2011-11-22 21:28:15 +00:00
|
|
|
/*
|
|
|
|
===========================================================================
|
|
|
|
|
|
|
|
Doom 3 GPL Source Code
|
2011-12-06 18:20:15 +00:00
|
|
|
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
|
2011-11-22 21:28:15 +00:00
|
|
|
|
2011-12-06 16:14:59 +00:00
|
|
|
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
|
2011-11-22 21:28:15 +00:00
|
|
|
|
|
|
|
Doom 3 Source Code is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
Doom 3 Source Code is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
|
|
|
|
|
|
|
|
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
|
|
|
|
|
|
|
===========================================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __MATH_COMPLEX_H__
|
|
|
|
#define __MATH_COMPLEX_H__
|
|
|
|
|
2011-12-16 22:28:29 +00:00
|
|
|
#include "idlib/math/Math.h"
|
|
|
|
|
2011-11-22 21:28:15 +00:00
|
|
|
/*
|
|
|
|
===============================================================================
|
|
|
|
|
|
|
|
Complex number
|
|
|
|
|
|
|
|
===============================================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
class idComplex {
|
|
|
|
public:
|
|
|
|
float r; // real part
|
|
|
|
float i; // imaginary part
|
|
|
|
|
|
|
|
idComplex( void );
|
|
|
|
idComplex( const float r, const float i );
|
|
|
|
|
2011-12-06 18:20:15 +00:00
|
|
|
void Set( const float r, const float i );
|
2011-11-22 21:28:15 +00:00
|
|
|
void Zero( void );
|
|
|
|
|
|
|
|
float operator[]( int index ) const;
|
|
|
|
float & operator[]( int index );
|
|
|
|
|
|
|
|
idComplex operator-() const;
|
|
|
|
idComplex & operator=( const idComplex &a );
|
|
|
|
|
|
|
|
idComplex operator*( const idComplex &a ) const;
|
|
|
|
idComplex operator/( const idComplex &a ) const;
|
|
|
|
idComplex operator+( const idComplex &a ) const;
|
|
|
|
idComplex operator-( const idComplex &a ) const;
|
|
|
|
|
|
|
|
idComplex & operator*=( const idComplex &a );
|
|
|
|
idComplex & operator/=( const idComplex &a );
|
|
|
|
idComplex & operator+=( const idComplex &a );
|
|
|
|
idComplex & operator-=( const idComplex &a );
|
|
|
|
|
|
|
|
idComplex operator*( const float a ) const;
|
|
|
|
idComplex operator/( const float a ) const;
|
|
|
|
idComplex operator+( const float a ) const;
|
|
|
|
idComplex operator-( const float a ) const;
|
|
|
|
|
|
|
|
idComplex & operator*=( const float a );
|
|
|
|
idComplex & operator/=( const float a );
|
|
|
|
idComplex & operator+=( const float a );
|
|
|
|
idComplex & operator-=( const float a );
|
|
|
|
|
|
|
|
friend idComplex operator*( const float a, const idComplex &b );
|
|
|
|
friend idComplex operator/( const float a, const idComplex &b );
|
|
|
|
friend idComplex operator+( const float a, const idComplex &b );
|
|
|
|
friend idComplex operator-( const float a, const idComplex &b );
|
|
|
|
|
|
|
|
bool Compare( const idComplex &a ) const; // exact compare, no epsilon
|
|
|
|
bool Compare( const idComplex &a, const float epsilon ) const; // compare with epsilon
|
|
|
|
bool operator==( const idComplex &a ) const; // exact compare, no epsilon
|
|
|
|
bool operator!=( const idComplex &a ) const; // exact compare, no epsilon
|
|
|
|
|
|
|
|
idComplex Reciprocal( void ) const;
|
|
|
|
idComplex Sqrt( void ) const;
|
|
|
|
float Abs( void ) const;
|
|
|
|
|
|
|
|
int GetDimension( void ) const;
|
|
|
|
|
|
|
|
const float * ToFloatPtr( void ) const;
|
|
|
|
float * ToFloatPtr( void );
|
|
|
|
const char * ToString( int precision = 2 ) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
extern idComplex complex_origin;
|
|
|
|
#define complex_zero complex_origin
|
|
|
|
|
|
|
|
ID_INLINE idComplex::idComplex( void ) {
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex::idComplex( const float r, const float i ) {
|
|
|
|
this->r = r;
|
|
|
|
this->i = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE void idComplex::Set( const float r, const float i ) {
|
|
|
|
this->r = r;
|
|
|
|
this->i = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE void idComplex::Zero( void ) {
|
|
|
|
r = i = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE float idComplex::operator[]( int index ) const {
|
|
|
|
assert( index >= 0 && index < 2 );
|
|
|
|
return ( &r )[ index ];
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE float& idComplex::operator[]( int index ) {
|
|
|
|
assert( index >= 0 && index < 2 );
|
|
|
|
return ( &r )[ index ];
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator-() const {
|
|
|
|
return idComplex( -r, -i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator=( const idComplex &a ) {
|
|
|
|
r = a.r;
|
|
|
|
i = a.i;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator*( const idComplex &a ) const {
|
|
|
|
return idComplex( r * a.r - i * a.i, i * a.r + r * a.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator/( const idComplex &a ) const {
|
|
|
|
float s, t;
|
|
|
|
if ( idMath::Fabs( a.r ) >= idMath::Fabs( a.i ) ) {
|
|
|
|
s = a.i / a.r;
|
|
|
|
t = 1.0f / ( a.r + s * a.i );
|
|
|
|
return idComplex( ( r + s * i ) * t, ( i - s * r ) * t );
|
|
|
|
} else {
|
|
|
|
s = a.r / a.i;
|
|
|
|
t = 1.0f / ( s * a.r + a.i );
|
|
|
|
return idComplex( ( r * s + i ) * t, ( i * s - r ) * t );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator+( const idComplex &a ) const {
|
|
|
|
return idComplex( r + a.r, i + a.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator-( const idComplex &a ) const {
|
|
|
|
return idComplex( r - a.r, i - a.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator*=( const idComplex &a ) {
|
|
|
|
*this = idComplex( r * a.r - i * a.i, i * a.r + r * a.i );
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator/=( const idComplex &a ) {
|
|
|
|
float s, t;
|
|
|
|
if ( idMath::Fabs( a.r ) >= idMath::Fabs( a.i ) ) {
|
|
|
|
s = a.i / a.r;
|
|
|
|
t = 1.0f / ( a.r + s * a.i );
|
|
|
|
*this = idComplex( ( r + s * i ) * t, ( i - s * r ) * t );
|
|
|
|
} else {
|
|
|
|
s = a.r / a.i;
|
|
|
|
t = 1.0f / ( s * a.r + a.i );
|
|
|
|
*this = idComplex( ( r * s + i ) * t, ( i * s - r ) * t );
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator+=( const idComplex &a ) {
|
|
|
|
r += a.r;
|
|
|
|
i += a.i;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator-=( const idComplex &a ) {
|
|
|
|
r -= a.r;
|
|
|
|
i -= a.i;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator*( const float a ) const {
|
|
|
|
return idComplex( r * a, i * a );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator/( const float a ) const {
|
|
|
|
float s = 1.0f / a;
|
|
|
|
return idComplex( r * s, i * s );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator+( const float a ) const {
|
|
|
|
return idComplex( r + a, i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::operator-( const float a ) const {
|
|
|
|
return idComplex( r - a, i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator*=( const float a ) {
|
|
|
|
r *= a;
|
|
|
|
i *= a;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator/=( const float a ) {
|
|
|
|
float s = 1.0f / a;
|
|
|
|
r *= s;
|
|
|
|
i *= s;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator+=( const float a ) {
|
|
|
|
r += a;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex &idComplex::operator-=( const float a ) {
|
|
|
|
r -= a;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex operator*( const float a, const idComplex &b ) {
|
|
|
|
return idComplex( a * b.r, a * b.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex operator/( const float a, const idComplex &b ) {
|
|
|
|
float s, t;
|
|
|
|
if ( idMath::Fabs( b.r ) >= idMath::Fabs( b.i ) ) {
|
|
|
|
s = b.i / b.r;
|
|
|
|
t = a / ( b.r + s * b.i );
|
|
|
|
return idComplex( t, - s * t );
|
|
|
|
} else {
|
|
|
|
s = b.r / b.i;
|
|
|
|
t = a / ( s * b.r + b.i );
|
|
|
|
return idComplex( s * t, - t );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex operator+( const float a, const idComplex &b ) {
|
|
|
|
return idComplex( a + b.r, b.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex operator-( const float a, const idComplex &b ) {
|
|
|
|
return idComplex( a - b.r, -b.i );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::Reciprocal( void ) const {
|
|
|
|
float s, t;
|
|
|
|
if ( idMath::Fabs( r ) >= idMath::Fabs( i ) ) {
|
|
|
|
s = i / r;
|
|
|
|
t = 1.0f / ( r + s * i );
|
|
|
|
return idComplex( t, - s * t );
|
|
|
|
} else {
|
|
|
|
s = r / i;
|
|
|
|
t = 1.0f / ( s * r + i );
|
|
|
|
return idComplex( s * t, - t );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE idComplex idComplex::Sqrt( void ) const {
|
|
|
|
float x, y, w;
|
|
|
|
|
|
|
|
if ( r == 0.0f && i == 0.0f ) {
|
|
|
|
return idComplex( 0.0f, 0.0f );
|
|
|
|
}
|
|
|
|
x = idMath::Fabs( r );
|
|
|
|
y = idMath::Fabs( i );
|
|
|
|
if ( x >= y ) {
|
|
|
|
w = y / x;
|
|
|
|
w = idMath::Sqrt( x ) * idMath::Sqrt( 0.5f * ( 1.0f + idMath::Sqrt( 1.0f + w * w ) ) );
|
|
|
|
} else {
|
|
|
|
w = x / y;
|
|
|
|
w = idMath::Sqrt( y ) * idMath::Sqrt( 0.5f * ( w + idMath::Sqrt( 1.0f + w * w ) ) );
|
|
|
|
}
|
|
|
|
if ( w == 0.0f ) {
|
|
|
|
return idComplex( 0.0f, 0.0f );
|
|
|
|
}
|
|
|
|
if ( r >= 0.0f ) {
|
|
|
|
return idComplex( w, 0.5f * i / w );
|
|
|
|
} else {
|
|
|
|
return idComplex( 0.5f * y / w, ( i >= 0.0f ) ? w : -w );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE float idComplex::Abs( void ) const {
|
|
|
|
float x, y, t;
|
|
|
|
x = idMath::Fabs( r );
|
|
|
|
y = idMath::Fabs( i );
|
|
|
|
if ( x == 0.0f ) {
|
|
|
|
return y;
|
|
|
|
} else if ( y == 0.0f ) {
|
|
|
|
return x;
|
|
|
|
} else if ( x > y ) {
|
|
|
|
t = y / x;
|
|
|
|
return x * idMath::Sqrt( 1.0f + t * t );
|
|
|
|
} else {
|
|
|
|
t = x / y;
|
|
|
|
return y * idMath::Sqrt( 1.0f + t * t );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE bool idComplex::Compare( const idComplex &a ) const {
|
|
|
|
return ( ( r == a.r ) && ( i == a.i ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE bool idComplex::Compare( const idComplex &a, const float epsilon ) const {
|
|
|
|
if ( idMath::Fabs( r - a.r ) > epsilon ) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if ( idMath::Fabs( i - a.i ) > epsilon ) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE bool idComplex::operator==( const idComplex &a ) const {
|
|
|
|
return Compare( a );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE bool idComplex::operator!=( const idComplex &a ) const {
|
|
|
|
return !Compare( a );
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE int idComplex::GetDimension( void ) const {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE const float *idComplex::ToFloatPtr( void ) const {
|
|
|
|
return &r;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID_INLINE float *idComplex::ToFloatPtr( void ) {
|
|
|
|
return &r;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !__MATH_COMPLEX_H__ */
|