gmqcc/ast.h
2015-01-29 20:29:34 +01:00

682 lines
20 KiB
C++

#ifndef GMQCC_AST_HDR
#define GMQCC_AST_HDR
#include <vector>
#include "ir.h"
typedef uint16_t ast_flag_t;
/* Note: I will not be using a _t suffix for the
* "main" ast node types for now.
*/
struct ast_node;
struct ast_expression;
struct ast_value;
struct ast_function;
struct ast_block;
struct ast_binary;
struct ast_store;
struct ast_binstore;
struct ast_entfield;
struct ast_ifthen;
struct ast_ternary;
struct ast_loop;
struct ast_call;
struct ast_unary;
struct ast_return;
struct ast_member;
struct ast_array_index;
struct ast_breakcont;
struct ast_switch;
struct ast_label;
struct ast_goto;
struct ast_argpipe;
struct ast_state;
enum {
AST_FLAG_VARIADIC = 1 << 0,
AST_FLAG_NORETURN = 1 << 1,
AST_FLAG_INLINE = 1 << 2,
AST_FLAG_INITIALIZED = 1 << 3,
AST_FLAG_DEPRECATED = 1 << 4,
AST_FLAG_INCLUDE_DEF = 1 << 5,
AST_FLAG_IS_VARARG = 1 << 6,
AST_FLAG_ALIAS = 1 << 7,
AST_FLAG_ERASEABLE = 1 << 8,
AST_FLAG_ACCUMULATE = 1 << 9,
/* An array declared as []
* so that the size is taken from the initializer
*/
AST_FLAG_ARRAY_INIT = 1 << 10,
AST_FLAG_FINAL_DECL = 1 << 11,
/* Several coverage options
* AST_FLAG_COVERAGE means there was an explicit [[coverage]] attribute,
* which will overwrite the default set via the commandline switches.
* BLOCK_COVERAGE inserts coverage() calls into every basic block.
* In the future there might be more options like tracking variable access
* by creating get/set wrapper functions.
*/
AST_FLAG_COVERAGE = 1 << 12,
AST_FLAG_BLOCK_COVERAGE = 1 << 13,
AST_FLAG_LAST,
AST_FLAG_TYPE_MASK = (AST_FLAG_VARIADIC | AST_FLAG_NORETURN),
AST_FLAG_COVERAGE_MASK = (AST_FLAG_BLOCK_COVERAGE)
};
enum {
TYPE_ast_node, /* 0 */
TYPE_ast_expression, /* 1 */
TYPE_ast_value, /* 2 */
TYPE_ast_function, /* 3 */
TYPE_ast_block, /* 4 */
TYPE_ast_binary, /* 5 */
TYPE_ast_store, /* 6 */
TYPE_ast_binstore, /* 7 */
TYPE_ast_entfield, /* 8 */
TYPE_ast_ifthen, /* 9 */
TYPE_ast_ternary, /* 10 */
TYPE_ast_loop, /* 11 */
TYPE_ast_call, /* 12 */
TYPE_ast_unary, /* 13 */
TYPE_ast_return, /* 14 */
TYPE_ast_member, /* 15 */
TYPE_ast_array_index, /* 16 */
TYPE_ast_breakcont, /* 17 */
TYPE_ast_switch, /* 18 */
TYPE_ast_label, /* 19 */
TYPE_ast_goto, /* 20 */
TYPE_ast_argpipe, /* 21 */
TYPE_ast_state /* 22 */
};
#define ast_istype(x, t) ( (x)->m_node_type == (TYPE_##t) )
/* Node interface with common components
*/
typedef void ast_node_delete(ast_node*);
struct ast_node
{
ast_node() = delete;
ast_node(lex_ctx_t, int nodetype);
virtual ~ast_node();
lex_ctx_t m_context;
/* I don't feel comfortable using keywords like 'delete' as names... */
int m_node_type;
/* keep_node: if a node contains this node, 'keep_node'
* prevents its dtor from destroying this node as well.
*/
bool m_keep_node;
bool m_side_effects;
void propagate_side_effects(ast_node *other) const;
};
#define ast_unref(x) do \
{ \
if (! (x)->m_keep_node ) { \
delete (x); \
} \
} while(0)
enum class ast_copy_type_t { value };
static const ast_copy_type_t ast_copy_type = ast_copy_type_t::value;
/* Expression interface
*
* Any expression or block returns an ir_value, and needs
* to know the current function.
*/
typedef bool ast_expression_codegen(ast_expression*,
ast_function*,
bool lvalue,
ir_value**);
/* TODO: the codegen function should take an output-type parameter
* indicating whether a variable, type, label etc. is expected, and
* an environment!
* Then later an ast_ident could have a codegen using this to figure
* out what to look for.
* eg. in code which uses a not-yet defined variable, the expression
* would take an ast_ident, and the codegen would be called with
* type `expression`, so the ast_ident's codegen would search for
* variables through the environment (or functions, constants...).
*/
struct ast_expression : ast_node {
ast_expression() = delete;
ast_expression(lex_ctx_t ctx, int nodetype, qc_type vtype);
ast_expression(lex_ctx_t ctx, int nodetype);
~ast_expression();
ast_expression(ast_copy_type_t, int nodetype, const ast_expression&);
ast_expression(ast_copy_type_t, const ast_expression&);
static ast_expression *shallow_type(lex_ctx_t ctx, qc_type vtype);
bool compare_type(const ast_expression &other) const;
void adopt_type(const ast_expression &other);
qc_type m_vtype = TYPE_VOID;
ast_expression *m_next = nullptr;
/* arrays get a member-count */
size_t m_count = 0;
std::vector<std::unique_ptr<ast_value>> m_type_params;
ast_flag_t m_flags = 0;
/* void foo(string...) gets varparam set as a restriction
* for variadic parameters
*/
ast_expression *m_varparam = nullptr;
/* The codegen functions should store their output values
* so we can call it multiple times without re-evaluating.
* Store lvalue and rvalue seperately though. So that
* ast_entfield for example can generate both if required.
*/
ir_value *m_outl = nullptr;
ir_value *m_outr = nullptr;
};
/* Value
*
* Types are also values, both have a type and a name.
* especially considering possible constructs like typedefs.
* typedef float foo;
* is like creating a 'float foo', foo serving as the type's name.
*/
union basic_value_t {
qcfloat_t vfloat;
int vint;
vec3_t vvec;
const char *vstring;
int ventity;
ast_function *vfunc;
ast_value *vfield;
};
struct ast_value : ast_expression
{
ast_value() = delete;
ast_value(lex_ctx_t ctx, const std::string &name, qc_type qctype);
~ast_value();
ast_value(ast_copy_type_t, const ast_expression&, const std::string&);
ast_value(ast_copy_type_t, const ast_value&);
ast_value(ast_copy_type_t, const ast_value&, const std::string&);
void add_param(ast_value*);
std::string m_name;
std::string m_desc;
const char *m_argcounter = nullptr;
int m_cvq = CV_NONE; /* const/var qualifier */
bool m_isfield = false; /* this declares a field */
bool m_isimm = false; /* an immediate, not just const */
bool m_hasvalue = false;
bool m_inexact = false; /* inexact coming from folded expression */
basic_value_t m_constval;
/* for TYPE_ARRAY we have an optional vector
* of constants when an initializer list
* was provided.
*/
std::vector<basic_value_t> m_initlist;
/* usecount for the parser */
size_t m_uses = 0;
ir_value *m_ir_v = nullptr;
ir_value **m_ir_values = nullptr;
size_t m_ir_value_count = 0;
/* ONLY for arrays in progs version up to 6 */
ast_value *m_setter = nullptr;
ast_value *m_getter = nullptr;
bool m_intrinsic = false; /* true if associated with intrinsic */
};
bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield);
void ast_type_to_string(const ast_expression *e, char *buf, size_t bufsize);
enum ast_binary_ref {
AST_REF_NONE = 0,
AST_REF_LEFT = 1 << 1,
AST_REF_RIGHT = 1 << 2,
AST_REF_ALL = (AST_REF_LEFT | AST_REF_RIGHT)
};
/* Binary
*
* A value-returning binary expression.
*/
struct ast_binary : ast_expression
{
ast_binary() = delete;
ast_binary(lex_ctx_t ctx, int op, ast_expression *l, ast_expression *r);
~ast_binary();
int m_op;
ast_expression *m_left;
ast_expression *m_right;
ast_binary_ref m_refs;
bool m_right_first;
};
/* Binstore
*
* An assignment including a binary expression with the source as left operand.
* Eg. a += b; is a binstore { INSTR_STORE, INSTR_ADD, a, b }
*/
struct ast_binstore : ast_expression
{
ast_binstore() = delete;
ast_binstore(lex_ctx_t ctx, int storeop, int mathop, ast_expression *l, ast_expression *r);
~ast_binstore();
int m_opstore;
int m_opbin;
ast_expression *m_dest;
ast_expression *m_source;
/* for &~= which uses the destination in a binary in source we can use this */
bool m_keep_dest;
};
ast_binstore* ast_binstore_new(lex_ctx_t ctx,
int storeop,
int op,
ast_expression *left,
ast_expression *right);
/* Unary
*
* Regular unary expressions: not,neg
*/
struct ast_unary : ast_expression
{
ast_unary() = delete;
~ast_unary();
int m_op;
ast_expression *m_operand;
static ast_unary* make(lex_ctx_t ctx, int op, ast_expression *expr);
private:
ast_unary(lex_ctx_t ctx, int op, ast_expression *expr);
};
/* Return
*
* Make sure 'return' only happens at the end of a block, otherwise the IR
* will refuse to create further instructions.
* This should be honored by the parser.
*/
struct ast_return : ast_expression
{
ast_return() = delete;
ast_return(lex_ctx_t ctx, ast_expression *expr);
~ast_return();
ast_expression *m_operand;
};
/* Entity-field
*
* This must do 2 things:
* -) Provide a way to fetch an entity field value. (Rvalue)
* -) Provide a pointer to an entity field. (Lvalue)
* The problem:
* In original QC, there's only a STORE via pointer, but
* no LOAD via pointer.
* So we must know beforehand if we are going to read or assign
* the field.
* For this we will have to extend the codegen() functions with
* a flag saying whether or not we need an L or an R-value.
*/
struct ast_entfield : ast_expression
{
ast_entfield() = delete;
ast_entfield(lex_ctx_t ctx, ast_expression *entity, ast_expression *field);
ast_entfield(lex_ctx_t ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype);
~ast_entfield();
// The entity can come from an expression of course.
ast_expression *m_entity;
// As can the field, it just must result in a value of TYPE_FIELD
ast_expression *m_field;
};
/* Member access:
*
* For now used for vectors. If we get structs or unions
* we can have them handled here as well.
*/
struct ast_member : ast_expression
{
static ast_member *make(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const std::string &name);
~ast_member();
ast_expression *m_owner;
unsigned int m_field;
std::string m_name;
bool m_rvalue;
private:
ast_member() = delete;
ast_member(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const std::string &name);
};
/* Array index access:
*
* QC forces us to take special action on arrays:
* an ast_store on an ast_array_index must not codegen the index,
* but call its setter - unless we have an instruction set which supports
* what we need.
* Any other array index access will be codegened to a call to the getter.
* In any case, accessing an element via a compiletime-constant index will
* result in quick access to that variable.
*/
struct ast_array_index : ast_expression
{
static ast_array_index* make(lex_ctx_t ctx, ast_expression *array, ast_expression *index);
~ast_array_index();
ast_expression *m_array;
ast_expression *m_index;
private:
ast_array_index() = delete;
ast_array_index(lex_ctx_t ctx, ast_expression *array, ast_expression *index);
};
/* Vararg pipe node:
*
* copy all varargs starting from a specific index
*/
struct ast_argpipe : ast_expression
{
ast_argpipe() = delete;
ast_argpipe(lex_ctx_t ctx, ast_expression *index);
~ast_argpipe();
ast_expression *m_index;
};
/* Store
*
* Stores left<-right and returns left.
* Specialized binary expression node
*/
struct ast_store : ast_expression
{
ast_store() = delete;
ast_store(lex_ctx_t ctx, int op, ast_expression *d, ast_expression *s);
~ast_store();
int m_op;
ast_expression *m_dest;
ast_expression *m_source;
};
/* If
*
* A general 'if then else' statement, either side can be nullptr and will
* thus be omitted. It is an error for *both* cases to be nullptr at once.
*
* During its 'codegen' it'll be changing the ast_function's block.
*
* An if is also an "expression". Its codegen will put nullptr into the
* output field though. For ternary expressions an ast_ternary will be
* added.
*/
struct ast_ifthen : ast_expression
{
ast_ifthen() = delete;
ast_ifthen(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse);
~ast_ifthen();
ast_expression *m_cond;
/* It's all just 'expressions', since an ast_block is one too. */
ast_expression *m_on_true;
ast_expression *m_on_false;
};
/* Ternary expressions...
*
* Contrary to 'if-then-else' nodes, ternary expressions actually
* return a value, otherwise they behave the very same way.
* The difference in 'codegen' is that it'll return the value of
* a PHI node.
*
* The other difference is that in an ast_ternary, NEITHER side
* must be nullptr, there's ALWAYS an else branch.
*
* This is the only ast_node beside ast_value which contains
* an ir_value. Theoretically we don't need to remember it though.
*/
struct ast_ternary : ast_expression
{
ast_ternary() = delete;
ast_ternary(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse);
~ast_ternary();
ast_expression *m_cond;
/* It's all just 'expressions', since an ast_block is one too. */
ast_expression *m_on_true;
ast_expression *m_on_false;
};
/* A general loop node
*
* For convenience it contains 4 parts:
* -) (ini) = initializing expression
* -) (pre) = pre-loop condition
* -) (pst) = post-loop condition
* -) (inc) = "increment" expression
* The following is a psudo-representation of this loop
* note that '=>' bears the logical meaning of "implies".
* (a => b) equals (!a || b)
{ini};
while (has_pre => {pre})
{
{body};
continue: // a 'continue' will jump here
if (has_pst => {pst})
break;
{inc};
}
*/
struct ast_loop : ast_expression
{
ast_loop() = delete;
ast_loop(lex_ctx_t ctx,
ast_expression *initexpr,
ast_expression *precond, bool pre_not,
ast_expression *postcond, bool post_not,
ast_expression *increment,
ast_expression *body);
~ast_loop();
ast_expression *m_initexpr;
ast_expression *m_precond;
ast_expression *m_postcond;
ast_expression *m_increment;
ast_expression *m_body;
/* For now we allow a seperate flag on whether or not the condition
* is supposed to be true or false.
* That way, the parser can generate a 'while not(!x)' for `while(x)`
* if desired, which is useful for the new -f{true,false}-empty-strings
* flag.
*/
bool m_pre_not;
bool m_post_not;
};
/* Break/Continue
*/
struct ast_breakcont : ast_expression
{
bool m_is_continue;
unsigned int m_levels;
};
ast_breakcont* ast_breakcont_new(lex_ctx_t ctx, bool iscont, unsigned int levels);
/* Switch Statements
*
* A few notes about this: with the original QCVM, no real optimization
* is possible. The SWITCH instruction set isn't really helping a lot, since
* it only collapes the EQ and IF instructions into one.
* Note: Declaring local variables inside caseblocks is normal.
* Since we don't have to deal with a stack there's no unnatural behaviour to
* be expected from it.
* TODO: Ticket #20
*/
struct ast_switch_case {
ast_expression *m_value; /* #20 will replace this */
ast_expression *m_code;
};
struct ast_switch : ast_expression
{
ast_expression *m_operand;
std::vector<ast_switch_case> m_cases;
};
ast_switch* ast_switch_new(lex_ctx_t ctx, ast_expression *op);
/* Label nodes
*
* Introduce a label which can be used together with 'goto'
*/
struct ast_label : ast_expression
{
const char *m_name;
ir_block *m_irblock;
std::vector<ast_goto*> m_gotos;
/* means it has not yet been defined */
bool m_undefined;
};
ast_label* ast_label_new(lex_ctx_t ctx, const char *name, bool undefined);
/* GOTO nodes
*
* Go to a label, the label node is filled in at a later point!
*/
struct ast_goto : ast_expression
{
const char *m_name;
ast_label *m_target;
ir_block *m_irblock_from;
};
ast_goto* ast_goto_new(lex_ctx_t ctx, const char *name);
void ast_goto_set_label(ast_goto*, ast_label*);
/* STATE node
*
* For frame/think state updates: void foo() [framenum, nextthink] {}
*/
struct ast_state : ast_expression
{
ast_expression *m_framenum;
ast_expression *m_nextthink;
};
ast_state* ast_state_new(lex_ctx_t ctx, ast_expression *frame, ast_expression *think);
void ast_state_delete(ast_state*);
/* CALL node
*
* Contains an ast_expression as target, rather than an ast_function/value.
* Since it's how QC works, every ast_function has an ast_value
* associated anyway - in other words, the VM contains function
* pointers for every function anyway. Thus, this node will call
* expression.
* Additionally it contains a list of ast_expressions as parameters.
* Since calls can return values, an ast_call is also an ast_expression.
*/
struct ast_call : ast_expression
{
ast_expression *m_func;
std::vector<ast_expression *> m_params;
ast_expression *m_va_count;
};
ast_call* ast_call_new(lex_ctx_t ctx,
ast_expression *funcexpr);
bool ast_call_check_types(ast_call*, ast_expression *this_func_va_type);
/* Blocks
*
*/
struct ast_block : ast_expression
{
std::vector<ast_value*> m_locals;
std::vector<ast_expression*> m_exprs;
std::vector<ast_expression*> m_collect;
};
ast_block* ast_block_new(lex_ctx_t ctx);
void ast_block_delete(ast_block*);
void ast_block_set_type(ast_block*, ast_expression *from);
void ast_block_collect(ast_block*, ast_expression*);
bool GMQCC_WARN ast_block_add_expr(ast_block*, ast_expression*);
/* Function
*
* Contains a list of blocks... at least in theory.
* Usually there's just the main block, other blocks are inside that.
*
* Technically, functions don't need to be an AST node, since we have
* neither functions inside functions, nor lambdas, and function
* pointers could just work with a name. However, this way could be
* more flexible, and adds no real complexity.
*/
struct ast_function : ast_node
{
ast_value *m_function_type;
const char *m_name;
int m_builtin;
/* list of used-up names for statics without the count suffix */
std::vector<char*> m_static_names;
/* number of static variables, by convention this includes the
* ones without the count-suffix - remember this when dealing
* with savegames. uint instead of size_t as %zu in printf is
* C99, so no windows support. */
unsigned int m_static_count;
ir_function *m_ir_func;
ir_block *m_curblock;
std::vector<ir_block*> m_breakblocks;
std::vector<ir_block*> m_continueblocks;
size_t m_labelcount;
/* in order for thread safety - for the optional
* channel abesed multithreading... keeping a buffer
* here to use in ast_function_label.
*/
char m_labelbuf[64];
std::vector<std::unique_ptr<ast_block>> m_blocks;
ast_value *m_varargs;
ast_value *m_argc;
ast_value *m_fixedparams;
ast_value *m_return_value;
};
ast_function* ast_function_new(lex_ctx_t ctx, const char *name, ast_value *vtype);
/* This will NOT delete the underlying ast_value */
void ast_function_delete(ast_function*);
/* For "optimized" builds this can just keep returning "foo"...
* or whatever...
*/
const char* ast_function_label(ast_function*, const char *prefix);
bool ast_function_codegen(ast_function *self, ir_builder *builder);
bool ast_generate_accessors(ast_value *asvalue, ir_builder *ir);
/*
* If the condition creates a situation where this becomes -1 size it means there are
* more AST_FLAGs than the type ast_flag_t is capable of holding. So either eliminate
* the AST flag count or change the ast_flag_t typedef to a type large enough to accomodate
* all the flags.
*/
typedef int static_assert_is_ast_flag_safe [((AST_FLAG_LAST) <= (ast_flag_t)(-1)) ? 1 : -1];
#endif