {
|
|
scale += idMath::Fabs( (*this)[i0][i2] );
|
|
}
|
|
if ( scale == 0 ) {
|
|
subd[i0] = (*this)[i0][i3];
|
|
} else {
|
|
invScale = 1.0f / scale;
|
|
for (i2 = 0; i2 <= i3; i2++)
|
|
{
|
|
(*this)[i0][i2] *= invScale;
|
|
h += (*this)[i0][i2] * (*this)[i0][i2];
|
|
}
|
|
f = (*this)[i0][i3];
|
|
g = idMath::Sqrt( h );
|
|
if ( f > 0.0f ) {
|
|
g = -g;
|
|
}
|
|
subd[i0] = scale * g;
|
|
h -= f * g;
|
|
(*this)[i0][i3] = f - g;
|
|
f = 0.0f;
|
|
invH = 1.0f / h;
|
|
for (i1 = 0; i1 <= i3; i1++) {
|
|
(*this)[i1][i0] = (*this)[i0][i1] * invH;
|
|
g = 0.0f;
|
|
for (i2 = 0; i2 <= i1; i2++) {
|
|
g += (*this)[i1][i2] * (*this)[i0][i2];
|
|
}
|
|
for (i2 = i1+1; i2 <= i3; i2++) {
|
|
g += (*this)[i2][i1] * (*this)[i0][i2];
|
|
}
|
|
subd[i1] = g * invH;
|
|
f += subd[i1] * (*this)[i0][i1];
|
|
}
|
|
halfFdivH = 0.5f * f * invH;
|
|
for ( i1 = 0; i1 <= i3; i1++ ) {
|
|
f = (*this)[i0][i1];
|
|
g = subd[i1] - halfFdivH * f;
|
|
subd[i1] = g;
|
|
for ( i2 = 0; i2 <= i1; i2++ ) {
|
|
(*this)[i1][i2] -= f * subd[i2] + g * (*this)[i0][i2];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
subd[i0] = (*this)[i0][i3];
|
|
}
|
|
|
|
diag[i0] = h;
|
|
}
|
|
|
|
diag[0] = 0.0f;
|
|
subd[0] = 0.0f;
|
|
for ( i0 = 0, i3 = -1; i0 <= numRows-1; i0++, i3++ ) {
|
|
if ( diag[i0] ) {
|
|
for ( i1 = 0; i1 <= i3; i1++ ) {
|
|
sum = 0.0f;
|
|
for (i2 = 0; i2 <= i3; i2++) {
|
|
sum += (*this)[i0][i2] * (*this)[i2][i1];
|
|
}
|
|
for ( i2 = 0; i2 <= i3; i2++ ) {
|
|
(*this)[i2][i1] -= sum * (*this)[i2][i0];
|
|
}
|
|
}
|
|
}
|
|
diag[i0] = (*this)[i0][i0];
|
|
(*this)[i0][i0] = 1.0f;
|
|
for ( i1 = 0; i1 <= i3; i1++ ) {
|
|
(*this)[i1][i0] = 0.0f;
|
|
(*this)[i0][i1] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// re-order
|
|
for ( i0 = 1, i3 = 0; i0 < numRows; i0++, i3++ ) {
|
|
subd[i3] = subd[i0];
|
|
}
|
|
subd[numRows-1] = 0.0f;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::QL
|
|
|
|
QL algorithm with implicit shifts to determine the eigenvalues and eigenvectors of a symmetric tri-diagonal matrix.
|
|
diag contains the diagonal elements of the symmetric tri-diagonal matrix on input and is overwritten with the eigenvalues.
|
|
subd contains the off-diagonal elements of the symmetric tri-diagonal matrix and is destroyed.
|
|
This matrix has to be either the identity matrix to determine the eigenvectors for a symmetric tri-diagonal matrix,
|
|
or the matrix returned by the Householder reduction to determine the eigenvalues for the original symmetric matrix.
|
|
============
|
|
*/
|
|
bool idMatX::QL( idVecX &diag, idVecX &subd ) {
|
|
const int maxIter = 32;
|
|
int i0, i1, i2, i3;
|
|
float a, b, f, g, r, p, s, c;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
for ( i0 = 0; i0 < numRows; i0++ ) {
|
|
for ( i1 = 0; i1 < maxIter; i1++ ) {
|
|
for ( i2 = i0; i2 <= numRows - 2; i2++ ) {
|
|
a = idMath::Fabs( diag[i2] ) + idMath::Fabs( diag[i2+1] );
|
|
if ( idMath::Fabs( subd[i2] ) + a == a ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( i2 == i0 ) {
|
|
break;
|
|
}
|
|
|
|
g = ( diag[i0+1] - diag[i0] ) / ( 2.0f * subd[i0] );
|
|
r = idMath::Sqrt( g * g + 1.0f );
|
|
if ( g < 0.0f ) {
|
|
g = diag[i2] - diag[i0] + subd[i0] / ( g - r );
|
|
} else {
|
|
g = diag[i2] - diag[i0] + subd[i0] / ( g + r );
|
|
}
|
|
s = 1.0f;
|
|
c = 1.0f;
|
|
p = 0.0f;
|
|
for ( i3 = i2 - 1; i3 >= i0; i3-- ) {
|
|
f = s * subd[i3];
|
|
b = c * subd[i3];
|
|
if ( idMath::Fabs( f ) >= idMath::Fabs( g ) ) {
|
|
c = g / f;
|
|
r = idMath::Sqrt( c * c + 1.0f );
|
|
subd[i3+1] = f * r;
|
|
s = 1.0f / r;
|
|
c *= s;
|
|
} else {
|
|
s = f / g;
|
|
r = idMath::Sqrt( s * s + 1.0f );
|
|
subd[i3+1] = g * r;
|
|
c = 1.0f / r;
|
|
s *= c;
|
|
}
|
|
g = diag[i3+1] - p;
|
|
r = ( diag[i3] - g ) * s + 2.0f * b * c;
|
|
p = s * r;
|
|
diag[i3+1] = g + p;
|
|
g = c * r - b;
|
|
|
|
for ( int i4 = 0; i4 < numRows; i4++ ) {
|
|
f = (*this)[i4][i3+1];
|
|
(*this)[i4][i3+1] = s * (*this)[i4][i3] + c * f;
|
|
(*this)[i4][i3] = c * (*this)[i4][i3] - s * f;
|
|
}
|
|
}
|
|
diag[i0] -= p;
|
|
subd[i0] = g;
|
|
subd[i2] = 0.0f;
|
|
}
|
|
if ( i1 == maxIter ) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Eigen_SolveSymmetricTriDiagonal
|
|
|
|
Determine eigen values and eigen vectors for a symmetric tri-diagonal matrix.
|
|
The eigen values are stored in 'eigenValues'.
|
|
Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i].
|
|
The initial matrix has to be symmetric tri-diagonal.
|
|
============
|
|
*/
|
|
bool idMatX::Eigen_SolveSymmetricTriDiagonal( idVecX &eigenValues ) {
|
|
int i;
|
|
idVecX subd;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
subd.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
eigenValues.SetSize( numRows );
|
|
|
|
for ( i = 0; i < numRows-1; i++ ) {
|
|
eigenValues[i] = (*this)[i][i];
|
|
subd[i] = (*this)[i+1][i];
|
|
}
|
|
eigenValues[numRows-1] = (*this)[numRows-1][numRows-1];
|
|
|
|
Identity();
|
|
|
|
return QL( eigenValues, subd );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Eigen_SolveSymmetric
|
|
|
|
Determine eigen values and eigen vectors for a symmetric matrix.
|
|
The eigen values are stored in 'eigenValues'.
|
|
Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i].
|
|
The initial matrix has to be symmetric.
|
|
============
|
|
*/
|
|
bool idMatX::Eigen_SolveSymmetric( idVecX &eigenValues ) {
|
|
idVecX subd;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
subd.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
eigenValues.SetSize( numRows );
|
|
|
|
HouseholderReduction( eigenValues, subd );
|
|
return QL( eigenValues, subd );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::HessenbergReduction
|
|
|
|
Reduction to Hessenberg form.
|
|
============
|
|
*/
|
|
void idMatX::HessenbergReduction( idMatX &H ) {
|
|
int i, j, m;
|
|
int low = 0;
|
|
int high = numRows - 1;
|
|
float scale, f, g, h;
|
|
idVecX v;
|
|
|
|
v.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
|
|
for ( m = low + 1; m <= high - 1; m++ ) {
|
|
|
|
scale = 0.0f;
|
|
for ( i = m; i <= high; i++ ) {
|
|
scale = scale + idMath::Fabs( H[i][m-1] );
|
|
}
|
|
if ( scale != 0.0f ) {
|
|
|
|
// compute Householder transformation.
|
|
h = 0.0f;
|
|
for ( i = high; i >= m; i-- ) {
|
|
v[i] = H[i][m-1] / scale;
|
|
h += v[i] * v[i];
|
|
}
|
|
g = idMath::Sqrt( h );
|
|
if ( v[m] > 0.0f ) {
|
|
g = -g;
|
|
}
|
|
h = h - v[m] * g;
|
|
v[m] = v[m] - g;
|
|
|
|
// apply Householder similarity transformation
|
|
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
|
for ( j = m; j < numRows; j++) {
|
|
f = 0.0f;
|
|
for ( i = high; i >= m; i-- ) {
|
|
f += v[i] * H[i][j];
|
|
}
|
|
f = f / h;
|
|
for ( i = m; i <= high; i++ ) {
|
|
H[i][j] -= f * v[i];
|
|
}
|
|
}
|
|
|
|
for ( i = 0; i <= high; i++ ) {
|
|
f = 0.0f;
|
|
for ( j = high; j >= m; j-- ) {
|
|
f += v[j] * H[i][j];
|
|
}
|
|
f = f / h;
|
|
for ( j = m; j <= high; j++ ) {
|
|
H[i][j] -= f * v[j];
|
|
}
|
|
}
|
|
v[m] = scale * v[m];
|
|
H[m][m-1] = scale * g;
|
|
}
|
|
}
|
|
|
|
// accumulate transformations
|
|
Identity();
|
|
for ( int m = high - 1; m >= low + 1; m-- ) {
|
|
if ( H[m][m-1] != 0.0f ) {
|
|
for ( i = m + 1; i <= high; i++ ) {
|
|
v[i] = H[i][m-1];
|
|
}
|
|
for ( j = m; j <= high; j++ ) {
|
|
g = 0.0f;
|
|
for ( i = m; i <= high; i++ ) {
|
|
g += v[i] * (*this)[i][j];
|
|
}
|
|
// float division to avoid possible underflow
|
|
g = ( g / v[m] ) / H[m][m-1];
|
|
for ( i = m; i <= high; i++ ) {
|
|
(*this)[i][j] += g * v[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::ComplexDivision
|
|
|
|
Complex scalar division.
|
|
============
|
|
*/
|
|
void idMatX::ComplexDivision( float xr, float xi, float yr, float yi, float &cdivr, float &cdivi ) {
|
|
float r, d;
|
|
if ( idMath::Fabs( yr ) > idMath::Fabs( yi ) ) {
|
|
r = yi / yr;
|
|
d = yr + r * yi;
|
|
cdivr = ( xr + r * xi ) / d;
|
|
cdivi = ( xi - r * xr ) / d;
|
|
} else {
|
|
r = yr / yi;
|
|
d = yi + r * yr;
|
|
cdivr = ( r * xr + xi ) / d;
|
|
cdivi = ( r * xi - xr ) / d;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::HessenbergToRealSchur
|
|
|
|
Reduction from Hessenberg to real Schur form.
|
|
============
|
|
*/
|
|
bool idMatX::HessenbergToRealSchur( idMatX &H, idVecX &realEigenValues, idVecX &imaginaryEigenValues ) {
|
|
int i, j, k;
|
|
int n = numRows - 1;
|
|
int low = 0;
|
|
int high = numRows - 1;
|
|
float eps = 2e-16f, exshift = 0.0f;
|
|
float p = 0.0f, q = 0.0f, r = 0.0f, s = 0.0f, z = 0.0f, t, w, x, y;
|
|
|
|
// store roots isolated by balanc and compute matrix norm
|
|
float norm = 0.0f;
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
if ( i < low || i > high ) {
|
|
realEigenValues[i] = H[i][i];
|
|
imaginaryEigenValues[i] = 0.0f;
|
|
}
|
|
for ( j = Max( i - 1, 0 ); j < numRows; j++ ) {
|
|
norm = norm + idMath::Fabs( H[i][j] );
|
|
}
|
|
}
|
|
|
|
int iter = 0;
|
|
while( n >= low ) {
|
|
|
|
// look for single small sub-diagonal element
|
|
int l = n;
|
|
while ( l > low ) {
|
|
s = idMath::Fabs( H[l-1][l-1] ) + idMath::Fabs( H[l][l] );
|
|
if ( s == 0.0f ) {
|
|
s = norm;
|
|
}
|
|
if ( idMath::Fabs( H[l][l-1] ) < eps * s ) {
|
|
break;
|
|
}
|
|
l--;
|
|
}
|
|
|
|
// check for convergence
|
|
if ( l == n ) { // one root found
|
|
H[n][n] = H[n][n] + exshift;
|
|
realEigenValues[n] = H[n][n];
|
|
imaginaryEigenValues[n] = 0.0f;
|
|
n--;
|
|
iter = 0;
|
|
} else if ( l == n-1 ) { // two roots found
|
|
w = H[n][n-1] * H[n-1][n];
|
|
p = ( H[n-1][n-1] - H[n][n] ) / 2.0f;
|
|
q = p * p + w;
|
|
z = idMath::Sqrt( idMath::Fabs( q ) );
|
|
H[n][n] = H[n][n] + exshift;
|
|
H[n-1][n-1] = H[n-1][n-1] + exshift;
|
|
x = H[n][n];
|
|
|
|
if ( q >= 0.0f ) { // real pair
|
|
if ( p >= 0.0f ) {
|
|
z = p + z;
|
|
} else {
|
|
z = p - z;
|
|
}
|
|
realEigenValues[n-1] = x + z;
|
|
realEigenValues[n] = realEigenValues[n-1];
|
|
if ( z != 0.0f ) {
|
|
realEigenValues[n] = x - w / z;
|
|
}
|
|
imaginaryEigenValues[n-1] = 0.0f;
|
|
imaginaryEigenValues[n] = 0.0f;
|
|
x = H[n][n-1];
|
|
s = idMath::Fabs( x ) + idMath::Fabs( z );
|
|
p = x / s;
|
|
q = z / s;
|
|
r = idMath::Sqrt( p * p + q * q );
|
|
p = p / r;
|
|
q = q / r;
|
|
|
|
// modify row
|
|
for ( j = n-1; j < numRows; j++ ) {
|
|
z = H[n-1][j];
|
|
H[n-1][j] = q * z + p * H[n][j];
|
|
H[n][j] = q * H[n][j] - p * z;
|
|
}
|
|
|
|
// modify column
|
|
for ( i = 0; i <= n; i++ ) {
|
|
z = H[i][n-1];
|
|
H[i][n-1] = q * z + p * H[i][n];
|
|
H[i][n] = q * H[i][n] - p * z;
|
|
}
|
|
|
|
// accumulate transformations
|
|
for ( i = low; i <= high; i++ ) {
|
|
z = (*this)[i][n-1];
|
|
(*this)[i][n-1] = q * z + p * (*this)[i][n];
|
|
(*this)[i][n] = q * (*this)[i][n] - p * z;
|
|
}
|
|
} else { // complex pair
|
|
realEigenValues[n-1] = x + p;
|
|
realEigenValues[n] = x + p;
|
|
imaginaryEigenValues[n-1] = z;
|
|
imaginaryEigenValues[n] = -z;
|
|
}
|
|
n = n - 2;
|
|
iter = 0;
|
|
|
|
} else { // no convergence yet
|
|
|
|
// form shift
|
|
x = H[n][n];
|
|
y = 0.0f;
|
|
w = 0.0f;
|
|
if ( l < n ) {
|
|
y = H[n-1][n-1];
|
|
w = H[n][n-1] * H[n-1][n];
|
|
}
|
|
|
|
// Wilkinson's original ad hoc shift
|
|
if ( iter == 10 ) {
|
|
exshift += x;
|
|
for ( i = low; i <= n; i++ ) {
|
|
H[i][i] -= x;
|
|
}
|
|
s = idMath::Fabs( H[n][n-1] ) + idMath::Fabs( H[n-1][n-2] );
|
|
x = y = 0.75f * s;
|
|
w = -0.4375f * s * s;
|
|
}
|
|
|
|
// new ad hoc shift
|
|
if ( iter == 30 ) {
|
|
s = ( y - x ) / 2.0f;
|
|
s = s * s + w;
|
|
if ( s > 0 ) {
|
|
s = idMath::Sqrt( s );
|
|
if ( y < x ) {
|
|
s = -s;
|
|
}
|
|
s = x - w / ( ( y - x ) / 2.0f + s );
|
|
for ( i = low; i <= n; i++ ) {
|
|
H[i][i] -= s;
|
|
}
|
|
exshift += s;
|
|
x = y = w = 0.964f;
|
|
}
|
|
}
|
|
|
|
iter = iter + 1;
|
|
|
|
// look for two consecutive small sub-diagonal elements
|
|
int m;
|
|
for( m = n-2; m >= l; m-- ) {
|
|
z = H[m][m];
|
|
r = x - z;
|
|
s = y - z;
|
|
p = ( r * s - w ) / H[m+1][m] + H[m][m+1];
|
|
q = H[m+1][m+1] - z - r - s;
|
|
r = H[m+2][m+1];
|
|
s = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r );
|
|
p = p / s;
|
|
q = q / s;
|
|
r = r / s;
|
|
if ( m == l ) {
|
|
break;
|
|
}
|
|
if ( idMath::Fabs( H[m][m-1] ) * ( idMath::Fabs( q ) + idMath::Fabs( r ) ) <
|
|
eps * ( idMath::Fabs( p ) * ( idMath::Fabs( H[m-1][m-1] ) + idMath::Fabs( z ) + idMath::Fabs( H[m+1][m+1] ) ) ) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for ( i = m+2; i <= n; i++ ) {
|
|
H[i][i-2] = 0.0f;
|
|
if ( i > m+2 ) {
|
|
H[i][i-3] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// double QR step involving rows l:n and columns m:n
|
|
for ( k = m; k <= n-1; k++ ) {
|
|
bool notlast = ( k != n-1 );
|
|
if ( k != m ) {
|
|
p = H[k][k-1];
|
|
q = H[k+1][k-1];
|
|
r = ( notlast ? H[k+2][k-1] : 0.0f );
|
|
x = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r );
|
|
if ( x != 0.0f ) {
|
|
p = p / x;
|
|
q = q / x;
|
|
r = r / x;
|
|
}
|
|
}
|
|
if ( x == 0.0f ) {
|
|
break;
|
|
}
|
|
s = idMath::Sqrt( p * p + q * q + r * r );
|
|
if ( p < 0.0f ) {
|
|
s = -s;
|
|
}
|
|
if ( s != 0.0f ) {
|
|
if ( k != m ) {
|
|
H[k][k-1] = -s * x;
|
|
} else if ( l != m ) {
|
|
H[k][k-1] = -H[k][k-1];
|
|
}
|
|
p = p + s;
|
|
x = p / s;
|
|
y = q / s;
|
|
z = r / s;
|
|
q = q / p;
|
|
r = r / p;
|
|
|
|
// modify row
|
|
for ( j = k; j < numRows; j++ ) {
|
|
p = H[k][j] + q * H[k+1][j];
|
|
if ( notlast ) {
|
|
p = p + r * H[k+2][j];
|
|
H[k+2][j] = H[k+2][j] - p * z;
|
|
}
|
|
H[k][j] = H[k][j] - p * x;
|
|
H[k+1][j] = H[k+1][j] - p * y;
|
|
}
|
|
|
|
// modify column
|
|
for ( i = 0; i <= Min( n, k + 3 ); i++ ) {
|
|
p = x * H[i][k] + y * H[i][k+1];
|
|
if ( notlast ) {
|
|
p = p + z * H[i][k+2];
|
|
H[i][k+2] = H[i][k+2] - p * r;
|
|
}
|
|
H[i][k] = H[i][k] - p;
|
|
H[i][k+1] = H[i][k+1] - p * q;
|
|
}
|
|
|
|
// accumulate transformations
|
|
for ( i = low; i <= high; i++ ) {
|
|
p = x * (*this)[i][k] + y * (*this)[i][k+1];
|
|
if ( notlast ) {
|
|
p = p + z * (*this)[i][k+2];
|
|
(*this)[i][k+2] = (*this)[i][k+2] - p * r;
|
|
}
|
|
(*this)[i][k] = (*this)[i][k] - p;
|
|
(*this)[i][k+1] = (*this)[i][k+1] - p * q;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// backsubstitute to find vectors of upper triangular form
|
|
if ( norm == 0.0f ) {
|
|
return false;
|
|
}
|
|
|
|
for ( n = numRows-1; n >= 0; n-- ) {
|
|
p = realEigenValues[n];
|
|
q = imaginaryEigenValues[n];
|
|
|
|
if ( q == 0.0f ) { // real vector
|
|
int l = n;
|
|
H[n][n] = 1.0f;
|
|
for ( i = n-1; i >= 0; i-- ) {
|
|
w = H[i][i] - p;
|
|
r = 0.0f;
|
|
for ( j = l; j <= n; j++ ) {
|
|
r = r + H[i][j] * H[j][n];
|
|
}
|
|
if ( imaginaryEigenValues[i] < 0.0f ) {
|
|
z = w;
|
|
s = r;
|
|
} else {
|
|
l = i;
|
|
if ( imaginaryEigenValues[i] == 0.0f ) {
|
|
if ( w != 0.0f ) {
|
|
H[i][n] = -r / w;
|
|
} else {
|
|
H[i][n] = -r / ( eps * norm );
|
|
}
|
|
} else { // solve real equations
|
|
x = H[i][i+1];
|
|
y = H[i+1][i];
|
|
q = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i];
|
|
t = ( x * s - z * r ) / q;
|
|
H[i][n] = t;
|
|
if ( idMath::Fabs(x) > idMath::Fabs( z ) ) {
|
|
H[i+1][n] = ( -r - w * t ) / x;
|
|
} else {
|
|
H[i+1][n] = ( -s - y * t ) / z;
|
|
}
|
|
}
|
|
|
|
// overflow control
|
|
t = idMath::Fabs(H[i][n]);
|
|
if ( ( eps * t ) * t > 1 ) {
|
|
for ( j = i; j <= n; j++ ) {
|
|
H[j][n] = H[j][n] / t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if ( q < 0.0f ) { // complex vector
|
|
int l = n-1;
|
|
|
|
// last vector component imaginary so matrix is triangular
|
|
if ( idMath::Fabs( H[n][n-1] ) > idMath::Fabs( H[n-1][n] ) ) {
|
|
H[n-1][n-1] = q / H[n][n-1];
|
|
H[n-1][n] = -( H[n][n] - p ) / H[n][n-1];
|
|
} else {
|
|
ComplexDivision( 0.0f, -H[n-1][n], H[n-1][n-1]-p, q, H[n-1][n-1], H[n-1][n] );
|
|
}
|
|
H[n][n-1] = 0.0f;
|
|
H[n][n] = 1.0f;
|
|
for ( i = n-2; i >= 0; i-- ) {
|
|
float ra, sa, vr, vi;
|
|
ra = 0.0f;
|
|
sa = 0.0f;
|
|
for ( j = l; j <= n; j++ ) {
|
|
ra = ra + H[i][j] * H[j][n-1];
|
|
sa = sa + H[i][j] * H[j][n];
|
|
}
|
|
w = H[i][i] - p;
|
|
|
|
if ( imaginaryEigenValues[i] < 0.0f ) {
|
|
z = w;
|
|
r = ra;
|
|
s = sa;
|
|
} else {
|
|
l = i;
|
|
if ( imaginaryEigenValues[i] == 0.0f ) {
|
|
ComplexDivision( -ra, -sa, w, q, H[i][n-1], H[i][n] );
|
|
} else {
|
|
// solve complex equations
|
|
x = H[i][i+1];
|
|
y = H[i+1][i];
|
|
vr = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i] - q * q;
|
|
vi = ( realEigenValues[i] - p ) * 2.0f * q;
|
|
if ( vr == 0.0f && vi == 0.0f ) {
|
|
vr = eps * norm * ( idMath::Fabs( w ) + idMath::Fabs( q ) + idMath::Fabs( x ) + idMath::Fabs( y ) + idMath::Fabs( z ) );
|
|
}
|
|
ComplexDivision( x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi, H[i][n-1], H[i][n] );
|
|
if ( idMath::Fabs( x ) > ( idMath::Fabs( z ) + idMath::Fabs( q ) ) ) {
|
|
H[i+1][n-1] = ( -ra - w * H[i][n-1] + q * H[i][n] ) / x;
|
|
H[i+1][n] = ( -sa - w * H[i][n] - q * H[i][n-1] ) / x;
|
|
} else {
|
|
ComplexDivision( -r - y * H[i][n-1], -s - y * H[i][n], z, q, H[i+1][n-1], H[i+1][n] );
|
|
}
|
|
}
|
|
|
|
// overflow control
|
|
t = Max( idMath::Fabs( H[i][n-1] ), idMath::Fabs( H[i][n] ) );
|
|
if ( ( eps * t ) * t > 1 ) {
|
|
for ( j = i; j <= n; j++ ) {
|
|
H[j][n-1] = H[j][n-1] / t;
|
|
H[j][n] = H[j][n] / t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// vectors of isolated roots
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
if ( i < low || i > high ) {
|
|
for ( j = i; j < numRows; j++ ) {
|
|
(*this)[i][j] = H[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// back transformation to get eigenvectors of original matrix
|
|
for ( j = numRows - 1; j >= low; j-- ) {
|
|
for ( i = low; i <= high; i++ ) {
|
|
z = 0.0f;
|
|
for ( k = low; k <= Min( j, high ); k++ ) {
|
|
z = z + (*this)[i][k] * H[k][j];
|
|
}
|
|
(*this)[i][j] = z;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Eigen_Solve
|
|
|
|
Determine eigen values and eigen vectors for a square matrix.
|
|
The eigen values are stored in 'realEigenValues' and 'imaginaryEigenValues'.
|
|
Column i of the original matrix will store the eigen vector corresponding to the realEigenValues[i] and imaginaryEigenValues[i].
|
|
============
|
|
*/
|
|
bool idMatX::Eigen_Solve( idVecX &realEigenValues, idVecX &imaginaryEigenValues ) {
|
|
idMatX H;
|
|
|
|
assert( numRows == numColumns );
|
|
|
|
realEigenValues.SetSize( numRows );
|
|
imaginaryEigenValues.SetSize( numRows );
|
|
|
|
H = *this;
|
|
|
|
// reduce to Hessenberg form
|
|
HessenbergReduction( H );
|
|
|
|
// reduce Hessenberg to real Schur form
|
|
return HessenbergToRealSchur( H, realEigenValues, imaginaryEigenValues );
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Eigen_SortIncreasing
|
|
============
|
|
*/
|
|
void idMatX::Eigen_SortIncreasing( idVecX &eigenValues ) {
|
|
int i, j, k;
|
|
float min;
|
|
|
|
for ( i = 0; i <= numRows - 2; i++ ) {
|
|
j = i;
|
|
min = eigenValues[j];
|
|
for ( k = i + 1; k < numRows; k++ ) {
|
|
if ( eigenValues[k] < min ) {
|
|
j = k;
|
|
min = eigenValues[j];
|
|
}
|
|
}
|
|
if ( j != i ) {
|
|
eigenValues.SwapElements( i, j );
|
|
SwapColumns( i, j );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Eigen_SortDecreasing
|
|
============
|
|
*/
|
|
void idMatX::Eigen_SortDecreasing( idVecX &eigenValues ) {
|
|
int i, j, k;
|
|
float max;
|
|
|
|
for ( i = 0; i <= numRows - 2; i++ ) {
|
|
j = i;
|
|
max = eigenValues[j];
|
|
for ( k = i + 1; k < numRows; k++ ) {
|
|
if ( eigenValues[k] > max ) {
|
|
j = k;
|
|
max = eigenValues[j];
|
|
}
|
|
}
|
|
if ( j != i ) {
|
|
eigenValues.SwapElements( i, j );
|
|
SwapColumns( i, j );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::DeterminantGeneric
|
|
============
|
|
*/
|
|
float idMatX::DeterminantGeneric( void ) const {
|
|
int *index;
|
|
float det;
|
|
idMatX tmp;
|
|
|
|
index = (int *) _alloca16( numRows * sizeof( int ) );
|
|
tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
|
|
tmp = *this;
|
|
|
|
if ( !tmp.LU_Factor( index, &det ) ) {
|
|
return 0.0f;
|
|
}
|
|
|
|
return det;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::InverseSelfGeneric
|
|
============
|
|
*/
|
|
bool idMatX::InverseSelfGeneric( void ) {
|
|
int i, j, *index;
|
|
idMatX tmp;
|
|
idVecX x, b;
|
|
|
|
index = (int *) _alloca16( numRows * sizeof( int ) );
|
|
tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
|
|
tmp = *this;
|
|
|
|
if ( !tmp.LU_Factor( index ) ) {
|
|
return false;
|
|
}
|
|
|
|
x.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.SetData( numRows, VECX_ALLOCA( numRows ) );
|
|
b.Zero();
|
|
|
|
for ( i = 0; i < numRows; i++ ) {
|
|
|
|
b[i] = 1.0f;
|
|
tmp.LU_Solve( x, b, index );
|
|
for ( j = 0; j < numRows; j++ ) {
|
|
(*this)[j][i] = x[j];
|
|
}
|
|
b[i] = 0.0f;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
============
|
|
idMatX::Test
|
|
============
|
|
*/
|
|
void idMatX::Test( void ) {
|
|
idMatX original, m1, m2, m3, q1, q2, r1, r2;
|
|
idVecX v, w, u, c, d;
|
|
int offset, size, *index1, *index2;
|
|
|
|
size = 6;
|
|
original.Random( size, size, 0 );
|
|
original = original * original.Transpose();
|
|
|
|
index1 = (int *) _alloca16( ( size + 1 ) * sizeof( index1[0] ) );
|
|
index2 = (int *) _alloca16( ( size + 1 ) * sizeof( index2[0] ) );
|
|
|
|
/*
|
|
idMatX::LowerTriangularInverse
|
|
*/
|
|
|
|
m1 = original;
|
|
m1.ClearUpperTriangle();
|
|
m2 = m1;
|
|
|
|
m2.InverseSelf();
|
|
m1.LowerTriangularInverse();
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LowerTriangularInverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::UpperTriangularInverse
|
|
*/
|
|
|
|
m1 = original;
|
|
m1.ClearLowerTriangle();
|
|
m2 = m1;
|
|
|
|
m2.InverseSelf();
|
|
m1.UpperTriangularInverse();
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::UpperTriangularInverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Inverse_GaussJordan
|
|
*/
|
|
|
|
m1 = original;
|
|
|
|
m1.Inverse_GaussJordan();
|
|
m1 *= original;
|
|
|
|
if ( !m1.IsIdentity( 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Inverse_GaussJordan failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Inverse_UpdateRankOne
|
|
*/
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
w.Random( size, 1 );
|
|
v.Random( size, 2 );
|
|
|
|
// invert m1
|
|
m1.Inverse_GaussJordan();
|
|
|
|
// modify and invert m2
|
|
m2.Update_RankOne( v, w, 1.0f );
|
|
if ( !m2.Inverse_GaussJordan() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update inverse of m1
|
|
m1.Inverse_UpdateRankOne( v, w, 1.0f );
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Inverse_UpdateRankOne failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Inverse_UpdateRowColumn
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.Random( size, 1 );
|
|
w.Random( size, 2 );
|
|
w[offset] = 0.0f;
|
|
|
|
// invert m1
|
|
m1.Inverse_GaussJordan();
|
|
|
|
// modify and invert m2
|
|
m2.Update_RowColumn( v, w, offset );
|
|
if ( !m2.Inverse_GaussJordan() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update inverse of m1
|
|
m1.Inverse_UpdateRowColumn( v, w, offset );
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::Inverse_UpdateRowColumn failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::Inverse_UpdateIncrement
|
|
*/
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.Random( size + 1, 1 );
|
|
w.Random( size + 1, 2 );
|
|
w[size] = 0.0f;
|
|
|
|
// invert m1
|
|
m1.Inverse_GaussJordan();
|
|
|
|
// modify and invert m2
|
|
m2.Update_Increment( v, w );
|
|
if ( !m2.Inverse_GaussJordan() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update inverse of m1
|
|
m1.Inverse_UpdateIncrement( v, w );
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Inverse_UpdateIncrement failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Inverse_UpdateDecrement
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.SetSize( 6 );
|
|
w.SetSize( 6 );
|
|
for ( int i = 0; i < size; i++ ) {
|
|
v[i] = original[i][offset];
|
|
w[i] = original[offset][i];
|
|
}
|
|
|
|
// invert m1
|
|
m1.Inverse_GaussJordan();
|
|
|
|
// modify and invert m2
|
|
m2.Update_Decrement( offset );
|
|
if ( !m2.Inverse_GaussJordan() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update inverse of m1
|
|
m1.Inverse_UpdateDecrement( v, w, offset );
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::Inverse_UpdateDecrement failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::LU_Factor
|
|
*/
|
|
|
|
m1 = original;
|
|
|
|
m1.LU_Factor( NULL ); // no pivoting
|
|
m1.LU_UnpackFactors( m2, m3 );
|
|
m1 = m2 * m3;
|
|
|
|
if ( !original.Compare( m1, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LU_Factor failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LU_UpdateRankOne
|
|
*/
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
w.Random( size, 1 );
|
|
v.Random( size, 2 );
|
|
|
|
// factor m1
|
|
m1.LU_Factor( index1 );
|
|
|
|
// modify and factor m2
|
|
m2.Update_RankOne( v, w, 1.0f );
|
|
if ( !m2.LU_Factor( index2 ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.LU_MultiplyFactors( m3, index2 );
|
|
m2 = m3;
|
|
|
|
// update factored m1
|
|
m1.LU_UpdateRankOne( v, w, 1.0f, index1 );
|
|
m1.LU_MultiplyFactors( m3, index1 );
|
|
m1 = m3;
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LU_UpdateRankOne failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LU_UpdateRowColumn
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.Random( size, 1 );
|
|
w.Random( size, 2 );
|
|
w[offset] = 0.0f;
|
|
|
|
// factor m1
|
|
m1.LU_Factor( index1 );
|
|
|
|
// modify and factor m2
|
|
m2.Update_RowColumn( v, w, offset );
|
|
if ( !m2.LU_Factor( index2 ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.LU_MultiplyFactors( m3, index2 );
|
|
m2 = m3;
|
|
|
|
// update m1
|
|
m1.LU_UpdateRowColumn( v, w, offset, index1 );
|
|
m1.LU_MultiplyFactors( m3, index1 );
|
|
m1 = m3;
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::LU_UpdateRowColumn failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::LU_UpdateIncrement
|
|
*/
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.Random( size + 1, 1 );
|
|
w.Random( size + 1, 2 );
|
|
w[size] = 0.0f;
|
|
|
|
// factor m1
|
|
m1.LU_Factor( index1 );
|
|
|
|
// modify and factor m2
|
|
m2.Update_Increment( v, w );
|
|
if ( !m2.LU_Factor( index2 ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.LU_MultiplyFactors( m3, index2 );
|
|
m2 = m3;
|
|
|
|
// update factored m1
|
|
m1.LU_UpdateIncrement( v, w, index1 );
|
|
m1.LU_MultiplyFactors( m3, index1 );
|
|
m1 = m3;
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LU_UpdateIncrement failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LU_UpdateDecrement
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.SetSize( 6 );
|
|
w.SetSize( 6 );
|
|
for ( int i = 0; i < size; i++ ) {
|
|
v[i] = original[i][offset];
|
|
w[i] = original[offset][i];
|
|
}
|
|
|
|
// factor m1
|
|
m1.LU_Factor( index1 );
|
|
|
|
// modify and factor m2
|
|
m2.Update_Decrement( offset );
|
|
if ( !m2.LU_Factor( index2 ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.LU_MultiplyFactors( m3, index2 );
|
|
m2 = m3;
|
|
|
|
u.SetSize( 6 );
|
|
for ( int i = 0; i < size; i++ ) {
|
|
u[i] = original[index1[offset]][i];
|
|
}
|
|
|
|
// update factors of m1
|
|
m1.LU_UpdateDecrement( v, w, u, offset, index1 );
|
|
m1.LU_MultiplyFactors( m3, index1 );
|
|
m1 = m3;
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::LU_UpdateDecrement failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::LU_Inverse
|
|
*/
|
|
|
|
m2 = original;
|
|
|
|
m2.LU_Factor( NULL );
|
|
m2.LU_Inverse( m1, NULL );
|
|
m1 *= original;
|
|
|
|
if ( !m1.IsIdentity( 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LU_Inverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::QR_Factor
|
|
*/
|
|
|
|
c.SetSize( size );
|
|
d.SetSize( size );
|
|
|
|
m1 = original;
|
|
|
|
m1.QR_Factor( c, d );
|
|
m1.QR_UnpackFactors( q1, r1, c, d );
|
|
m1 = q1 * r1;
|
|
|
|
if ( !original.Compare( m1, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::QR_Factor failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::QR_UpdateRankOne
|
|
*/
|
|
|
|
c.SetSize( size );
|
|
d.SetSize( size );
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
w.Random( size, 0 );
|
|
v = w;
|
|
|
|
// factor m1
|
|
m1.QR_Factor( c, d );
|
|
m1.QR_UnpackFactors( q1, r1, c, d );
|
|
|
|
// modify and factor m2
|
|
m2.Update_RankOne( v, w, 1.0f );
|
|
if ( !m2.QR_Factor( c, d ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.QR_UnpackFactors( q2, r2, c, d );
|
|
m2 = q2 * r2;
|
|
|
|
// update factored m1
|
|
q1.QR_UpdateRankOne( r1, v, w, 1.0f );
|
|
m1 = q1 * r1;
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::QR_UpdateRankOne failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::QR_UpdateRowColumn
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
c.SetSize( size );
|
|
d.SetSize( size );
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.Random( size, 1 );
|
|
w.Random( size, 2 );
|
|
w[offset] = 0.0f;
|
|
|
|
// factor m1
|
|
m1.QR_Factor( c, d );
|
|
m1.QR_UnpackFactors( q1, r1, c, d );
|
|
|
|
// modify and factor m2
|
|
m2.Update_RowColumn( v, w, offset );
|
|
if ( !m2.QR_Factor( c, d ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.QR_UnpackFactors( q2, r2, c, d );
|
|
m2 = q2 * r2;
|
|
|
|
// update m1
|
|
q1.QR_UpdateRowColumn( r1, v, w, offset );
|
|
m1 = q1 * r1;
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::QR_UpdateRowColumn failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::QR_UpdateIncrement
|
|
*/
|
|
|
|
c.SetSize( size+1 );
|
|
d.SetSize( size+1 );
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.Random( size + 1, 1 );
|
|
w.Random( size + 1, 2 );
|
|
w[size] = 0.0f;
|
|
|
|
// factor m1
|
|
m1.QR_Factor( c, d );
|
|
m1.QR_UnpackFactors( q1, r1, c, d );
|
|
|
|
// modify and factor m2
|
|
m2.Update_Increment( v, w );
|
|
if ( !m2.QR_Factor( c, d ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.QR_UnpackFactors( q2, r2, c, d );
|
|
m2 = q2 * r2;
|
|
|
|
// update factored m1
|
|
q1.QR_UpdateIncrement( r1, v, w );
|
|
m1 = q1 * r1;
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::QR_UpdateIncrement failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::QR_UpdateDecrement
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
c.SetSize( size+1 );
|
|
d.SetSize( size+1 );
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.SetSize( 6 );
|
|
w.SetSize( 6 );
|
|
for ( int i = 0; i < size; i++ ) {
|
|
v[i] = original[i][offset];
|
|
w[i] = original[offset][i];
|
|
}
|
|
|
|
// factor m1
|
|
m1.QR_Factor( c, d );
|
|
m1.QR_UnpackFactors( q1, r1, c, d );
|
|
|
|
// modify and factor m2
|
|
m2.Update_Decrement( offset );
|
|
if ( !m2.QR_Factor( c, d ) ) {
|
|
assert( 0 );
|
|
}
|
|
m2.QR_UnpackFactors( q2, r2, c, d );
|
|
m2 = q2 * r2;
|
|
|
|
// update factors of m1
|
|
q1.QR_UpdateDecrement( r1, v, w, offset );
|
|
m1 = q1 * r1;
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::QR_UpdateDecrement failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::QR_Inverse
|
|
*/
|
|
|
|
m2 = original;
|
|
|
|
m2.QR_Factor( c, d );
|
|
m2.QR_Inverse( m1, c, d );
|
|
m1 *= original;
|
|
|
|
if ( !m1.IsIdentity( 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::QR_Inverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::SVD_Factor
|
|
*/
|
|
|
|
m1 = original;
|
|
m3.Zero( size, size );
|
|
w.Zero( size );
|
|
|
|
m1.SVD_Factor( w, m3 );
|
|
m2.Diag( w );
|
|
m3.TransposeSelf();
|
|
m1 = m1 * m2 * m3;
|
|
|
|
if ( !original.Compare( m1, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::SVD_Factor failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::SVD_Inverse
|
|
*/
|
|
|
|
m2 = original;
|
|
|
|
m2.SVD_Factor( w, m3 );
|
|
m2.SVD_Inverse( m1, w, m3 );
|
|
m1 *= original;
|
|
|
|
if ( !m1.IsIdentity( 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::SVD_Inverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Cholesky_Factor
|
|
*/
|
|
|
|
m1 = original;
|
|
|
|
m1.Cholesky_Factor();
|
|
m1.Cholesky_MultiplyFactors( m2 );
|
|
|
|
if ( !original.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Cholesky_Factor failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Cholesky_UpdateRankOne
|
|
*/
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
w.Random( size, 0 );
|
|
|
|
// factor m1
|
|
m1.Cholesky_Factor();
|
|
m1.ClearUpperTriangle();
|
|
|
|
// modify and factor m2
|
|
m2.Update_RankOneSymmetric( w, 1.0f );
|
|
if ( !m2.Cholesky_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
m2.ClearUpperTriangle();
|
|
|
|
// update factored m1
|
|
m1.Cholesky_UpdateRankOne( w, 1.0f, 0 );
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Cholesky_UpdateRankOne failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Cholesky_UpdateRowColumn
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
// factor m1
|
|
m1.Cholesky_Factor();
|
|
m1.ClearUpperTriangle();
|
|
|
|
int pdtable[] = { 1, 0, 1, 0, 0, 0 };
|
|
w.Random( size, pdtable[offset] );
|
|
w *= 0.1f;
|
|
|
|
// modify and factor m2
|
|
m2.Update_RowColumnSymmetric( w, offset );
|
|
if ( !m2.Cholesky_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
m2.ClearUpperTriangle();
|
|
|
|
// update m1
|
|
m1.Cholesky_UpdateRowColumn( w, offset );
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::Cholesky_UpdateRowColumn failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::Cholesky_UpdateIncrement
|
|
*/
|
|
|
|
m1.Random( size + 1, size + 1, 0 );
|
|
m3 = m1 * m1.Transpose();
|
|
|
|
m1.SquareSubMatrix( m3, size );
|
|
m2 = m1;
|
|
|
|
w.SetSize( size + 1 );
|
|
for ( int i = 0; i < size + 1; i++ ) {
|
|
w[i] = m3[size][i];
|
|
}
|
|
|
|
// factor m1
|
|
m1.Cholesky_Factor();
|
|
|
|
// modify and factor m2
|
|
m2.Update_IncrementSymmetric( w );
|
|
if ( !m2.Cholesky_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update factored m1
|
|
m1.Cholesky_UpdateIncrement( w );
|
|
|
|
m1.ClearUpperTriangle();
|
|
m2.ClearUpperTriangle();
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Cholesky_UpdateIncrement failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Cholesky_UpdateDecrement
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset += size - 1 ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.SetSize( 6 );
|
|
for ( int i = 0; i < size; i++ ) {
|
|
v[i] = original[i][offset];
|
|
}
|
|
|
|
// factor m1
|
|
m1.Cholesky_Factor();
|
|
|
|
// modify and factor m2
|
|
m2.Update_Decrement( offset );
|
|
if ( !m2.Cholesky_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update factors of m1
|
|
m1.Cholesky_UpdateDecrement( v, offset );
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::Cholesky_UpdateDecrement failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::Cholesky_Inverse
|
|
*/
|
|
|
|
m2 = original;
|
|
|
|
m2.Cholesky_Factor();
|
|
m2.Cholesky_Inverse( m1 );
|
|
m1 *= original;
|
|
|
|
if ( !m1.IsIdentity( 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Cholesky_Inverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LDLT_Factor
|
|
*/
|
|
|
|
m1 = original;
|
|
|
|
m1.LDLT_Factor();
|
|
m1.LDLT_MultiplyFactors( m2 );
|
|
|
|
if ( !original.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_Factor failed" );
|
|
}
|
|
|
|
m1.LDLT_UnpackFactors( m2, m3 );
|
|
m2 = m2 * m3 * m2.Transpose();
|
|
|
|
if ( !original.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_Factor failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LDLT_UpdateRankOne
|
|
*/
|
|
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
w.Random( size, 0 );
|
|
|
|
// factor m1
|
|
m1.LDLT_Factor();
|
|
m1.ClearUpperTriangle();
|
|
|
|
// modify and factor m2
|
|
m2.Update_RankOneSymmetric( w, 1.0f );
|
|
if ( !m2.LDLT_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
m2.ClearUpperTriangle();
|
|
|
|
// update factored m1
|
|
m1.LDLT_UpdateRankOne( w, 1.0f, 0 );
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_UpdateRankOne failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LDLT_UpdateRowColumn
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
w.Random( size, 0 );
|
|
|
|
// factor m1
|
|
m1.LDLT_Factor();
|
|
m1.ClearUpperTriangle();
|
|
|
|
// modify and factor m2
|
|
m2.Update_RowColumnSymmetric( w, offset );
|
|
if ( !m2.LDLT_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
m2.ClearUpperTriangle();
|
|
|
|
// update m1
|
|
m1.LDLT_UpdateRowColumn( w, offset );
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_UpdateRowColumn failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::LDLT_UpdateIncrement
|
|
*/
|
|
|
|
m1.Random( size + 1, size + 1, 0 );
|
|
m3 = m1 * m1.Transpose();
|
|
|
|
m1.SquareSubMatrix( m3, size );
|
|
m2 = m1;
|
|
|
|
w.SetSize( size + 1 );
|
|
for ( int i = 0; i < size + 1; i++ ) {
|
|
w[i] = m3[size][i];
|
|
}
|
|
|
|
// factor m1
|
|
m1.LDLT_Factor();
|
|
|
|
// modify and factor m2
|
|
m2.Update_IncrementSymmetric( w );
|
|
if ( !m2.LDLT_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update factored m1
|
|
m1.LDLT_UpdateIncrement( w );
|
|
|
|
m1.ClearUpperTriangle();
|
|
m2.ClearUpperTriangle();
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_UpdateIncrement failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::LDLT_UpdateDecrement
|
|
*/
|
|
|
|
for ( offset = 0; offset < size; offset++ ) {
|
|
m1 = original;
|
|
m2 = original;
|
|
|
|
v.SetSize( 6 );
|
|
for ( int i = 0; i < size; i++ ) {
|
|
v[i] = original[i][offset];
|
|
}
|
|
|
|
// factor m1
|
|
m1.LDLT_Factor();
|
|
|
|
// modify and factor m2
|
|
m2.Update_Decrement( offset );
|
|
if ( !m2.LDLT_Factor() ) {
|
|
assert( 0 );
|
|
}
|
|
|
|
// update factors of m1
|
|
m1.LDLT_UpdateDecrement( v, offset );
|
|
|
|
if ( !m1.Compare( m2, 1e-3f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_UpdateDecrement failed" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
idMatX::LDLT_Inverse
|
|
*/
|
|
|
|
m2 = original;
|
|
|
|
m2.LDLT_Factor();
|
|
m2.LDLT_Inverse( m1 );
|
|
m1 *= original;
|
|
|
|
if ( !m1.IsIdentity( 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::LDLT_Inverse failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Eigen_SolveSymmetricTriDiagonal
|
|
*/
|
|
|
|
m3 = original;
|
|
m3.TriDiagonal_ClearTriangles();
|
|
m1 = m3;
|
|
|
|
v.SetSize( size );
|
|
|
|
m1.Eigen_SolveSymmetricTriDiagonal( v );
|
|
|
|
m3.TransposeMultiply( m2, m1 );
|
|
|
|
for ( int i = 0; i < size; i++ ) {
|
|
for ( int j = 0; j < size; j++ ) {
|
|
m1[i][j] *= v[j];
|
|
}
|
|
}
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Eigen_SolveSymmetricTriDiagonal failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Eigen_SolveSymmetric
|
|
*/
|
|
|
|
m3 = original;
|
|
m1 = m3;
|
|
|
|
v.SetSize( size );
|
|
|
|
m1.Eigen_SolveSymmetric( v );
|
|
|
|
m3.TransposeMultiply( m2, m1 );
|
|
|
|
for ( int i = 0; i < size; i++ ) {
|
|
for ( int j = 0; j < size; j++ ) {
|
|
m1[i][j] *= v[j];
|
|
}
|
|
}
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Eigen_SolveSymmetric failed" );
|
|
}
|
|
|
|
/*
|
|
idMatX::Eigen_Solve
|
|
*/
|
|
|
|
m3 = original;
|
|
m1 = m3;
|
|
|
|
v.SetSize( size );
|
|
w.SetSize( size );
|
|
|
|
m1.Eigen_Solve( v, w );
|
|
|
|
m3.TransposeMultiply( m2, m1 );
|
|
|
|
for ( int i = 0; i < size; i++ ) {
|
|
for ( int j = 0; j < size; j++ ) {
|
|
m1[i][j] *= v[j];
|
|
}
|
|
}
|
|
|
|
if ( !m1.Compare( m2, 1e-4f ) ) {
|
|
idLib::common->Warning( "idMatX::Eigen_Solve failed" );
|
|
}
|
|
}
|