gmqcc/parser.cpp
2016-11-24 14:08:38 +00:00

6398 lines
221 KiB
C++

#include <string.h>
#include <math.h>
#include "intrin.h"
#include "fold.h"
#include "ast.h"
#include "parser.h"
#define PARSER_HT_LOCALS 2
#define PARSER_HT_SIZE 512
#define TYPEDEF_HT_SIZE 512
static void parser_enterblock(parser_t *parser);
static bool parser_leaveblock(parser_t *parser);
static void parser_addlocal(parser_t *parser, const char *name, ast_expression *e);
static void parser_addlocal(parser_t *parser, const std::string &name, ast_expression *e);
static void parser_addglobal(parser_t *parser, const char *name, ast_expression *e);
static void parser_addglobal(parser_t *parser, const std::string &name, ast_expression *e);
static bool parse_typedef(parser_t *parser);
static bool parse_variable(parser_t *parser, ast_block *localblock, bool nofields, int qualifier, ast_value *cached_typedef, bool noref, bool is_static, uint32_t qflags, char *vstring);
static ast_block* parse_block(parser_t *parser);
static bool parse_block_into(parser_t *parser, ast_block *block);
static bool parse_statement_or_block(parser_t *parser, ast_expression **out);
static bool parse_statement(parser_t *parser, ast_block *block, ast_expression **out, bool allow_cases);
static ast_expression* parse_expression_leave(parser_t *parser, bool stopatcomma, bool truthvalue, bool with_labels);
static ast_expression* parse_expression(parser_t *parser, bool stopatcomma, bool with_labels);
static ast_value* parser_create_array_setter_proto(parser_t *parser, ast_value *array, const char *funcname);
static ast_value* parser_create_array_getter_proto(parser_t *parser, ast_value *array, const ast_expression *elemtype, const char *funcname);
static ast_value *parse_typename(parser_t *parser, ast_value **storebase, ast_value *cached_typedef, bool *is_vararg);
static void parseerror_(parser_t *parser, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vcompile_error(parser->lex->tok.ctx, fmt, ap);
va_end(ap);
}
template<typename... Ts>
static inline void parseerror(parser_t *parser, const char *fmt, const Ts&... ts) {
return parseerror_(parser, fmt, formatNormalize(ts)...);
}
// returns true if it counts as an error
static bool GMQCC_WARN parsewarning_(parser_t *parser, int warntype, const char *fmt, ...)
{
bool r;
va_list ap;
va_start(ap, fmt);
r = vcompile_warning(parser->lex->tok.ctx, warntype, fmt, ap);
va_end(ap);
return r;
}
template<typename... Ts>
static inline bool GMQCC_WARN parsewarning(parser_t *parser, int warntype, const char *fmt, const Ts&... ts) {
return parsewarning_(parser, warntype, fmt, formatNormalize(ts)...);
}
/**********************************************************************
* parsing
*/
static bool parser_next(parser_t *parser)
{
/* lex_do kills the previous token */
parser->tok = lex_do(parser->lex);
if (parser->tok == TOKEN_EOF)
return true;
if (parser->tok >= TOKEN_ERROR) {
parseerror(parser, "lex error");
return false;
}
return true;
}
#define parser_tokval(p) ((p)->lex->tok.value)
#define parser_token(p) (&((p)->lex->tok))
char *parser_strdup(const char *str)
{
if (str && !*str) {
/* actually dup empty strings */
char *out = (char*)mem_a(1);
*out = 0;
return out;
}
return util_strdup(str);
}
static ast_expression* parser_find_field(parser_t *parser, const char *name) {
return (ast_expression*)util_htget(parser->htfields, name);
}
static ast_expression* parser_find_field(parser_t *parser, const std::string &name) {
return parser_find_field(parser, name.c_str());
}
static ast_expression* parser_find_label(parser_t *parser, const char *name)
{
for (auto &it : parser->labels)
if (it->m_name == name)
return it;
return nullptr;
}
static inline ast_expression* parser_find_label(parser_t *parser, const std::string &name) {
return parser_find_label(parser, name.c_str());
}
ast_expression* parser_find_global(parser_t *parser, const char *name)
{
ast_expression *var = (ast_expression*)util_htget(parser->aliases, parser_tokval(parser));
if (var)
return var;
return (ast_expression*)util_htget(parser->htglobals, name);
}
ast_expression* parser_find_global(parser_t *parser, const std::string &name) {
return parser_find_global(parser, name.c_str());
}
static ast_expression* parser_find_param(parser_t *parser, const char *name)
{
ast_value *fun;
if (!parser->function)
return nullptr;
fun = parser->function->m_function_type;
for (auto &it : fun->m_type_params) {
if (it->m_name == name)
return it.get();
}
return nullptr;
}
static ast_expression* parser_find_local(parser_t *parser, const char *name, size_t upto, bool *isparam)
{
size_t i, hash;
ast_expression *e;
hash = util_hthash(parser->htglobals, name);
*isparam = false;
for (i = vec_size(parser->variables); i > upto;) {
--i;
if ( (e = (ast_expression*)util_htgeth(parser->variables[i], name, hash)) )
return e;
}
*isparam = true;
return parser_find_param(parser, name);
}
static ast_expression* parser_find_local(parser_t *parser, const std::string &name, size_t upto, bool *isparam) {
return parser_find_local(parser, name.c_str(), upto, isparam);
}
static ast_expression* parser_find_var(parser_t *parser, const char *name)
{
bool dummy;
ast_expression *v;
v = parser_find_local(parser, name, 0, &dummy);
if (!v) v = parser_find_global(parser, name);
return v;
}
static inline ast_expression* parser_find_var(parser_t *parser, const std::string &name) {
return parser_find_var(parser, name.c_str());
}
static ast_value* parser_find_typedef(parser_t *parser, const char *name, size_t upto)
{
size_t i, hash;
ast_value *e;
hash = util_hthash(parser->typedefs[0], name);
for (i = vec_size(parser->typedefs); i > upto;) {
--i;
if ( (e = (ast_value*)util_htgeth(parser->typedefs[i], name, hash)) )
return e;
}
return nullptr;
}
static ast_value* parser_find_typedef(parser_t *parser, const std::string &name, size_t upto) {
return parser_find_typedef(parser, name.c_str(), upto);
}
struct sy_elem {
size_t etype; /* 0 = expression, others are operators */
bool isparen;
size_t off;
ast_expression *out;
ast_block *block; /* for commas and function calls */
lex_ctx_t ctx;
};
enum {
PAREN_EXPR,
PAREN_FUNC,
PAREN_INDEX,
PAREN_TERNARY1,
PAREN_TERNARY2
};
struct shunt {
std::vector<sy_elem> out;
std::vector<sy_elem> ops;
std::vector<size_t> argc;
std::vector<unsigned int> paren;
};
static sy_elem syexp(lex_ctx_t ctx, ast_expression *v) {
sy_elem e;
e.etype = 0;
e.off = 0;
e.out = v;
e.block = nullptr;
e.ctx = ctx;
e.isparen = false;
return e;
}
static sy_elem syblock(lex_ctx_t ctx, ast_block *v) {
sy_elem e;
e.etype = 0;
e.off = 0;
e.out = v;
e.block = v;
e.ctx = ctx;
e.isparen = false;
return e;
}
static sy_elem syop(lex_ctx_t ctx, const oper_info *op) {
sy_elem e;
e.etype = 1 + (op - operators);
e.off = 0;
e.out = nullptr;
e.block = nullptr;
e.ctx = ctx;
e.isparen = false;
return e;
}
static sy_elem syparen(lex_ctx_t ctx, size_t off) {
sy_elem e;
e.etype = 0;
e.off = off;
e.out = nullptr;
e.block = nullptr;
e.ctx = ctx;
e.isparen = true;
return e;
}
/* With regular precedence rules, ent.foo[n] is the same as (ent.foo)[n],
* so we need to rotate it to become ent.(foo[n]).
*/
static bool rotate_entfield_array_index_nodes(ast_expression **out)
{
ast_array_index *index, *oldindex;
ast_entfield *entfield;
ast_value *field;
ast_expression *sub;
ast_expression *entity;
lex_ctx_t ctx = (*out)->m_context;
if (!ast_istype(*out, ast_array_index))
return false;
index = (ast_array_index*)*out;
if (!ast_istype(index->m_array, ast_entfield))
return false;
entfield = (ast_entfield*)index->m_array;
if (!ast_istype(entfield->m_field, ast_value))
return false;
field = (ast_value*)entfield->m_field;
sub = index->m_index;
entity = entfield->m_entity;
oldindex = index;
index = ast_array_index::make(ctx, field, sub);
entfield = new ast_entfield(ctx, entity, index);
*out = entfield;
oldindex->m_array = nullptr;
oldindex->m_index = nullptr;
delete oldindex;
return true;
}
static bool check_write_to(lex_ctx_t ctx, ast_expression *expr)
{
if (ast_istype(expr, ast_value)) {
ast_value *val = (ast_value*)expr;
if (val->m_cvq == CV_CONST) {
if (val->m_name[0] == '#') {
compile_error(ctx, "invalid assignment to a literal constant");
return false;
}
/*
* To work around quakeworld we must elide the error and make it
* a warning instead.
*/
if (OPTS_OPTION_U32(OPTION_STANDARD) != COMPILER_QCC)
compile_error(ctx, "assignment to constant `%s`", val->m_name);
else
(void)!compile_warning(ctx, WARN_CONST_OVERWRITE, "assignment to constant `%s`", val->m_name);
return false;
}
}
return true;
}
static bool parser_sy_apply_operator(parser_t *parser, shunt *sy)
{
const oper_info *op;
lex_ctx_t ctx;
ast_expression *out = nullptr;
ast_expression *exprs[3];
ast_block *blocks[3];
ast_binstore *asbinstore;
size_t i, assignop, addop, subop;
qcint_t generated_op = 0;
char ty1[1024];
char ty2[1024];
if (sy->ops.empty()) {
parseerror(parser, "internal error: missing operator");
return false;
}
if (sy->ops.back().isparen) {
parseerror(parser, "unmatched parenthesis");
return false;
}
op = &operators[sy->ops.back().etype - 1];
ctx = sy->ops.back().ctx;
if (sy->out.size() < op->operands) {
if (op->flags & OP_PREFIX)
compile_error(ctx, "expected expression after unary operator `%s`", op->op, (int)op->id);
else /* this should have errored previously already */
compile_error(ctx, "expected expression after operator `%s`", op->op, (int)op->id);
return false;
}
sy->ops.pop_back();
/* op(:?) has no input and no output */
if (!op->operands)
return true;
sy->out.erase(sy->out.end() - op->operands, sy->out.end());
for (i = 0; i < op->operands; ++i) {
exprs[i] = sy->out[sy->out.size()+i].out;
blocks[i] = sy->out[sy->out.size()+i].block;
if (exprs[i]->m_vtype == TYPE_NOEXPR &&
!(i != 0 && op->id == opid2('?',':')) &&
!(i == 1 && op->id == opid1('.')))
{
if (ast_istype(exprs[i], ast_label))
compile_error(exprs[i]->m_context, "expected expression, got an unknown identifier");
else
compile_error(exprs[i]->m_context, "not an expression");
(void)!compile_warning(exprs[i]->m_context, WARN_DEBUG, "expression %u\n", (unsigned int)i);
}
}
if (blocks[0] && blocks[0]->m_exprs.empty() && op->id != opid1(',')) {
compile_error(ctx, "internal error: operator cannot be applied on empty blocks");
return false;
}
#define NotSameType(T) \
(exprs[0]->m_vtype != exprs[1]->m_vtype || \
exprs[0]->m_vtype != T)
switch (op->id)
{
default:
compile_error(ctx, "internal error: unhandled operator: %s (%i)", op->op, (int)op->id);
return false;
case opid1('.'):
if (exprs[0]->m_vtype == TYPE_VECTOR &&
exprs[1]->m_vtype == TYPE_NOEXPR)
{
if (exprs[1] == parser->const_vec[0])
out = ast_member::make(ctx, exprs[0], 0, "");
else if (exprs[1] == parser->const_vec[1])
out = ast_member::make(ctx, exprs[0], 1, "");
else if (exprs[1] == parser->const_vec[2])
out = ast_member::make(ctx, exprs[0], 2, "");
else {
compile_error(ctx, "access to invalid vector component");
return false;
}
}
else if (exprs[0]->m_vtype == TYPE_ENTITY) {
if (exprs[1]->m_vtype != TYPE_FIELD) {
compile_error(exprs[1]->m_context, "type error: right hand of member-operand should be an entity-field");
return false;
}
out = new ast_entfield(ctx, exprs[0], exprs[1]);
}
else if (exprs[0]->m_vtype == TYPE_VECTOR) {
compile_error(exprs[1]->m_context, "vectors cannot be accessed this way");
return false;
}
else {
compile_error(exprs[1]->m_context, "type error: member-of operator on something that is not an entity or vector");
return false;
}
break;
case opid1('['):
if (exprs[0]->m_vtype != TYPE_ARRAY &&
!(exprs[0]->m_vtype == TYPE_FIELD &&
exprs[0]->m_next->m_vtype == TYPE_ARRAY))
{
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
compile_error(exprs[0]->m_context, "cannot index value of type %s", ty1);
return false;
}
if (exprs[1]->m_vtype != TYPE_FLOAT) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
compile_error(exprs[1]->m_context, "index must be of type float, not %s", ty1);
return false;
}
out = ast_array_index::make(ctx, exprs[0], exprs[1]);
rotate_entfield_array_index_nodes(&out);
break;
case opid1(','):
if (sy->paren.size() && sy->paren.back() == PAREN_FUNC) {
sy->out.push_back(syexp(ctx, exprs[0]));
sy->out.push_back(syexp(ctx, exprs[1]));
sy->argc.back()++;
return true;
}
if (blocks[0]) {
if (!blocks[0]->addExpr(exprs[1]))
return false;
} else {
blocks[0] = new ast_block(ctx);
if (!blocks[0]->addExpr(exprs[0]) ||
!blocks[0]->addExpr(exprs[1]))
{
return false;
}
}
blocks[0]->setType(*exprs[1]);
sy->out.push_back(syblock(ctx, blocks[0]));
return true;
case opid2('+','P'):
out = exprs[0];
break;
case opid2('-','P'):
if ((out = parser->m_fold.op(op, exprs)))
break;
if (exprs[0]->m_vtype != TYPE_FLOAT &&
exprs[0]->m_vtype != TYPE_VECTOR) {
compile_error(ctx, "invalid types used in unary expression: cannot negate type %s",
type_name[exprs[0]->m_vtype]);
return false;
}
if (exprs[0]->m_vtype == TYPE_FLOAT)
out = ast_unary::make(ctx, VINSTR_NEG_F, exprs[0]);
else
out = ast_unary::make(ctx, VINSTR_NEG_V, exprs[0]);
break;
case opid2('!','P'):
if (!(out = parser->m_fold.op(op, exprs))) {
switch (exprs[0]->m_vtype) {
case TYPE_FLOAT:
out = ast_unary::make(ctx, INSTR_NOT_F, exprs[0]);
break;
case TYPE_VECTOR:
out = ast_unary::make(ctx, INSTR_NOT_V, exprs[0]);
break;
case TYPE_STRING:
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
out = ast_unary::make(ctx, INSTR_NOT_F, exprs[0]);
else
out = ast_unary::make(ctx, INSTR_NOT_S, exprs[0]);
break;
/* we don't constant-fold NOT for these types */
case TYPE_ENTITY:
out = ast_unary::make(ctx, INSTR_NOT_ENT, exprs[0]);
break;
case TYPE_FUNCTION:
out = ast_unary::make(ctx, INSTR_NOT_FNC, exprs[0]);
break;
default:
compile_error(ctx, "invalid types used in expression: cannot logically negate type %s",
type_name[exprs[0]->m_vtype]);
return false;
}
}
break;
case opid1('+'):
if (exprs[0]->m_vtype != exprs[1]->m_vtype ||
(exprs[0]->m_vtype != TYPE_VECTOR && exprs[0]->m_vtype != TYPE_FLOAT) )
{
compile_error(ctx, "invalid types used in expression: cannot add type %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
switch (exprs[0]->m_vtype) {
case TYPE_FLOAT:
out = fold::binary(ctx, INSTR_ADD_F, exprs[0], exprs[1]);
break;
case TYPE_VECTOR:
out = fold::binary(ctx, INSTR_ADD_V, exprs[0], exprs[1]);
break;
default:
compile_error(ctx, "invalid types used in expression: cannot add type %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
}
break;
case opid1('-'):
if (exprs[0]->m_vtype != exprs[1]->m_vtype ||
(exprs[0]->m_vtype != TYPE_VECTOR && exprs[0]->m_vtype != TYPE_FLOAT))
{
compile_error(ctx, "invalid types used in expression: cannot subtract type %s from %s",
type_name[exprs[1]->m_vtype],
type_name[exprs[0]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
switch (exprs[0]->m_vtype) {
case TYPE_FLOAT:
out = fold::binary(ctx, INSTR_SUB_F, exprs[0], exprs[1]);
break;
case TYPE_VECTOR:
out = fold::binary(ctx, INSTR_SUB_V, exprs[0], exprs[1]);
break;
default:
compile_error(ctx, "invalid types used in expression: cannot subtract type %s from %s",
type_name[exprs[1]->m_vtype],
type_name[exprs[0]->m_vtype]);
return false;
}
}
break;
case opid1('*'):
if (exprs[0]->m_vtype != exprs[1]->m_vtype &&
!(exprs[0]->m_vtype == TYPE_VECTOR &&
exprs[1]->m_vtype == TYPE_FLOAT) &&
!(exprs[1]->m_vtype == TYPE_VECTOR &&
exprs[0]->m_vtype == TYPE_FLOAT)
)
{
compile_error(ctx, "invalid types used in expression: cannot multiply types %s and %s",
type_name[exprs[1]->m_vtype],
type_name[exprs[0]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
switch (exprs[0]->m_vtype) {
case TYPE_FLOAT:
if (exprs[1]->m_vtype == TYPE_VECTOR)
out = fold::binary(ctx, INSTR_MUL_FV, exprs[0], exprs[1]);
else
out = fold::binary(ctx, INSTR_MUL_F, exprs[0], exprs[1]);
break;
case TYPE_VECTOR:
if (exprs[1]->m_vtype == TYPE_FLOAT)
out = fold::binary(ctx, INSTR_MUL_VF, exprs[0], exprs[1]);
else
out = fold::binary(ctx, INSTR_MUL_V, exprs[0], exprs[1]);
break;
default:
compile_error(ctx, "invalid types used in expression: cannot multiply types %s and %s",
type_name[exprs[1]->m_vtype],
type_name[exprs[0]->m_vtype]);
return false;
}
}
break;
case opid1('/'):
if (exprs[1]->m_vtype != TYPE_FLOAT) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in expression: cannot divide types %s and %s", ty1, ty2);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
if (exprs[0]->m_vtype == TYPE_FLOAT)
out = fold::binary(ctx, INSTR_DIV_F, exprs[0], exprs[1]);
else {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in expression: cannot divide types %s and %s", ty1, ty2);
return false;
}
}
break;
case opid1('%'):
if (NotSameType(TYPE_FLOAT)) {
compile_error(ctx, "invalid types used in expression: cannot perform modulo operation between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
} else if (!(out = parser->m_fold.op(op, exprs))) {
/* generate a call to __builtin_mod */
ast_expression *mod = parser->m_intrin.func("mod");
ast_call *call = nullptr;
if (!mod) return false; /* can return null for missing floor */
call = ast_call::make(parser_ctx(parser), mod);
call->m_params.push_back(exprs[0]);
call->m_params.push_back(exprs[1]);
out = call;
}
break;
case opid2('%','='):
compile_error(ctx, "%= is unimplemented");
return false;
case opid1('|'):
case opid1('&'):
case opid1('^'):
if ( !(exprs[0]->m_vtype == TYPE_FLOAT && exprs[1]->m_vtype == TYPE_FLOAT) &&
!(exprs[0]->m_vtype == TYPE_VECTOR && exprs[1]->m_vtype == TYPE_FLOAT) &&
!(exprs[0]->m_vtype == TYPE_VECTOR && exprs[1]->m_vtype == TYPE_VECTOR))
{
compile_error(ctx, "invalid types used in expression: cannot perform bit operations between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
/*
* IF the first expression is float, the following will be too
* since scalar ^ vector is not allowed.
*/
if (exprs[0]->m_vtype == TYPE_FLOAT) {
out = fold::binary(ctx,
(op->id == opid1('^') ? VINSTR_BITXOR : op->id == opid1('|') ? INSTR_BITOR : INSTR_BITAND),
exprs[0], exprs[1]);
} else {
/*
* The first is a vector: vector is allowed to bitop with vector and
* with scalar, branch here for the second operand.
*/
if (exprs[1]->m_vtype == TYPE_VECTOR) {
/*
* Bitop all the values of the vector components against the
* vectors components in question.
*/
out = fold::binary(ctx,
(op->id == opid1('^') ? VINSTR_BITXOR_V : op->id == opid1('|') ? VINSTR_BITOR_V : VINSTR_BITAND_V),
exprs[0], exprs[1]);
} else {
out = fold::binary(ctx,
(op->id == opid1('^') ? VINSTR_BITXOR_VF : op->id == opid1('|') ? VINSTR_BITOR_VF : VINSTR_BITAND_VF),
exprs[0], exprs[1]);
}
}
}
break;
case opid2('<','<'):
case opid2('>','>'):
if (NotSameType(TYPE_FLOAT)) {
compile_error(ctx, "invalid types used in expression: cannot perform shift between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
ast_expression *shift = parser->m_intrin.func((op->id == opid2('<','<')) ? "__builtin_lshift" : "__builtin_rshift");
ast_call *call = ast_call::make(parser_ctx(parser), shift);
call->m_params.push_back(exprs[0]);
call->m_params.push_back(exprs[1]);
out = call;
}
break;
case opid3('<','<','='):
case opid3('>','>','='):
if (NotSameType(TYPE_FLOAT)) {
compile_error(ctx, "invalid types used in expression: cannot perform shift operation between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if(!(out = parser->m_fold.op(op, exprs))) {
ast_expression *shift = parser->m_intrin.func((op->id == opid3('<','<','=')) ? "__builtin_lshift" : "__builtin_rshift");
ast_call *call = ast_call::make(parser_ctx(parser), shift);
call->m_params.push_back(exprs[0]);
call->m_params.push_back(exprs[1]);
out = new ast_store(
parser_ctx(parser),
INSTR_STORE_F,
exprs[0],
call
);
}
break;
case opid2('|','|'):
generated_op += 1; /* INSTR_OR */
case opid2('&','&'):
generated_op += INSTR_AND;
if (!(out = parser->m_fold.op(op, exprs))) {
if (OPTS_FLAG(PERL_LOGIC) && !exprs[0]->compareType(*exprs[1])) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types for logical operation with -fperl-logic: %s and %s", ty1, ty2);
return false;
}
for (i = 0; i < 2; ++i) {
if (OPTS_FLAG(CORRECT_LOGIC) && exprs[i]->m_vtype == TYPE_VECTOR) {
out = ast_unary::make(ctx, INSTR_NOT_V, exprs[i]);
if (!out) break;
out = ast_unary::make(ctx, INSTR_NOT_F, out);
if (!out) break;
exprs[i] = out; out = nullptr;
if (OPTS_FLAG(PERL_LOGIC)) {
/* here we want to keep the right expressions' type */
break;
}
}
else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && exprs[i]->m_vtype == TYPE_STRING) {
out = ast_unary::make(ctx, INSTR_NOT_S, exprs[i]);
if (!out) break;
out = ast_unary::make(ctx, INSTR_NOT_F, out);
if (!out) break;
exprs[i] = out; out = nullptr;
if (OPTS_FLAG(PERL_LOGIC)) {
/* here we want to keep the right expressions' type */
break;
}
}
}
out = fold::binary(ctx, generated_op, exprs[0], exprs[1]);
}
break;
case opid2('?',':'):
if (sy->paren.back() != PAREN_TERNARY2) {
compile_error(ctx, "mismatched parenthesis/ternary");
return false;
}
sy->paren.pop_back();
if (!exprs[1]->compareType(*exprs[2])) {
ast_type_to_string(exprs[1], ty1, sizeof(ty1));
ast_type_to_string(exprs[2], ty2, sizeof(ty2));
compile_error(ctx, "operands of ternary expression must have the same type, got %s and %s", ty1, ty2);
return false;
}
if (!(out = parser->m_fold.op(op, exprs)))
out = new ast_ternary(ctx, exprs[0], exprs[1], exprs[2]);
break;
case opid2('*', '*'):
if (NotSameType(TYPE_FLOAT)) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in exponentiation: %s and %s",
ty1, ty2);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
ast_call *gencall = ast_call::make(parser_ctx(parser), parser->m_intrin.func("pow"));
gencall->m_params.push_back(exprs[0]);
gencall->m_params.push_back(exprs[1]);
out = gencall;
}
break;
case opid2('>', '<'):
if (NotSameType(TYPE_VECTOR)) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in cross product: %s and %s",
ty1, ty2);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
out = fold::binary(
parser_ctx(parser),
VINSTR_CROSS,
exprs[0],
exprs[1]
);
}
break;
case opid3('<','=','>'): /* -1, 0, or 1 */
if (NotSameType(TYPE_FLOAT)) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in comparision: %s and %s",
ty1, ty2);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
/* This whole block is NOT fold_binary safe */
ast_binary *eq = new ast_binary(ctx, INSTR_EQ_F, exprs[0], exprs[1]);
eq->m_refs = AST_REF_NONE;
/* if (lt) { */
out = new ast_ternary(ctx,
new ast_binary(ctx, INSTR_LT, exprs[0], exprs[1]),
/* out = -1 */
parser->m_fold.imm_float(2),
/* } else { */
/* if (eq) { */
new ast_ternary(ctx, eq,
/* out = 0 */
parser->m_fold.imm_float(0),
/* } else { */
/* out = 1 */
parser->m_fold.imm_float(1)
/* } */
)
/* } */
);
}
break;
case opid1('>'):
generated_op += 1; /* INSTR_GT */
case opid1('<'):
generated_op += 1; /* INSTR_LT */
case opid2('>', '='):
generated_op += 1; /* INSTR_GE */
case opid2('<', '='):
generated_op += INSTR_LE;
if (NotSameType(TYPE_FLOAT)) {
compile_error(ctx, "invalid types used in expression: cannot perform comparison between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs)))
out = fold::binary(ctx, generated_op, exprs[0], exprs[1]);
break;
case opid2('!', '='):
if (exprs[0]->m_vtype != exprs[1]->m_vtype) {
compile_error(ctx, "invalid types used in expression: cannot perform comparison between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs)))
out = fold::binary(ctx, type_ne_instr[exprs[0]->m_vtype], exprs[0], exprs[1]);
break;
case opid2('=', '='):
if (exprs[0]->m_vtype != exprs[1]->m_vtype) {
compile_error(ctx, "invalid types used in expression: cannot perform comparison between types %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
}
if (!(out = parser->m_fold.op(op, exprs)))
out = fold::binary(ctx, type_eq_instr[exprs[0]->m_vtype], exprs[0], exprs[1]);
break;
case opid1('='):
if (ast_istype(exprs[0], ast_entfield)) {
ast_expression *field = ((ast_entfield*)exprs[0])->m_field;
if (OPTS_FLAG(ADJUST_VECTOR_FIELDS) &&
exprs[0]->m_vtype == TYPE_FIELD &&
exprs[0]->m_next->m_vtype == TYPE_VECTOR)
{
assignop = type_storep_instr[TYPE_VECTOR];
}
else
assignop = type_storep_instr[exprs[0]->m_vtype];
if (assignop == VINSTR_END || !field->m_next->compareType(*exprs[1]))
{
ast_type_to_string(field->m_next, ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
if (OPTS_FLAG(ASSIGN_FUNCTION_TYPES) &&
field->m_next->m_vtype == TYPE_FUNCTION &&
exprs[1]->m_vtype == TYPE_FUNCTION)
{
(void)!compile_warning(ctx, WARN_ASSIGN_FUNCTION_TYPES,
"invalid types in assignment: cannot assign %s to %s", ty2, ty1);
}
else
compile_error(ctx, "invalid types in assignment: cannot assign %s to %s", ty2, ty1);
}
}
else
{
if (OPTS_FLAG(ADJUST_VECTOR_FIELDS) &&
exprs[0]->m_vtype == TYPE_FIELD &&
exprs[0]->m_next->m_vtype == TYPE_VECTOR)
{
assignop = type_store_instr[TYPE_VECTOR];
}
else {
assignop = type_store_instr[exprs[0]->m_vtype];
}
if (assignop == VINSTR_END) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types in assignment: cannot assign %s to %s", ty2, ty1);
}
else if (!exprs[0]->compareType(*exprs[1]))
{
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
if (OPTS_FLAG(ASSIGN_FUNCTION_TYPES) &&
exprs[0]->m_vtype == TYPE_FUNCTION &&
exprs[1]->m_vtype == TYPE_FUNCTION)
{
(void)!compile_warning(ctx, WARN_ASSIGN_FUNCTION_TYPES,
"invalid types in assignment: cannot assign %s to %s", ty2, ty1);
}
else
compile_error(ctx, "invalid types in assignment: cannot assign %s to %s", ty2, ty1);
}
}
(void)check_write_to(ctx, exprs[0]);
/* When we're a vector of part of an entity field we use STOREP */
if (ast_istype(exprs[0], ast_member) && ast_istype(((ast_member*)exprs[0])->m_owner, ast_entfield))
assignop = INSTR_STOREP_F;
out = new ast_store(ctx, assignop, exprs[0], exprs[1]);
break;
case opid3('+','+','P'):
case opid3('-','-','P'):
/* prefix ++ */
if (exprs[0]->m_vtype != TYPE_FLOAT) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
compile_error(exprs[0]->m_context, "invalid type for prefix increment: %s", ty1);
return false;
}
if (op->id == opid3('+','+','P'))
addop = INSTR_ADD_F;
else
addop = INSTR_SUB_F;
(void)check_write_to(exprs[0]->m_context, exprs[0]);
if (ast_istype(exprs[0], ast_entfield)) {
out = new ast_binstore(ctx, INSTR_STOREP_F, addop,
exprs[0],
parser->m_fold.imm_float(1));
} else {
out = new ast_binstore(ctx, INSTR_STORE_F, addop,
exprs[0],
parser->m_fold.imm_float(1));
}
break;
case opid3('S','+','+'):
case opid3('S','-','-'):
/* prefix ++ */
if (exprs[0]->m_vtype != TYPE_FLOAT) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
compile_error(exprs[0]->m_context, "invalid type for suffix increment: %s", ty1);
return false;
}
if (op->id == opid3('S','+','+')) {
addop = INSTR_ADD_F;
subop = INSTR_SUB_F;
} else {
addop = INSTR_SUB_F;
subop = INSTR_ADD_F;
}
(void)check_write_to(exprs[0]->m_context, exprs[0]);
if (ast_istype(exprs[0], ast_entfield)) {
out = new ast_binstore(ctx, INSTR_STOREP_F, addop,
exprs[0],
parser->m_fold.imm_float(1));
} else {
out = new ast_binstore(ctx, INSTR_STORE_F, addop,
exprs[0],
parser->m_fold.imm_float(1));
}
if (!out)
return false;
out = fold::binary(ctx, subop,
out,
parser->m_fold.imm_float(1));
break;
case opid2('+','='):
case opid2('-','='):
if (exprs[0]->m_vtype != exprs[1]->m_vtype ||
(exprs[0]->m_vtype != TYPE_VECTOR && exprs[0]->m_vtype != TYPE_FLOAT) )
{
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in expression: cannot add or subtract type %s and %s",
ty1, ty2);
return false;
}
(void)check_write_to(ctx, exprs[0]);
if (ast_istype(exprs[0], ast_entfield))
assignop = type_storep_instr[exprs[0]->m_vtype];
else
assignop = type_store_instr[exprs[0]->m_vtype];
switch (exprs[0]->m_vtype) {
case TYPE_FLOAT:
out = new ast_binstore(ctx, assignop,
(op->id == opid2('+','=') ? INSTR_ADD_F : INSTR_SUB_F),
exprs[0], exprs[1]);
break;
case TYPE_VECTOR:
out = new ast_binstore(ctx, assignop,
(op->id == opid2('+','=') ? INSTR_ADD_V : INSTR_SUB_V),
exprs[0], exprs[1]);
break;
default:
compile_error(ctx, "invalid types used in expression: cannot add or subtract type %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
};
break;
case opid2('*','='):
case opid2('/','='):
if (exprs[1]->m_vtype != TYPE_FLOAT ||
!(exprs[0]->m_vtype == TYPE_FLOAT ||
exprs[0]->m_vtype == TYPE_VECTOR))
{
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in expression: %s and %s",
ty1, ty2);
return false;
}
(void)check_write_to(ctx, exprs[0]);
if (ast_istype(exprs[0], ast_entfield))
assignop = type_storep_instr[exprs[0]->m_vtype];
else
assignop = type_store_instr[exprs[0]->m_vtype];
switch (exprs[0]->m_vtype) {
case TYPE_FLOAT:
out = new ast_binstore(ctx, assignop,
(op->id == opid2('*','=') ? INSTR_MUL_F : INSTR_DIV_F),
exprs[0], exprs[1]);
break;
case TYPE_VECTOR:
if (op->id == opid2('*','=')) {
out = new ast_binstore(ctx, assignop, INSTR_MUL_VF,
exprs[0], exprs[1]);
} else {
out = fold::binary(ctx, INSTR_DIV_F,
parser->m_fold.imm_float(1),
exprs[1]);
if (!out) {
compile_error(ctx, "internal error: failed to generate division");
return false;
}
out = new ast_binstore(ctx, assignop, INSTR_MUL_VF,
exprs[0], out);
}
break;
default:
compile_error(ctx, "invalid types used in expression: cannot add or subtract type %s and %s",
type_name[exprs[0]->m_vtype],
type_name[exprs[1]->m_vtype]);
return false;
};
break;
case opid2('&','='):
case opid2('|','='):
case opid2('^','='):
if (NotSameType(TYPE_FLOAT) && NotSameType(TYPE_VECTOR)) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in expression: %s and %s",
ty1, ty2);
return false;
}
(void)check_write_to(ctx, exprs[0]);
if (ast_istype(exprs[0], ast_entfield))
assignop = type_storep_instr[exprs[0]->m_vtype];
else
assignop = type_store_instr[exprs[0]->m_vtype];
if (exprs[0]->m_vtype == TYPE_FLOAT)
out = new ast_binstore(ctx, assignop,
(op->id == opid2('^','=') ? VINSTR_BITXOR : op->id == opid2('&','=') ? INSTR_BITAND : INSTR_BITOR),
exprs[0], exprs[1]);
else
out = new ast_binstore(ctx, assignop,
(op->id == opid2('^','=') ? VINSTR_BITXOR_V : op->id == opid2('&','=') ? VINSTR_BITAND_V : VINSTR_BITOR_V),
exprs[0], exprs[1]);
break;
case opid3('&','~','='):
/* This is like: a &= ~(b);
* But QC has no bitwise-not, so we implement it as
* a -= a & (b);
*/
if (NotSameType(TYPE_FLOAT) && NotSameType(TYPE_VECTOR)) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
ast_type_to_string(exprs[1], ty2, sizeof(ty2));
compile_error(ctx, "invalid types used in expression: %s and %s",
ty1, ty2);
return false;
}
if (ast_istype(exprs[0], ast_entfield))
assignop = type_storep_instr[exprs[0]->m_vtype];
else
assignop = type_store_instr[exprs[0]->m_vtype];
if (exprs[0]->m_vtype == TYPE_FLOAT)
out = fold::binary(ctx, INSTR_BITAND, exprs[0], exprs[1]);
else
out = fold::binary(ctx, VINSTR_BITAND_V, exprs[0], exprs[1]);
if (!out)
return false;
(void)check_write_to(ctx, exprs[0]);
if (exprs[0]->m_vtype == TYPE_FLOAT)
asbinstore = new ast_binstore(ctx, assignop, INSTR_SUB_F, exprs[0], out);
else
asbinstore = new ast_binstore(ctx, assignop, INSTR_SUB_V, exprs[0], out);
asbinstore->m_keep_dest = true;
out = asbinstore;
break;
case opid3('l', 'e', 'n'):
if (exprs[0]->m_vtype != TYPE_STRING && exprs[0]->m_vtype != TYPE_ARRAY) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
compile_error(exprs[0]->m_context, "invalid type for length operator: %s", ty1);
return false;
}
/* strings must be const, arrays are statically sized */
if (exprs[0]->m_vtype == TYPE_STRING &&
!(((ast_value*)exprs[0])->m_hasvalue && ((ast_value*)exprs[0])->m_cvq == CV_CONST))
{
compile_error(exprs[0]->m_context, "operand of length operator not a valid constant expression");
return false;
}
out = parser->m_fold.op(op, exprs);
break;
case opid2('~', 'P'):
if (exprs[0]->m_vtype != TYPE_FLOAT && exprs[0]->m_vtype != TYPE_VECTOR) {
ast_type_to_string(exprs[0], ty1, sizeof(ty1));
compile_error(exprs[0]->m_context, "invalid type for bit not: %s", ty1);
return false;
}
if (!(out = parser->m_fold.op(op, exprs))) {
if (exprs[0]->m_vtype == TYPE_FLOAT) {
out = fold::binary(ctx, INSTR_SUB_F, parser->m_fold.imm_float(2), exprs[0]);
} else {
out = fold::binary(ctx, INSTR_SUB_V, parser->m_fold.imm_vector(1), exprs[0]);
}
}
break;
}
#undef NotSameType
if (!out) {
compile_error(ctx, "failed to apply operator %s", op->op);
return false;
}
sy->out.push_back(syexp(ctx, out));
return true;
}
static bool parser_close_call(parser_t *parser, shunt *sy)
{
/* was a function call */
ast_expression *fun;
ast_value *funval = nullptr;
ast_call *call;
size_t fid;
size_t paramcount, i;
bool fold = true;
fid = sy->ops.back().off;
sy->ops.pop_back();
/* out[fid] is the function
* everything above is parameters...
*/
if (sy->argc.empty()) {
parseerror(parser, "internal error: no argument counter available");
return false;
}
paramcount = sy->argc.back();
sy->argc.pop_back();
if (sy->out.size() < fid) {
parseerror(parser, "internal error: broken function call %zu < %zu+%zu\n",
sy->out.size(),
fid,
paramcount);
return false;
}
/*
* TODO handle this at the intrinsic level with an ast_intrinsic
* node and codegen.
*/
if ((fun = sy->out[fid].out) == parser->m_intrin.debug_typestring()) {
char ty[1024];
if (fid+2 != sy->out.size() || sy->out.back().block) {
parseerror(parser, "intrinsic __builtin_debug_typestring requires exactly 1 parameter");
return false;
}
ast_type_to_string(sy->out.back().out, ty, sizeof(ty));
ast_unref(sy->out.back().out);
sy->out[fid] = syexp(sy->out.back().out->m_context,
parser->m_fold.constgen_string(ty, false));
sy->out.pop_back();
return true;
}
/*
* Now we need to determine if the function that is being called is
* an intrinsic so we can evaluate if the arguments to it are constant
* and than fruitfully fold them.
*/
#define fold_can_1(X) \
(ast_istype(((X)), ast_value) && (X)->m_hasvalue && ((X)->m_cvq == CV_CONST) && \
((X))->m_vtype != TYPE_FUNCTION)
if (fid + 1 < sy->out.size())
++paramcount;
for (i = 0; i < paramcount; ++i) {
if (!fold_can_1((ast_value*)sy->out[fid + 1 + i].out)) {
fold = false;
break;
}
}
/*
* All is well which ends well, if we make it into here we can ignore the
* intrinsic call and just evaluate it i.e constant fold it.
*/
if (fold && ast_istype(fun, ast_value) && ((ast_value*)fun)->m_intrinsic) {
ast_expression **exprs = nullptr;
ast_expression *foldval = nullptr;
for (i = 0; i < paramcount; i++)
vec_push(exprs, sy->out[fid+1 + i].out);
if (!(foldval = parser->m_intrin.do_fold((ast_value*)fun, exprs))) {
vec_free(exprs);
goto fold_leave;
}
/*
* Blub: what sorts of unreffing and resizing of
* sy->out should I be doing here?
*/
sy->out[fid] = syexp(foldval->m_context, foldval);
sy->out.erase(sy->out.end() - paramcount, sy->out.end());
vec_free(exprs);
return true;
}
fold_leave:
call = ast_call::make(sy->ops[sy->ops.size()].ctx, fun);
if (!call)
return false;
if (fid+1 + paramcount != sy->out.size()) {
parseerror(parser, "internal error: parameter count mismatch: (%zu+1+%zu), %zu",
fid,
paramcount,
sy->out.size());
return false;
}
for (i = 0; i < paramcount; ++i)
call->m_params.push_back(sy->out[fid+1 + i].out);
sy->out.erase(sy->out.end() - paramcount, sy->out.end());
(void)!call->checkTypes(parser->function->m_function_type->m_varparam);
if (parser->max_param_count < paramcount)
parser->max_param_count = paramcount;
if (ast_istype(fun, ast_value)) {
funval = (ast_value*)fun;
if ((fun->m_flags & AST_FLAG_VARIADIC) &&
!(/*funval->m_cvq == CV_CONST && */ funval->m_hasvalue && funval->m_constval.vfunc->m_builtin))
{
call->m_va_count = parser->m_fold.constgen_float((qcfloat_t)paramcount, false);
}
}
/* overwrite fid, the function, with a call */
sy->out[fid] = syexp(call->m_context, call);
if (fun->m_vtype != TYPE_FUNCTION) {
parseerror(parser, "not a function (%s)", type_name[fun->m_vtype]);
return false;
}
if (!fun->m_next) {
parseerror(parser, "could not determine function return type");
return false;
} else {
ast_value *fval = (ast_istype(fun, ast_value) ? ((ast_value*)fun) : nullptr);
if (fun->m_flags & AST_FLAG_DEPRECATED) {
if (!fval) {
return !parsewarning(parser, WARN_DEPRECATED,
"call to function (which is marked deprecated)\n",
"-> it has been declared here: %s:%i",
fun->m_context.file, fun->m_context.line);
}
if (!fval->m_desc.length()) {
return !parsewarning(parser, WARN_DEPRECATED,
"call to `%s` (which is marked deprecated)\n"
"-> `%s` declared here: %s:%i",
fval->m_name, fval->m_name, fun->m_context.file, fun->m_context.line);
}
return !parsewarning(parser, WARN_DEPRECATED,
"call to `%s` (deprecated: %s)\n"
"-> `%s` declared here: %s:%i",
fval->m_name, fval->m_desc, fval->m_name, fun->m_context.file,
fun->m_context.line);
}
if (fun->m_type_params.size() != paramcount &&
!((fun->m_flags & AST_FLAG_VARIADIC) &&
fun->m_type_params.size() < paramcount))
{
const char *fewmany = (fun->m_type_params.size() > paramcount) ? "few" : "many";
if (fval)
return !parsewarning(parser, WARN_INVALID_PARAMETER_COUNT,
"too %s parameters for call to %s: expected %i, got %i\n"
" -> `%s` has been declared here: %s:%i",
fewmany, fval->m_name, (int)fun->m_type_params.size(), (int)paramcount,
fval->m_name, fun->m_context.file, (int)fun->m_context.line);
else
return !parsewarning(parser, WARN_INVALID_PARAMETER_COUNT,
"too %s parameters for function call: expected %i, got %i\n"
" -> it has been declared here: %s:%i",
fewmany, (int)fun->m_type_params.size(), (int)paramcount,
fun->m_context.file, (int)fun->m_context.line);
}
}
return true;
}
static bool parser_close_paren(parser_t *parser, shunt *sy)
{
if (sy->ops.empty()) {
parseerror(parser, "unmatched closing paren");
return false;
}
while (sy->ops.size()) {
if (sy->ops.back().isparen) {
if (sy->paren.back() == PAREN_FUNC) {
sy->paren.pop_back();
if (!parser_close_call(parser, sy))
return false;
break;
}
if (sy->paren.back() == PAREN_EXPR) {
sy->paren.pop_back();
if (sy->out.empty()) {
compile_error(sy->ops.back().ctx, "empty paren expression");
sy->ops.pop_back();
return false;
}
sy->ops.pop_back();
break;
}
if (sy->paren.back() == PAREN_INDEX) {
sy->paren.pop_back();
// pop off the parenthesis
sy->ops.pop_back();
/* then apply the index operator */
if (!parser_sy_apply_operator(parser, sy))
return false;
break;
}
if (sy->paren.back() == PAREN_TERNARY1) {
sy->paren.back() = PAREN_TERNARY2;
// pop off the parenthesis
sy->ops.pop_back();
break;
}
compile_error(sy->ops.back().ctx, "invalid parenthesis");
return false;
}
if (!parser_sy_apply_operator(parser, sy))
return false;
}
return true;
}
static void parser_reclassify_token(parser_t *parser)
{
size_t i;
if (parser->tok >= TOKEN_START)
return;
for (i = 0; i < operator_count; ++i) {
if (!strcmp(parser_tokval(parser), operators[i].op)) {
parser->tok = TOKEN_OPERATOR;
return;
}
}
}
static ast_expression* parse_vararg_do(parser_t *parser)
{
ast_expression *idx, *out;
ast_value *typevar;
ast_value *funtype = parser->function->m_function_type;
lex_ctx_t ctx = parser_ctx(parser);
if (!parser->function->m_varargs) {
parseerror(parser, "function has no variable argument list");
return nullptr;
}
if (!parser_next(parser) || parser->tok != '(') {
parseerror(parser, "expected parameter index and type in parenthesis");
return nullptr;
}
if (!parser_next(parser)) {
parseerror(parser, "error parsing parameter index");
return nullptr;
}
idx = parse_expression_leave(parser, true, false, false);
if (!idx)
return nullptr;
if (parser->tok != ',') {
if (parser->tok != ')') {
ast_unref(idx);
parseerror(parser, "expected comma after parameter index");
return nullptr;
}
// vararg piping: ...(start)
out = new ast_argpipe(ctx, idx);
return out;
}
if (!parser_next(parser) || (parser->tok != TOKEN_IDENT && parser->tok != TOKEN_TYPENAME)) {
ast_unref(idx);
parseerror(parser, "expected typename for vararg");
return nullptr;
}
typevar = parse_typename(parser, nullptr, nullptr, nullptr);
if (!typevar) {
ast_unref(idx);
return nullptr;
}
if (parser->tok != ')') {
ast_unref(idx);
delete typevar;
parseerror(parser, "expected closing paren");
return nullptr;
}
if (funtype->m_varparam &&
!typevar->compareType(*funtype->m_varparam))
{
char ty1[1024];
char ty2[1024];
ast_type_to_string(typevar, ty1, sizeof(ty1));
ast_type_to_string(funtype->m_varparam, ty2, sizeof(ty2));
compile_error(typevar->m_context,
"function was declared to take varargs of type `%s`, requested type is: %s",
ty2, ty1);
}
out = ast_array_index::make(ctx, parser->function->m_varargs.get(), idx);
out->adoptType(*typevar);
delete typevar;
return out;
}
static ast_expression* parse_vararg(parser_t *parser)
{
bool old_noops = parser->lex->flags.noops;
ast_expression *out;
parser->lex->flags.noops = true;
out = parse_vararg_do(parser);
parser->lex->flags.noops = old_noops;
return out;
}
/* not to be exposed */
bool ftepp_predef_exists(const char *name);
static bool parse_sya_operand(parser_t *parser, shunt *sy, bool with_labels)
{
if (OPTS_FLAG(TRANSLATABLE_STRINGS) &&
parser->tok == TOKEN_IDENT &&
!strcmp(parser_tokval(parser), "_"))
{
/* a translatable string */
ast_value *val;
parser->lex->flags.noops = true;
if (!parser_next(parser) || parser->tok != '(') {
parseerror(parser, "use _(\"string\") to create a translatable string constant");
return false;
}
parser->lex->flags.noops = false;
if (!parser_next(parser) || parser->tok != TOKEN_STRINGCONST) {
parseerror(parser, "expected a constant string in translatable-string extension");
return false;
}
val = (ast_value*)parser->m_fold.constgen_string(parser_tokval(parser), true);
if (!val)
return false;
sy->out.push_back(syexp(parser_ctx(parser), val));
if (!parser_next(parser) || parser->tok != ')') {
parseerror(parser, "expected closing paren after translatable string");
return false;
}
return true;
}
else if (parser->tok == TOKEN_DOTS)
{
ast_expression *va;
if (!OPTS_FLAG(VARIADIC_ARGS)) {
parseerror(parser, "cannot access varargs (try -fvariadic-args)");
return false;
}
va = parse_vararg(parser);
if (!va)
return false;
sy->out.push_back(syexp(parser_ctx(parser), va));
return true;
}
else if (parser->tok == TOKEN_FLOATCONST) {
ast_expression *val = parser->m_fold.constgen_float((parser_token(parser)->constval.f), false);
if (!val)
return false;
sy->out.push_back(syexp(parser_ctx(parser), val));
return true;
}
else if (parser->tok == TOKEN_INTCONST || parser->tok == TOKEN_CHARCONST) {
ast_expression *val = parser->m_fold.constgen_float((qcfloat_t)(parser_token(parser)->constval.i), false);
if (!val)
return false;
sy->out.push_back(syexp(parser_ctx(parser), val));
return true;
}
else if (parser->tok == TOKEN_STRINGCONST) {
ast_expression *val = parser->m_fold.constgen_string(parser_tokval(parser), false);
if (!val)
return false;
sy->out.push_back(syexp(parser_ctx(parser), val));
return true;
}
else if (parser->tok == TOKEN_VECTORCONST) {
ast_expression *val = parser->m_fold.constgen_vector(parser_token(parser)->constval.v);
if (!val)
return false;
sy->out.push_back(syexp(parser_ctx(parser), val));
return true;
}
else if (parser->tok == TOKEN_IDENT)
{
const char *ctoken = parser_tokval(parser);
ast_expression *prev = sy->out.size() ? sy->out.back().out : nullptr;
ast_expression *var;
/* a_vector.{x,y,z} */
if (sy->ops.empty() ||
!sy->ops.back().etype ||
operators[sy->ops.back().etype-1].id != opid1('.'))
{
/* When adding more intrinsics, fix the above condition */
prev = nullptr;
}
if (prev && prev->m_vtype == TYPE_VECTOR && ctoken[0] >= 'x' && ctoken[0] <= 'z' && !ctoken[1])
{
var = parser->const_vec[ctoken[0]-'x'];
} else {
var = parser_find_var(parser, parser_tokval(parser));
if (!var)
var = parser_find_field(parser, parser_tokval(parser));
}
if (!var && with_labels) {
var = parser_find_label(parser, parser_tokval(parser));
if (!with_labels) {
ast_label *lbl = new ast_label(parser_ctx(parser), parser_tokval(parser), true);
var = lbl;
parser->labels.push_back(lbl);
}
}
if (!var && !strcmp(parser_tokval(parser), "__FUNC__"))
var = parser->m_fold.constgen_string(parser->function->m_name, false);
if (!var) {
/*
* now we try for the real intrinsic hashtable. If the string
* begins with __builtin, we simply skip past it, otherwise we
* use the identifier as is.
*/
if (!strncmp(parser_tokval(parser), "__builtin_", 10)) {
var = parser->m_intrin.func(parser_tokval(parser));
}
/*
* Try it again, intrin_func deals with the alias method as well
* the first one masks for __builtin though, we emit warning here.
*/
if (!var) {
if ((var = parser->m_intrin.func(parser_tokval(parser)))) {
(void)!compile_warning(
parser_ctx(parser),
WARN_BUILTINS,
"using implicitly defined builtin `__builtin_%s' for `%s'",
parser_tokval(parser),
parser_tokval(parser)
);
}
}
if (!var) {
/*
* sometimes people use preprocessing predefs without enabling them
* i've done this thousands of times already myself. Lets check for
* it in the predef table. And diagnose it better :)
*/
if (!OPTS_FLAG(FTEPP_PREDEFS) && ftepp_predef_exists(parser_tokval(parser))) {
parseerror(parser, "unexpected identifier: %s (use -fftepp-predef to enable pre-defined macros)", parser_tokval(parser));
return false;
}
parseerror(parser, "unexpected identifier: %s", parser_tokval(parser));
return false;
}
}
else
{
if (ast_istype(var, ast_value)) {
((ast_value*)var)->m_uses++;
}
else if (ast_istype(var, ast_member)) {
ast_member *mem = (ast_member*)var;
if (ast_istype(mem->m_owner, ast_value))
((ast_value*)(mem->m_owner))->m_uses++;
}
}
sy->out.push_back(syexp(parser_ctx(parser), var));
return true;
}
parseerror(parser, "unexpected token `%s`", parser_tokval(parser));
return false;
}
static ast_expression* parse_expression_leave(parser_t *parser, bool stopatcomma, bool truthvalue, bool with_labels)
{
ast_expression *expr = nullptr;
shunt sy;
bool wantop = false;
/* only warn once about an assignment in a truth value because the current code
* would trigger twice on: if(a = b && ...), once for the if-truth-value, once for the && part
*/
bool warn_parenthesis = true;
/* count the parens because an if starts with one, so the
* end of a condition is an unmatched closing paren
*/
int ternaries = 0;
memset(&sy, 0, sizeof(sy));
parser->lex->flags.noops = false;
parser_reclassify_token(parser);
while (true)
{
if (parser->tok == TOKEN_TYPENAME) {
parseerror(parser, "unexpected typename `%s`", parser_tokval(parser));
goto onerr;
}
if (parser->tok == TOKEN_OPERATOR)
{
/* classify the operator */
const oper_info *op;
const oper_info *olast = nullptr;
size_t o;
for (o = 0; o < operator_count; ++o) {
if (((!(operators[o].flags & OP_PREFIX) == !!wantop)) &&
/* !(operators[o].flags & OP_SUFFIX) && / * remove this */
!strcmp(parser_tokval(parser), operators[o].op))
{
break;
}
}
if (o == operator_count) {
compile_error(parser_ctx(parser), "unexpected operator: %s", parser_tokval(parser));
goto onerr;
}
/* found an operator */
op = &operators[o];
/* when declaring variables, a comma starts a new variable */
if (op->id == opid1(',') && sy.paren.empty() && stopatcomma) {
/* fixup the token */
parser->tok = ',';
break;
}
/* a colon without a pervious question mark cannot be a ternary */
if (!ternaries && op->id == opid2(':','?')) {
parser->tok = ':';
break;
}
if (op->id == opid1(',')) {
if (sy.paren.size() && sy.paren.back() == PAREN_TERNARY2) {
(void)!parsewarning(parser, WARN_TERNARY_PRECEDENCE, "suggesting parenthesis around ternary expression");
}
}
if (sy.ops.size() && !sy.ops.back().isparen)
olast = &operators[sy.ops.back().etype-1];
/* first only apply higher precedences, assoc_left+equal comes after we warn about precedence rules */
while (olast && op->prec < olast->prec)
{
if (!parser_sy_apply_operator(parser, &sy))
goto onerr;
if (sy.ops.size() && !sy.ops.back().isparen)
olast = &operators[sy.ops.back().etype-1];
else
olast = nullptr;
}
#define IsAssignOp(x) (\
(x) == opid1('=') || \
(x) == opid2('+','=') || \
(x) == opid2('-','=') || \
(x) == opid2('*','=') || \
(x) == opid2('/','=') || \
(x) == opid2('%','=') || \
(x) == opid2('&','=') || \
(x) == opid2('|','=') || \
(x) == opid3('&','~','=') \
)
if (warn_parenthesis) {
if ( (olast && IsAssignOp(olast->id) && (op->id == opid2('&','&') || op->id == opid2('|','|'))) ||
(olast && IsAssignOp(op->id) && (olast->id == opid2('&','&') || olast->id == opid2('|','|'))) ||
(truthvalue && sy.paren.empty() && IsAssignOp(op->id))
)
{
(void)!parsewarning(parser, WARN_PARENTHESIS, "suggesting parenthesis around assignment used as truth value");
warn_parenthesis = false;
}
if (olast && olast->id != op->id) {
if ((op->id == opid1('&') || op->id == opid1('|') || op->id == opid1('^')) &&
(olast->id == opid1('&') || olast->id == opid1('|') || olast->id == opid1('^')))
{
(void)!parsewarning(parser, WARN_PARENTHESIS, "suggesting parenthesis around bitwise operations");
warn_parenthesis = false;
}
else if ((op->id == opid2('&','&') || op->id == opid2('|','|')) &&
(olast->id == opid2('&','&') || olast->id == opid2('|','|')))
{
(void)!parsewarning(parser, WARN_PARENTHESIS, "suggesting parenthesis around logical operations");
warn_parenthesis = false;
}
}
}
while (olast && (
(op->prec < olast->prec) ||
(op->assoc == ASSOC_LEFT && op->prec <= olast->prec) ) )
{
if (!parser_sy_apply_operator(parser, &sy))
goto onerr;
if (sy.ops.size() && !sy.ops.back().isparen)
olast = &operators[sy.ops.back().etype-1];
else
olast = nullptr;
}
if (op->id == opid1('(')) {
if (wantop) {
size_t sycount = sy.out.size();
/* we expected an operator, this is the function-call operator */
sy.paren.push_back(PAREN_FUNC);
sy.ops.push_back(syparen(parser_ctx(parser), sycount-1));
sy.argc.push_back(0);
} else {
sy.paren.push_back(PAREN_EXPR);
sy.ops.push_back(syparen(parser_ctx(parser), 0));
}
wantop = false;
} else if (op->id == opid1('[')) {
if (!wantop) {
parseerror(parser, "unexpected array subscript");
goto onerr;
}
sy.paren.push_back(PAREN_INDEX);
/* push both the operator and the paren, this makes life easier */
sy.ops.push_back(syop(parser_ctx(parser), op));
sy.ops.push_back(syparen(parser_ctx(parser), 0));
wantop = false;
} else if (op->id == opid2('?',':')) {
sy.ops.push_back(syop(parser_ctx(parser), op));
sy.ops.push_back(syparen(parser_ctx(parser), 0));
wantop = false;
++ternaries;
sy.paren.push_back(PAREN_TERNARY1);
} else if (op->id == opid2(':','?')) {
if (sy.paren.empty()) {
parseerror(parser, "unexpected colon outside ternary expression (missing parenthesis?)");
goto onerr;
}
if (sy.paren.back() != PAREN_TERNARY1) {
parseerror(parser, "unexpected colon outside ternary expression (missing parenthesis?)");
goto onerr;
}
if (!parser_close_paren(parser, &sy))
goto onerr;
sy.ops.push_back(syop(parser_ctx(parser), op));
wantop = false;
--ternaries;
} else {
sy.ops.push_back(syop(parser_ctx(parser), op));
wantop = !!(op->flags & OP_SUFFIX);
}
}
else if (parser->tok == ')') {
while (sy.paren.size() && sy.paren.back() == PAREN_TERNARY2) {
if (!parser_sy_apply_operator(parser, &sy))
goto onerr;
}
if (sy.paren.empty())
break;
if (wantop) {
if (sy.paren.back() == PAREN_TERNARY1) {
parseerror(parser, "mismatched parentheses (closing paren in ternary expression?)");
goto onerr;
}
if (!parser_close_paren(parser, &sy))
goto onerr;
} else {
/* must be a function call without parameters */
if (sy.paren.back() != PAREN_FUNC) {
parseerror(parser, "closing paren in invalid position");
goto onerr;
}
if (!parser_close_paren(parser, &sy))
goto onerr;
}
wantop = true;
}
else if (parser->tok == '(') {
parseerror(parser, "internal error: '(' should be classified as operator");
goto onerr;
}
else if (parser->tok == '[') {
parseerror(parser, "internal error: '[' should be classified as operator");
goto onerr;
}
else if (parser->tok == ']') {
while (sy.paren.size() && sy.paren.back() == PAREN_TERNARY2) {
if (!parser_sy_apply_operator(parser, &sy))
goto onerr;
}
if (sy.paren.empty())
break;
if (sy.paren.back() != PAREN_INDEX) {
parseerror(parser, "mismatched parentheses, unexpected ']'");
goto onerr;
}
if (!parser_close_paren(parser, &sy))
goto onerr;
wantop = true;
}
else if (!wantop) {
if (!parse_sya_operand(parser, &sy, with_labels))
goto onerr;
wantop = true;
}
else {
/* in this case we might want to allow constant string concatenation */
bool concatenated = false;
if (parser->tok == TOKEN_STRINGCONST && sy.out.size()) {
ast_expression *lexpr = sy.out.back().out;
if (ast_istype(lexpr, ast_value)) {
ast_value *last = (ast_value*)lexpr;
if (last->m_isimm == true && last->m_cvq == CV_CONST &&
last->m_hasvalue && last->m_vtype == TYPE_STRING)
{
char *newstr = nullptr;
util_asprintf(&newstr, "%s%s", last->m_constval.vstring, parser_tokval(parser));
sy.out.back().out = parser->m_fold.constgen_string(newstr, false);
mem_d(newstr);
concatenated = true;
}
}
}
if (!concatenated) {
parseerror(parser, "expected operator or end of statement");
goto onerr;
}
}
if (!parser_next(parser)) {
goto onerr;
}
if (parser->tok == ';' ||
((sy.paren.empty() || (sy.paren.size() == 1 && sy.paren.back() == PAREN_TERNARY2)) &&
(parser->tok == ']' || parser->tok == ')' || parser->tok == '}')))
{
break;
}
}
while (sy.ops.size()) {
if (!parser_sy_apply_operator(parser, &sy))
goto onerr;
}
parser->lex->flags.noops = true;
if (sy.out.size() != 1) {
parseerror(parser, "expression expected");
expr = nullptr;
} else
expr = sy.out[0].out;
if (sy.paren.size()) {
parseerror(parser, "internal error: sy.paren.size() = %zu", sy.paren.size());
return nullptr;
}
return expr;
onerr:
parser->lex->flags.noops = true;
for (auto &it : sy.out)
if (it.out) ast_unref(it.out);
return nullptr;
}
static ast_expression* parse_expression(parser_t *parser, bool stopatcomma, bool with_labels)
{
ast_expression *e = parse_expression_leave(parser, stopatcomma, false, with_labels);
if (!e)
return nullptr;
if (parser->tok != ';') {
parseerror(parser, "semicolon expected after expression");
ast_unref(e);
return nullptr;
}
if (!parser_next(parser)) {
ast_unref(e);
return nullptr;
}
return e;
}
static void parser_enterblock(parser_t *parser)
{
vec_push(parser->variables, util_htnew(PARSER_HT_SIZE));
vec_push(parser->_blocklocals, vec_size(parser->_locals));
vec_push(parser->typedefs, util_htnew(TYPEDEF_HT_SIZE));
vec_push(parser->_blocktypedefs, vec_size(parser->_typedefs));
vec_push(parser->_block_ctx, parser_ctx(parser));
}
static bool parser_leaveblock(parser_t *parser)
{
bool rv = true;
size_t locals, typedefs;
if (vec_size(parser->variables) <= PARSER_HT_LOCALS) {
parseerror(parser, "internal error: parser_leaveblock with no block");
return false;
}
util_htdel(vec_last(parser->variables));
vec_pop(parser->variables);
if (!vec_size(parser->_blocklocals)) {
parseerror(parser, "internal error: parser_leaveblock with no block (2)");
return false;
}
locals = vec_last(parser->_blocklocals);
vec_pop(parser->_blocklocals);
while (vec_size(parser->_locals) != locals) {
ast_expression *e = vec_last(parser->_locals);
ast_value *v = (ast_value*)e;
vec_pop(parser->_locals);
if (ast_istype(e, ast_value) && !v->m_uses) {
if (compile_warning(v->m_context, WARN_UNUSED_VARIABLE, "unused variable: `%s`", v->m_name))
rv = false;
}
}
typedefs = vec_last(parser->_blocktypedefs);
while (vec_size(parser->_typedefs) != typedefs) {
delete vec_last(parser->_typedefs);
vec_pop(parser->_typedefs);
}
util_htdel(vec_last(parser->typedefs));
vec_pop(parser->typedefs);
vec_pop(parser->_block_ctx);
return rv;
}
static void parser_addlocal(parser_t *parser, const char *name, ast_expression *e)
{
vec_push(parser->_locals, e);
util_htset(vec_last(parser->variables), name, (void*)e);
}
static void parser_addlocal(parser_t *parser, const std::string &name, ast_expression *e) {
return parser_addlocal(parser, name.c_str(), e);
}
static void parser_addglobal(parser_t *parser, const char *name, ast_expression *e)
{
parser->globals.push_back(e);
util_htset(parser->htglobals, name, e);
}
static void parser_addglobal(parser_t *parser, const std::string &name, ast_expression *e) {
return parser_addglobal(parser, name.c_str(), e);
}
static ast_expression* process_condition(parser_t *parser, ast_expression *cond, bool *_ifnot)
{
bool ifnot = false;
ast_unary *unary;
ast_expression *prev;
if (cond->m_vtype == TYPE_VOID || cond->m_vtype >= TYPE_VARIANT) {
char ty[1024];
ast_type_to_string(cond, ty, sizeof(ty));
compile_error(cond->m_context, "invalid type for if() condition: %s", ty);
}
if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && cond->m_vtype == TYPE_STRING)
{
prev = cond;
cond = ast_unary::make(cond->m_context, INSTR_NOT_S, cond);
if (!cond) {
ast_unref(prev);
parseerror(parser, "internal error: failed to process condition");
return nullptr;
}
ifnot = !ifnot;
}
else if (OPTS_FLAG(CORRECT_LOGIC) && cond->m_vtype == TYPE_VECTOR)
{
/* vector types need to be cast to true booleans */
ast_binary *bin = (ast_binary*)cond;
if (!OPTS_FLAG(PERL_LOGIC) || !ast_istype(cond, ast_binary) || !(bin->m_op == INSTR_AND || bin->m_op == INSTR_OR))
{
/* in perl-logic, AND and OR take care of the -fcorrect-logic */
prev = cond;
cond = ast_unary::make(cond->m_context, INSTR_NOT_V, cond);
if (!cond) {
ast_unref(prev);
parseerror(parser, "internal error: failed to process condition");
return nullptr;
}
ifnot = !ifnot;
}
}
unary = (ast_unary*)cond;
/* ast_istype dereferences cond, should test here for safety */
while (cond && ast_istype(cond, ast_unary) && unary->m_op == INSTR_NOT_F)
{
cond = unary->m_operand;
unary->m_operand = nullptr;
delete unary;
ifnot = !ifnot;
unary = (ast_unary*)cond;
}
if (!cond)
parseerror(parser, "internal error: failed to process condition");
if (ifnot) *_ifnot = !*_ifnot;
return cond;
}
static bool parse_if(parser_t *parser, ast_block *block, ast_expression **out)
{
ast_ifthen *ifthen;
ast_expression *cond, *ontrue = nullptr, *onfalse = nullptr;
bool ifnot = false;
lex_ctx_t ctx = parser_ctx(parser);
(void)block; /* not touching */
/* skip the 'if', parse an optional 'not' and check for an opening paren */
if (!parser_next(parser)) {
parseerror(parser, "expected condition or 'not'");
return false;
}
if (parser->tok == TOKEN_IDENT && !strcmp(parser_tokval(parser), "not")) {
ifnot = true;
if (!parser_next(parser)) {
parseerror(parser, "expected condition in parenthesis");
return false;
}
}
if (parser->tok != '(') {
parseerror(parser, "expected 'if' condition in parenthesis");
return false;
}
/* parse into the expression */
if (!parser_next(parser)) {
parseerror(parser, "expected 'if' condition after opening paren");
return false;
}
/* parse the condition */
cond = parse_expression_leave(parser, false, true, false);
if (!cond)
return false;
/* closing paren */
if (parser->tok != ')') {
parseerror(parser, "expected closing paren after 'if' condition");
ast_unref(cond);
return false;
}
/* parse into the 'then' branch */
if (!parser_next(parser)) {
parseerror(parser, "expected statement for on-true branch of 'if'");
ast_unref(cond);
return false;
}
if (!parse_statement_or_block(parser, &ontrue)) {
ast_unref(cond);
return false;
}
if (!ontrue)
ontrue = new ast_block(parser_ctx(parser));
/* check for an else */
if (!strcmp(parser_tokval(parser), "else")) {
/* parse into the 'else' branch */
if (!parser_next(parser)) {
parseerror(parser, "expected on-false branch after 'else'");
delete ontrue;
ast_unref(cond);
return false;
}
if (!parse_statement_or_block(parser, &onfalse)) {
delete ontrue;
ast_unref(cond);
return false;
}
}
cond = process_condition(parser, cond, &ifnot);
if (!cond) {
if (ontrue) delete ontrue;
if (onfalse) delete onfalse;
return false;
}
if (ifnot)
ifthen = new ast_ifthen(ctx, cond, onfalse, ontrue);
else
ifthen = new ast_ifthen(ctx, cond, ontrue, onfalse);
*out = ifthen;
return true;
}
static bool parse_while_go(parser_t *parser, ast_block *block, ast_expression **out);
static bool parse_while(parser_t *parser, ast_block *block, ast_expression **out)
{
bool rv;
char *label = nullptr;
/* skip the 'while' and get the body */
if (!parser_next(parser)) {
if (OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "expected loop label or 'while' condition in parenthesis");
else
parseerror(parser, "expected 'while' condition in parenthesis");
return false;
}
if (parser->tok == ':') {
if (!OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "labeled loops not activated, try using -floop-labels");
if (!parser_next(parser) || parser->tok != TOKEN_IDENT) {
parseerror(parser, "expected loop label");
return false;
}
label = util_strdup(parser_tokval(parser));
if (!parser_next(parser)) {
mem_d(label);
parseerror(parser, "expected 'while' condition in parenthesis");
return false;
}
}
if (parser->tok != '(') {
parseerror(parser, "expected 'while' condition in parenthesis");
return false;
}
parser->breaks.push_back(label);
parser->continues.push_back(label);
rv = parse_while_go(parser, block, out);
if (label)
mem_d(label);
if (parser->breaks.back() != label || parser->continues.back() != label) {
parseerror(parser, "internal error: label stack corrupted");
rv = false;
delete *out;
*out = nullptr;
}
else {
parser->breaks.pop_back();
parser->continues.pop_back();
}
return rv;
}
static bool parse_while_go(parser_t *parser, ast_block *block, ast_expression **out)
{
ast_loop *aloop;
ast_expression *cond, *ontrue;
bool ifnot = false;
lex_ctx_t ctx = parser_ctx(parser);
(void)block; /* not touching */
/* parse into the expression */
if (!parser_next(parser)) {
parseerror(parser, "expected 'while' condition after opening paren");
return false;
}
/* parse the condition */
cond = parse_expression_leave(parser, false, true, false);
if (!cond)
return false;
/* closing paren */
if (parser->tok != ')') {
parseerror(parser, "expected closing paren after 'while' condition");
ast_unref(cond);
return false;
}
/* parse into the 'then' branch */
if (!parser_next(parser)) {
parseerror(parser, "expected while-loop body");
ast_unref(cond);
return false;
}
if (!parse_statement_or_block(parser, &ontrue)) {
ast_unref(cond);
return false;
}
cond = process_condition(parser, cond, &ifnot);
if (!cond) {
ast_unref(ontrue);
return false;
}
aloop = new ast_loop(ctx, nullptr, cond, ifnot, nullptr, false, nullptr, ontrue);
*out = aloop;
return true;
}
static bool parse_dowhile_go(parser_t *parser, ast_block *block, ast_expression **out);
static bool parse_dowhile(parser_t *parser, ast_block *block, ast_expression **out)
{
bool rv;
char *label = nullptr;
/* skip the 'do' and get the body */
if (!parser_next(parser)) {
if (OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "expected loop label or body");
else
parseerror(parser, "expected loop body");
return false;
}
if (parser->tok == ':') {
if (!OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "labeled loops not activated, try using -floop-labels");
if (!parser_next(parser) || parser->tok != TOKEN_IDENT) {
parseerror(parser, "expected loop label");
return false;
}
label = util_strdup(parser_tokval(parser));
if (!parser_next(parser)) {
mem_d(label);
parseerror(parser, "expected loop body");
return false;
}
}
parser->breaks.push_back(label);
parser->continues.push_back(label);
rv = parse_dowhile_go(parser, block, out);
if (label)
mem_d(label);
if (parser->breaks.back() != label || parser->continues.back() != label) {
parseerror(parser, "internal error: label stack corrupted");
rv = false;
delete *out;
*out = nullptr;
}
else {
parser->breaks.pop_back();
parser->continues.pop_back();
}
return rv;
}
static bool parse_dowhile_go(parser_t *parser, ast_block *block, ast_expression **out)
{
ast_loop *aloop;
ast_expression *cond, *ontrue;
bool ifnot = false;
lex_ctx_t ctx = parser_ctx(parser);
(void)block; /* not touching */
if (!parse_statement_or_block(parser, &ontrue))
return false;
/* expect the "while" */
if (parser->tok != TOKEN_KEYWORD ||
strcmp(parser_tokval(parser), "while"))
{
parseerror(parser, "expected 'while' and condition");
delete ontrue;
return false;
}
/* skip the 'while' and check for opening paren */
if (!parser_next(parser) || parser->tok != '(') {
parseerror(parser, "expected 'while' condition in parenthesis");
delete ontrue;
return false;
}
/* parse into the expression */
if (!parser_next(parser)) {
parseerror(parser, "expected 'while' condition after opening paren");
delete ontrue;
return false;
}
/* parse the condition */
cond = parse_expression_leave(parser, false, true, false);
if (!cond)
return false;
/* closing paren */
if (parser->tok != ')') {
parseerror(parser, "expected closing paren after 'while' condition");
delete ontrue;
ast_unref(cond);
return false;
}
/* parse on */
if (!parser_next(parser) || parser->tok != ';') {
parseerror(parser, "expected semicolon after condition");
delete ontrue;
ast_unref(cond);
return false;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error");
delete ontrue;
ast_unref(cond);
return false;
}
cond = process_condition(parser, cond, &ifnot);
if (!cond) {
delete ontrue;
return false;
}
aloop = new ast_loop(ctx, nullptr, nullptr, false, cond, ifnot, nullptr, ontrue);
*out = aloop;
return true;
}
static bool parse_for_go(parser_t *parser, ast_block *block, ast_expression **out);
static bool parse_for(parser_t *parser, ast_block *block, ast_expression **out)
{
bool rv;
char *label = nullptr;
/* skip the 'for' and check for opening paren */
if (!parser_next(parser)) {
if (OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "expected loop label or 'for' expressions in parenthesis");
else
parseerror(parser, "expected 'for' expressions in parenthesis");
return false;
}
if (parser->tok == ':') {
if (!OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "labeled loops not activated, try using -floop-labels");
if (!parser_next(parser) || parser->tok != TOKEN_IDENT) {
parseerror(parser, "expected loop label");
return false;
}
label = util_strdup(parser_tokval(parser));
if (!parser_next(parser)) {
mem_d(label);
parseerror(parser, "expected 'for' expressions in parenthesis");
return false;
}
}
if (parser->tok != '(') {
parseerror(parser, "expected 'for' expressions in parenthesis");
return false;
}
parser->breaks.push_back(label);
parser->continues.push_back(label);
rv = parse_for_go(parser, block, out);
if (label)
mem_d(label);
if (parser->breaks.back() != label || parser->continues.back() != label) {
parseerror(parser, "internal error: label stack corrupted");
rv = false;
delete *out;
*out = nullptr;
}
else {
parser->breaks.pop_back();
parser->continues.pop_back();
}
return rv;
}
static bool parse_for_go(parser_t *parser, ast_block *block, ast_expression **out)
{
ast_loop *aloop;
ast_expression *initexpr, *cond, *increment, *ontrue;
ast_value *typevar;
bool ifnot = false;
lex_ctx_t ctx = parser_ctx(parser);
parser_enterblock(parser);
initexpr = nullptr;
cond = nullptr;
increment = nullptr;
ontrue = nullptr;
/* parse into the expression */
if (!parser_next(parser)) {
parseerror(parser, "expected 'for' initializer after opening paren");
goto onerr;
}
typevar = nullptr;
if (parser->tok == TOKEN_IDENT)
typevar = parser_find_typedef(parser, parser_tokval(parser), 0);
if (typevar || parser->tok == TOKEN_TYPENAME) {
if (!parse_variable(parser, block, true, CV_VAR, typevar, false, false, 0, nullptr))
goto onerr;
}
else if (parser->tok != ';')
{
initexpr = parse_expression_leave(parser, false, false, false);
if (!initexpr)
goto onerr;
/* move on to condition */
if (parser->tok != ';') {
parseerror(parser, "expected semicolon after for-loop initializer");
goto onerr;
}
if (!parser_next(parser)) {
parseerror(parser, "expected for-loop condition");
goto onerr;
}
} else if (!parser_next(parser)) {
parseerror(parser, "expected for-loop condition");
goto onerr;
}
/* parse the condition */
if (parser->tok != ';') {
cond = parse_expression_leave(parser, false, true, false);
if (!cond)
goto onerr;
}
/* move on to incrementor */
if (parser->tok != ';') {
parseerror(parser, "expected semicolon after for-loop initializer");
goto onerr;
}
if (!parser_next(parser)) {
parseerror(parser, "expected for-loop condition");
goto onerr;
}
/* parse the incrementor */
if (parser->tok != ')') {
lex_ctx_t condctx = parser_ctx(parser);
increment = parse_expression_leave(parser, false, false, false);
if (!increment)
goto onerr;
if (!increment->m_side_effects) {
if (compile_warning(condctx, WARN_EFFECTLESS_STATEMENT, "statement has no effect"))
goto onerr;
}
}
/* closing paren */
if (parser->tok != ')') {
parseerror(parser, "expected closing paren after 'for-loop' incrementor");
goto onerr;
}
/* parse into the 'then' branch */
if (!parser_next(parser)) {
parseerror(parser, "expected for-loop body");
goto onerr;
}
if (!parse_statement_or_block(parser, &ontrue))
goto onerr;
if (cond) {
cond = process_condition(parser, cond, &ifnot);
if (!cond)
goto onerr;
}
aloop = new ast_loop(ctx, initexpr, cond, ifnot, nullptr, false, increment, ontrue);
*out = aloop;
if (!parser_leaveblock(parser)) {
delete aloop;
return false;
}
return true;
onerr:
if (initexpr) ast_unref(initexpr);
if (cond) ast_unref(cond);
if (increment) ast_unref(increment);
(void)!parser_leaveblock(parser);
return false;
}
static bool parse_return(parser_t *parser, ast_block *block, ast_expression **out)
{
ast_expression *exp = nullptr;
ast_expression *var = nullptr;
ast_return *ret = nullptr;
ast_value *retval = parser->function->m_return_value;
ast_value *expected = parser->function->m_function_type;
lex_ctx_t ctx = parser_ctx(parser);
(void)block; /* not touching */
if (!parser_next(parser)) {
parseerror(parser, "expected return expression");
return false;
}
/* return assignments */
if (parser->tok == '=') {
if (!OPTS_FLAG(RETURN_ASSIGNMENTS)) {
parseerror(parser, "return assignments not activated, try using -freturn-assigments");
return false;
}
if (type_store_instr[expected->m_next->m_vtype] == VINSTR_END) {
char ty1[1024];
ast_type_to_string(expected->m_next, ty1, sizeof(ty1));
parseerror(parser, "invalid return type: `%s'", ty1);
return false;
}
if (!parser_next(parser)) {
parseerror(parser, "expected return assignment expression");
return false;
}
if (!(exp = parse_expression_leave(parser, false, false, false)))
return false;
/* prepare the return value */
if (!retval) {
retval = new ast_value(ctx, "#LOCAL_RETURN", TYPE_VOID);
retval->adoptType(*expected->m_next);
parser->function->m_return_value = retval;
}
if (!exp->compareType(*retval)) {
char ty1[1024], ty2[1024];
ast_type_to_string(exp, ty1, sizeof(ty1));
ast_type_to_string(retval, ty2, sizeof(ty2));
parseerror(parser, "invalid type for return value: `%s', expected `%s'", ty1, ty2);
}
/* store to 'return' local variable */
var = new ast_store(
ctx,
type_store_instr[expected->m_next->m_vtype],
retval, exp);
if (!var) {
ast_unref(exp);
return false;
}
if (parser->tok != ';')
parseerror(parser, "missing semicolon after return assignment");
else if (!parser_next(parser))
parseerror(parser, "parse error after return assignment");
*out = var;
return true;
}
if (parser->tok != ';') {
exp = parse_expression(parser, false, false);
if (!exp)
return false;
if (exp->m_vtype != TYPE_NIL &&
exp->m_vtype != (expected)->m_next->m_vtype)
{
parseerror(parser, "return with invalid expression");
}
ret = new ast_return(ctx, exp);
if (!ret) {
ast_unref(exp);
return false;
}
} else {
if (!parser_next(parser))
parseerror(parser, "parse error");
if (!retval && expected->m_next->m_vtype != TYPE_VOID)
{
(void)!parsewarning(parser, WARN_MISSING_RETURN_VALUES, "return without value");
}
ret = new ast_return(ctx, retval);
}
*out = ret;
return true;
}
static bool parse_break_continue(parser_t *parser, ast_block *block, ast_expression **out, bool is_continue)
{
size_t i;
unsigned int levels = 0;
lex_ctx_t ctx = parser_ctx(parser);
auto &loops = (is_continue ? parser->continues : parser->breaks);
(void)block; /* not touching */
if (!parser_next(parser)) {
parseerror(parser, "expected semicolon or loop label");
return false;
}
if (loops.empty()) {
if (is_continue)
parseerror(parser, "`continue` can only be used inside loops");
else
parseerror(parser, "`break` can only be used inside loops or switches");
}
if (parser->tok == TOKEN_IDENT) {
if (!OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "labeled loops not activated, try using -floop-labels");
i = loops.size();
while (i--) {
if (loops[i] && !strcmp(loops[i], parser_tokval(parser)))
break;
if (!i) {
parseerror(parser, "no such loop to %s: `%s`",
(is_continue ? "continue" : "break out of"),
parser_tokval(parser));
return false;
}
++levels;
}
if (!parser_next(parser)) {
parseerror(parser, "expected semicolon");
return false;
}
}
if (parser->tok != ';') {
parseerror(parser, "expected semicolon");
return false;
}
if (!parser_next(parser))
parseerror(parser, "parse error");
*out = new ast_breakcont(ctx, is_continue, levels);
return true;
}
/* returns true when it was a variable qualifier, false otherwise!
* on error, cvq is set to CV_WRONG
*/
struct attribute_t {
const char *name;
size_t flag;
};
static bool parse_qualifiers(parser_t *parser, bool with_local, int *cvq, bool *noref, bool *is_static, uint32_t *_flags, char **message)
{
bool had_const = false;
bool had_var = false;
bool had_noref = false;
bool had_attrib = false;
bool had_static = false;
uint32_t flags = 0;
static attribute_t attributes[] = {
{ "noreturn", AST_FLAG_NORETURN },
{ "inline", AST_FLAG_INLINE },
{ "eraseable", AST_FLAG_ERASEABLE },
{ "accumulate", AST_FLAG_ACCUMULATE },
{ "last", AST_FLAG_FINAL_DECL }
};
*cvq = CV_NONE;
for (;;) {
size_t i;
if (parser->tok == TOKEN_ATTRIBUTE_OPEN) {
had_attrib = true;
/* parse an attribute */
if (!parser_next(parser)) {
parseerror(parser, "expected attribute after `[[`");
*cvq = CV_WRONG;
return false;
}
for (i = 0; i < GMQCC_ARRAY_COUNT(attributes); i++) {
if (!strcmp(parser_tokval(parser), attributes[i].name)) {
flags |= attributes[i].flag;
if (!parser_next(parser) || parser->tok != TOKEN_ATTRIBUTE_CLOSE) {
parseerror(parser, "`%s` attribute has no parameters, expected `]]`",
attributes[i].name);
*cvq = CV_WRONG;
return false;
}
break;
}
}
if (i != GMQCC_ARRAY_COUNT(attributes))
goto leave;
if (!strcmp(parser_tokval(parser), "noref")) {
had_noref = true;
if (!parser_next(parser) || parser->tok != TOKEN_ATTRIBUTE_CLOSE) {
parseerror(parser, "`noref` attribute has no parameters, expected `]]`");
*cvq = CV_WRONG;
return false;
}
}
else if (!strcmp(parser_tokval(parser), "alias") && !(flags & AST_FLAG_ALIAS)) {
flags |= AST_FLAG_ALIAS;
*message = nullptr;
if (!parser_next(parser)) {
parseerror(parser, "parse error in attribute");
goto argerr;
}
if (parser->tok == '(') {
if (!parser_next(parser) || parser->tok != TOKEN_STRINGCONST) {
parseerror(parser, "`alias` attribute missing parameter");
goto argerr;
}
*message = util_strdup(parser_tokval(parser));
if (!parser_next(parser)) {
parseerror(parser, "parse error in attribute");
goto argerr;
}
if (parser->tok != ')') {
parseerror(parser, "`alias` attribute expected `)` after parameter");
goto argerr;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error in attribute");
goto argerr;
}
}
if (parser->tok != TOKEN_ATTRIBUTE_CLOSE) {
parseerror(parser, "`alias` attribute expected `]]`");
goto argerr;
}
}
else if (!strcmp(parser_tokval(parser), "deprecated") && !(flags & AST_FLAG_DEPRECATED)) {
flags |= AST_FLAG_DEPRECATED;
*message = nullptr;
if (!parser_next(parser)) {
parseerror(parser, "parse error in attribute");
goto argerr;
}
if (parser->tok == '(') {
if (!parser_next(parser) || parser->tok != TOKEN_STRINGCONST) {
parseerror(parser, "`deprecated` attribute missing parameter");
goto argerr;
}
*message = util_strdup(parser_tokval(parser));
if (!parser_next(parser)) {
parseerror(parser, "parse error in attribute");
goto argerr;
}
if(parser->tok != ')') {
parseerror(parser, "`deprecated` attribute expected `)` after parameter");
goto argerr;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error in attribute");
goto argerr;
}
}
/* no message */
if (parser->tok != TOKEN_ATTRIBUTE_CLOSE) {
parseerror(parser, "`deprecated` attribute expected `]]`");
argerr: /* ugly */
if (*message) mem_d(*message);
*message = nullptr;
*cvq = CV_WRONG;
return false;
}
}
else if (!strcmp(parser_tokval(parser), "coverage") && !(flags & AST_FLAG_COVERAGE)) {
flags |= AST_FLAG_COVERAGE;
if (!parser_next(parser)) {
error_in_coverage:
parseerror(parser, "parse error in coverage attribute");
*cvq = CV_WRONG;
return false;
}
if (parser->tok == '(') {
if (!parser_next(parser)) {
bad_coverage_arg:
parseerror(parser, "invalid parameter for coverage() attribute\n"
"valid are: block");
*cvq = CV_WRONG;
return false;
}
if (parser->tok != ')') {
do {
if (parser->tok != TOKEN_IDENT)
goto bad_coverage_arg;
if (!strcmp(parser_tokval(parser), "block"))
flags |= AST_FLAG_BLOCK_COVERAGE;
else if (!strcmp(parser_tokval(parser), "none"))
flags &= ~(AST_FLAG_COVERAGE_MASK);
else
goto bad_coverage_arg;
if (!parser_next(parser))
goto error_in_coverage;
if (parser->tok == ',') {
if (!parser_next(parser))
goto error_in_coverage;
}
} while (parser->tok != ')');
}
if (parser->tok != ')' || !parser_next(parser))
goto error_in_coverage;
} else {
/* without parameter [[coverage]] equals [[coverage(block)]] */
flags |= AST_FLAG_BLOCK_COVERAGE;
}
}
else
{
/* Skip tokens until we hit a ]] */
(void)!parsewarning(parser, WARN_UNKNOWN_ATTRIBUTE, "unknown attribute starting with `%s`", parser_tokval(parser));
while (parser->tok != TOKEN_ATTRIBUTE_CLOSE) {
if (!parser_next(parser)) {
parseerror(parser, "error inside attribute");
*cvq = CV_WRONG;
return false;
}
}
}
}
else if (with_local && !strcmp(parser_tokval(parser), "static"))
had_static = true;
else if (!strcmp(parser_tokval(parser), "const"))
had_const = true;
else if (!strcmp(parser_tokval(parser), "var"))
had_var = true;
else if (with_local && !strcmp(parser_tokval(parser), "local"))
had_var = true;
else if (!strcmp(parser_tokval(parser), "noref"))
had_noref = true;
else if (!had_const && !had_var && !had_noref && !had_attrib && !had_static && !flags) {
return false;
}
else
break;
leave:
if (!parser_next(parser))
goto onerr;
}
if (had_const)
*cvq = CV_CONST;
else if (had_var)
*cvq = CV_VAR;
else
*cvq = CV_NONE;
*noref = had_noref;
*is_static = had_static;
*_flags = flags;
return true;
onerr:
parseerror(parser, "parse error after variable qualifier");
*cvq = CV_WRONG;
return true;
}
static bool parse_switch_go(parser_t *parser, ast_block *block, ast_expression **out);
static bool parse_switch(parser_t *parser, ast_block *block, ast_expression **out)
{
bool rv;
char *label = nullptr;
/* skip the 'while' and get the body */
if (!parser_next(parser)) {
if (OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "expected loop label or 'switch' operand in parenthesis");
else
parseerror(parser, "expected 'switch' operand in parenthesis");
return false;
}
if (parser->tok == ':') {
if (!OPTS_FLAG(LOOP_LABELS))
parseerror(parser, "labeled loops not activated, try using -floop-labels");
if (!parser_next(parser) || parser->tok != TOKEN_IDENT) {
parseerror(parser, "expected loop label");
return false;
}
label = util_strdup(parser_tokval(parser));
if (!parser_next(parser)) {
mem_d(label);
parseerror(parser, "expected 'switch' operand in parenthesis");
return false;
}
}
if (parser->tok != '(') {
parseerror(parser, "expected 'switch' operand in parenthesis");
return false;
}
parser->breaks.push_back(label);
rv = parse_switch_go(parser, block, out);
if (label)
mem_d(label);
if (parser->breaks.back() != label) {
parseerror(parser, "internal error: label stack corrupted");
rv = false;
delete *out;
*out = nullptr;
}
else {
parser->breaks.pop_back();
}
return rv;
}
static bool parse_switch_go(parser_t *parser, ast_block *block, ast_expression **out)
{
ast_expression *operand;
ast_value *opval;
ast_value *typevar;
ast_switch *switchnode;
ast_switch_case swcase;
int cvq;
bool noref, is_static;
uint32_t qflags = 0;
lex_ctx_t ctx = parser_ctx(parser);
(void)block; /* not touching */
(void)opval;
/* parse into the expression */
if (!parser_next(parser)) {
parseerror(parser, "expected switch operand");
return false;
}
/* parse the operand */
operand = parse_expression_leave(parser, false, false, false);
if (!operand)
return false;
switchnode = new ast_switch(ctx, operand);
/* closing paren */
if (parser->tok != ')') {
delete switchnode;
parseerror(parser, "expected closing paren after 'switch' operand");
return false;
}
/* parse over the opening paren */
if (!parser_next(parser) || parser->tok != '{') {
delete switchnode;
parseerror(parser, "expected list of cases");
return false;
}
if (!parser_next(parser)) {
delete switchnode;
parseerror(parser, "expected 'case' or 'default'");
return false;
}
/* new block; allow some variables to be declared here */
parser_enterblock(parser);
while (true) {
typevar = nullptr;
if (parser->tok == TOKEN_IDENT)
typevar = parser_find_typedef(parser, parser_tokval(parser), 0);
if (typevar || parser->tok == TOKEN_TYPENAME) {
if (!parse_variable(parser, block, true, CV_NONE, typevar, false, false, 0, nullptr)) {
delete switchnode;
return false;
}
continue;
}
if (parse_qualifiers(parser, true, &cvq, &noref, &is_static, &qflags, nullptr))
{
if (cvq == CV_WRONG) {
delete switchnode;
return false;
}
if (!parse_variable(parser, block, true, cvq, nullptr, noref, is_static, qflags, nullptr)) {
delete switchnode;
return false;
}
continue;
}
break;
}
/* case list! */
while (parser->tok != '}') {
ast_block *caseblock;
if (!strcmp(parser_tokval(parser), "case")) {
if (!parser_next(parser)) {
delete switchnode;
parseerror(parser, "expected expression for case");
return false;
}
swcase.m_value = parse_expression_leave(parser, false, false, false);
if (!operand->compareType(*swcase.m_value)) {
char ty1[1024];
char ty2[1024];
ast_type_to_string(swcase.m_value, ty1, sizeof ty1);
ast_type_to_string(operand, ty2, sizeof ty2);
auto fnLiteral = [](ast_expression *expression) -> char* {
if (!ast_istype(expression, ast_value))
return nullptr;
ast_value *value = (ast_value *)expression;
if (!value->m_hasvalue)
return nullptr;
char *string = nullptr;
basic_value_t *constval = &value->m_constval;
switch (value->m_vtype)
{
case TYPE_FLOAT:
util_asprintf(&string, "%.2f", constval->vfloat);
return string;
case TYPE_VECTOR:
util_asprintf(&string, "'%.2f %.2f %.2f'",
constval->vvec.x,
constval->vvec.y,
constval->vvec.z);
return string;
case TYPE_STRING:
util_asprintf(&string, "\"%s\"", constval->vstring);
return string;
default:
break;
}
return nullptr;
};
char *literal = fnLiteral(swcase.m_value);
if (literal)
compile_error(parser_ctx(parser), "incompatible type `%s` for switch case `%s` expected `%s`", ty1, literal, ty2);
else
compile_error(parser_ctx(parser), "incompatible type `%s` for switch case expected `%s`", ty1, ty2);
mem_d(literal);
delete switchnode;
return false;
}
if (!swcase.m_value) {
delete switchnode;
parseerror(parser, "expected expression for case");
return false;
}
if (!OPTS_FLAG(RELAXED_SWITCH)) {
if (!ast_istype(swcase.m_value, ast_value)) { /* || ((ast_value*)swcase.m_value)->m_cvq != CV_CONST) { */
parseerror(parser, "case on non-constant values need to be explicitly enabled via -frelaxed-switch");
ast_unref(operand);
return false;
}
}
}
else if (!strcmp(parser_tokval(parser), "default")) {
swcase.m_value = nullptr;
if (!parser_next(parser)) {
delete switchnode;
parseerror(parser, "expected colon");
return false;
}
}
else {
delete switchnode;
parseerror(parser, "expected 'case' or 'default'");
return false;
}
/* Now the colon and body */
if (parser->tok != ':') {
if (swcase.m_value) ast_unref(swcase.m_value);
delete switchnode;
parseerror(parser, "expected colon");
return false;
}
if (!parser_next(parser)) {
if (swcase.m_value) ast_unref(swcase.m_value);
delete switchnode;
parseerror(parser, "expected statements or case");
return false;
}
caseblock = new ast_block(parser_ctx(parser));
if (!caseblock) {
if (swcase.m_value) ast_unref(swcase.m_value);
delete switchnode;
return false;
}
swcase.m_code = caseblock;
switchnode->m_cases.push_back(swcase);
while (true) {
ast_expression *expr;
if (parser->tok == '}')
break;
if (parser->tok == TOKEN_KEYWORD) {
if (!strcmp(parser_tokval(parser), "case") ||
!strcmp(parser_tokval(parser), "default"))
{
break;
}
}
if (!parse_statement(parser, caseblock, &expr, true)) {
delete switchnode;
return false;
}
if (!expr)
continue;
if (!caseblock->addExpr(expr)) {
delete switchnode;
return false;
}
}
}
parser_leaveblock(parser);
/* closing paren */
if (parser->tok != '}') {
delete switchnode;
parseerror(parser, "expected closing paren of case list");
return false;
}
if (!parser_next(parser)) {
delete switchnode;
parseerror(parser, "parse error after switch");
return false;
}
*out = switchnode;
return true;
}
/* parse computed goto sides */
static ast_expression *parse_goto_computed(parser_t *parser, ast_expression **side) {
ast_expression *on_true;
ast_expression *on_false;
ast_expression *cond;
if (!*side)
return nullptr;
if (ast_istype(*side, ast_ternary)) {
ast_ternary *tern = (ast_ternary*)*side;
on_true = parse_goto_computed(parser, &tern->m_on_true);
on_false = parse_goto_computed(parser, &tern->m_on_false);
if (!on_true || !on_false) {
parseerror(parser, "expected label or expression in ternary");
if (on_true) ast_unref(on_true);
if (on_false) ast_unref(on_false);
return nullptr;
}
cond = tern->m_cond;
tern->m_cond = nullptr;
delete tern;
*side = nullptr;
return new ast_ifthen(parser_ctx(parser), cond, on_true, on_false);
} else if (ast_istype(*side, ast_label)) {
ast_goto *gt = new ast_goto(parser_ctx(parser), ((ast_label*)*side)->m_name);
gt->setLabel(reinterpret_cast<ast_label*>(*side));
*side = nullptr;
return gt;
}
return nullptr;
}
static bool parse_goto(parser_t *parser, ast_expression **out)
{
ast_goto *gt = nullptr;
ast_expression *lbl;
if (!parser_next(parser))
return false;
if (parser->tok != TOKEN_IDENT) {
ast_expression *expression;
/* could be an expression i.e computed goto :-) */
if (parser->tok != '(') {
parseerror(parser, "expected label name after `goto`");
return false;
}
/* failed to parse expression for goto */
if (!(expression = parse_expression(parser, false, true)) ||
!(*out = parse_goto_computed(parser, &expression))) {
parseerror(parser, "invalid goto expression");
if(expression)
ast_unref(expression);
return false;
}
return true;
}
/* not computed goto */
gt = new ast_goto(parser_ctx(parser), parser_tokval(parser));
lbl = parser_find_label(parser, gt->m_name);
if (lbl) {
if (!ast_istype(lbl, ast_label)) {
parseerror(parser, "internal error: label is not an ast_label");
delete gt;
return false;
}
gt->setLabel(reinterpret_cast<ast_label*>(lbl));
}
else
parser->gotos.push_back(gt);
if (!parser_next(parser) || parser->tok != ';') {
parseerror(parser, "semicolon expected after goto label");
return false;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error after goto");
return false;
}
*out = gt;
return true;
}
static bool parse_skipwhite(parser_t *parser)
{
do {
if (!parser_next(parser))
return false;
} while (parser->tok == TOKEN_WHITE && parser->tok < TOKEN_ERROR);
return parser->tok < TOKEN_ERROR;
}
static bool parse_eol(parser_t *parser)
{
if (!parse_skipwhite(parser))
return false;
return parser->tok == TOKEN_EOL;
}
static bool parse_pragma_do(parser_t *parser)
{
if (!parser_next(parser) ||
parser->tok != TOKEN_IDENT ||
strcmp(parser_tokval(parser), "pragma"))
{
parseerror(parser, "expected `pragma` keyword after `#`, got `%s`", parser_tokval(parser));
return false;
}
if (!parse_skipwhite(parser) || parser->tok != TOKEN_IDENT) {
parseerror(parser, "expected pragma, got `%s`", parser_tokval(parser));
return false;
}
if (!strcmp(parser_tokval(parser), "noref")) {
if (!parse_skipwhite(parser) || parser->tok != TOKEN_INTCONST) {
parseerror(parser, "`noref` pragma requires an argument: 0 or 1");
return false;
}
parser->noref = !!parser_token(parser)->constval.i;
if (!parse_eol(parser)) {
parseerror(parser, "parse error after `noref` pragma");
return false;
}
}
else
{
(void)!parsewarning(parser, WARN_UNKNOWN_PRAGMAS, "ignoring #pragma %s", parser_tokval(parser));
/* skip to eol */
while (!parse_eol(parser)) {
parser_next(parser);
}
return true;
}
return true;
}
static bool parse_pragma(parser_t *parser)
{
bool rv;
parser->lex->flags.preprocessing = true;
parser->lex->flags.mergelines = true;
rv = parse_pragma_do(parser);
if (parser->tok != TOKEN_EOL) {
parseerror(parser, "junk after pragma");
rv = false;
}
parser->lex->flags.preprocessing = false;
parser->lex->flags.mergelines = false;
if (!parser_next(parser)) {
parseerror(parser, "parse error after pragma");
rv = false;
}
return rv;
}
static bool parse_statement(parser_t *parser, ast_block *block, ast_expression **out, bool allow_cases)
{
bool noref, is_static;
int cvq = CV_NONE;
uint32_t qflags = 0;
ast_value *typevar = nullptr;
char *vstring = nullptr;
*out = nullptr;
if (parser->tok == TOKEN_IDENT)
typevar = parser_find_typedef(parser, parser_tokval(parser), 0);
if (typevar || parser->tok == TOKEN_TYPENAME || parser->tok == '.' || parser->tok == TOKEN_DOTS)
{
/* local variable */
if (!block) {
parseerror(parser, "cannot declare a variable from here");
return false;
}
if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC) {
if (parsewarning(parser, WARN_EXTENSIONS, "missing 'local' keyword when declaring a local variable"))
return false;
}
if (!parse_variable(parser, block, false, CV_NONE, typevar, false, false, 0, nullptr))
return false;
return true;
}
else if (parse_qualifiers(parser, !!block, &cvq, &noref, &is_static, &qflags, &vstring))
{
if (cvq == CV_WRONG)
return false;
return parse_variable(parser, block, false, cvq, nullptr, noref, is_static, qflags, vstring);
}
else if (parser->tok == TOKEN_KEYWORD)
{
if (!strcmp(parser_tokval(parser), "__builtin_debug_printtype"))
{
char ty[1024];
ast_value *tdef;
if (!parser_next(parser)) {
parseerror(parser, "parse error after __builtin_debug_printtype");
return false;
}
if (parser->tok == TOKEN_IDENT && (tdef = parser_find_typedef(parser, parser_tokval(parser), 0)))
{
ast_type_to_string(tdef, ty, sizeof(ty));
con_out("__builtin_debug_printtype: `%s`=`%s`\n", tdef->m_name.c_str(), ty);
if (!parser_next(parser)) {
parseerror(parser, "parse error after __builtin_debug_printtype typename argument");
return false;
}
}
else
{
if (!parse_statement(parser, block, out, allow_cases))
return false;
if (!*out)
con_out("__builtin_debug_printtype: got no output node\n");
else
{
ast_type_to_string(*out, ty, sizeof(ty));
con_out("__builtin_debug_printtype: `%s`\n", ty);
}
}
return true;
}
else if (!strcmp(parser_tokval(parser), "return"))
{
return parse_return(parser, block, out);
}
else if (!strcmp(parser_tokval(parser), "if"))
{
return parse_if(parser, block, out);
}
else if (!strcmp(parser_tokval(parser), "while"))
{
return parse_while(parser, block, out);
}
else if (!strcmp(parser_tokval(parser), "do"))
{
return parse_dowhile(parser, block, out);
}
else if (!strcmp(parser_tokval(parser), "for"))
{
if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC) {
if (parsewarning(parser, WARN_EXTENSIONS, "for loops are not recognized in the original Quake C standard, to enable try an alternate standard --std=?"))
return false;
}
return parse_for(parser, block, out);
}
else if (!strcmp(parser_tokval(parser), "break"))
{
return parse_break_continue(parser, block, out, false);
}
else if (!strcmp(parser_tokval(parser), "continue"))
{
return parse_break_continue(parser, block, out, true);
}
else if (!strcmp(parser_tokval(parser), "switch"))
{
return parse_switch(parser, block, out);
}
else if (!strcmp(parser_tokval(parser), "case") ||
!strcmp(parser_tokval(parser), "default"))
{
if (!allow_cases) {
parseerror(parser, "unexpected 'case' label");
return false;
}
return true;
}
else if (!strcmp(parser_tokval(parser), "goto"))
{
return parse_goto(parser, out);
}
else if (!strcmp(parser_tokval(parser), "typedef"))
{
if (!parser_next(parser)) {
parseerror(parser, "expected type definition after 'typedef'");
return false;
}
return parse_typedef(parser);
}
parseerror(parser, "Unexpected keyword: `%s'", parser_tokval(parser));
return false;
}
else if (parser->tok == '{')
{
ast_block *inner;
inner = parse_block(parser);
if (!inner)
return false;
*out = inner;
return true;
}
else if (parser->tok == ':')
{
size_t i;
ast_label *label;
if (!parser_next(parser)) {
parseerror(parser, "expected label name");
return false;
}
if (parser->tok != TOKEN_IDENT) {
parseerror(parser, "label must be an identifier");
return false;
}
label = (ast_label*)parser_find_label(parser, parser_tokval(parser));
if (label) {
if (!label->m_undefined) {
parseerror(parser, "label `%s` already defined", label->m_name);
return false;
}
label->m_undefined = false;
}
else {
label = new ast_label(parser_ctx(parser), parser_tokval(parser), false);
parser->labels.push_back(label);
}
*out = label;
if (!parser_next(parser)) {
parseerror(parser, "parse error after label");
return false;
}
for (i = 0; i < parser->gotos.size(); ++i) {
if (parser->gotos[i]->m_name == label->m_name) {
parser->gotos[i]->setLabel(label);
parser->gotos.erase(parser->gotos.begin() + i);
--i;
}
}
return true;
}
else if (parser->tok == ';')
{
if (!parser_next(parser)) {
parseerror(parser, "parse error after empty statement");
return false;
}
return true;
}
else
{
lex_ctx_t ctx = parser_ctx(parser);
ast_expression *exp = parse_expression(parser, false, false);
if (!exp)
return false;
*out = exp;
if (!exp->m_side_effects) {
if (compile_warning(ctx, WARN_EFFECTLESS_STATEMENT, "statement has no effect"))
return false;
}
return true;
}
}
static bool parse_enum(parser_t *parser)
{
bool flag = false;
bool reverse = false;
qcfloat_t num = 0;
ast_value **values = nullptr;
ast_value *var = nullptr;
ast_value *asvalue;
ast_expression *old;
if (!parser_next(parser) || (parser->tok != '{' && parser->tok != ':')) {
parseerror(parser, "expected `{` or `:` after `enum` keyword");
return false;
}
/* enumeration attributes (can add more later) */
if (parser->tok == ':') {
if (!parser_next(parser) || parser->tok != TOKEN_IDENT){
parseerror(parser, "expected `flag` or `reverse` for enumeration attribute");
return false;
}
/* attributes? */
if (!strcmp(parser_tokval(parser), "flag")) {
num = 1;
flag = true;
}
else if (!strcmp(parser_tokval(parser), "reverse")) {
reverse = true;
}
else {
parseerror(parser, "invalid attribute `%s` for enumeration", parser_tokval(parser));
return false;
}
if (!parser_next(parser) || parser->tok != '{') {
parseerror(parser, "expected `{` after enum attribute ");
return false;
}
}
while (true) {
if (!parser_next(parser) || parser->tok != TOKEN_IDENT) {
if (parser->tok == '}') {
/* allow an empty enum */
break;
}
parseerror(parser, "expected identifier or `}`");
goto onerror;
}
old = parser_find_field(parser, parser_tokval(parser));
if (!old)
old = parser_find_global(parser, parser_tokval(parser));
if (old) {
parseerror(parser, "value `%s` has already been declared here: %s:%i",
parser_tokval(parser), old->m_context.file, old->m_context.line);
goto onerror;
}
var = new ast_value(parser_ctx(parser), parser_tokval(parser), TYPE_FLOAT);
vec_push(values, var);
var->m_cvq = CV_CONST;
var->m_hasvalue = true;
/* for flagged enumerations increment in POTs of TWO */
var->m_constval.vfloat = (flag) ? (num *= 2) : (num ++);
parser_addglobal(parser, var->m_name, var);
if (!parser_next(parser)) {
parseerror(parser, "expected `=`, `}` or comma after identifier");
goto onerror;
}
if (parser->tok == ',')
continue;
if (parser->tok == '}')
break;
if (parser->tok != '=') {
parseerror(parser, "expected `=`, `}` or comma after identifier");
goto onerror;
}
if (!parser_next(parser)) {
parseerror(parser, "expected expression after `=`");
goto onerror;
}
/* We got a value! */
old = parse_expression_leave(parser, true, false, false);
asvalue = (ast_value*)old;
if (!ast_istype(old, ast_value) || asvalue->m_cvq != CV_CONST || !asvalue->m_hasvalue) {
compile_error(var->m_context, "constant value or expression expected");
goto onerror;
}
num = (var->m_constval.vfloat = asvalue->m_constval.vfloat) + 1;
if (parser->tok == '}')
break;
if (parser->tok != ',') {
parseerror(parser, "expected `}` or comma after expression");
goto onerror;
}
}
/* patch them all (for reversed attribute) */
if (reverse) {
size_t i;
for (i = 0; i < vec_size(values); i++)
values[i]->m_constval.vfloat = vec_size(values) - i - 1;
}
if (parser->tok != '}') {
parseerror(parser, "internal error: breaking without `}`");
goto onerror;
}
if (!parser_next(parser) || parser->tok != ';') {
parseerror(parser, "expected semicolon after enumeration");
goto onerror;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error after enumeration");
goto onerror;
}
vec_free(values);
return true;
onerror:
vec_free(values);
return false;
}
static bool parse_block_into(parser_t *parser, ast_block *block)
{
bool retval = true;
parser_enterblock(parser);
if (!parser_next(parser)) { /* skip the '{' */
parseerror(parser, "expected function body");
goto cleanup;
}
while (parser->tok != TOKEN_EOF && parser->tok < TOKEN_ERROR)
{
ast_expression *expr = nullptr;
if (parser->tok == '}')
break;
if (!parse_statement(parser, block, &expr, false)) {
/* parseerror(parser, "parse error"); */
block = nullptr;
goto cleanup;
}
if (!expr)
continue;
if (!block->addExpr(expr)) {
delete block;
block = nullptr;
goto cleanup;
}
}
if (parser->tok != '}') {
block = nullptr;
} else {
(void)parser_next(parser);
}
cleanup:
if (!parser_leaveblock(parser))
retval = false;
return retval && !!block;
}
static ast_block* parse_block(parser_t *parser)
{
ast_block *block;
block = new ast_block(parser_ctx(parser));
if (!block)
return nullptr;
if (!parse_block_into(parser, block)) {
delete block;
return nullptr;
}
return block;
}
static bool parse_statement_or_block(parser_t *parser, ast_expression **out)
{
if (parser->tok == '{') {
*out = parse_block(parser);
return !!*out;
}
return parse_statement(parser, nullptr, out, false);
}
static bool create_vector_members(ast_value *var, ast_member **me)
{
size_t i;
size_t len = var->m_name.length();
for (i = 0; i < 3; ++i) {
char *name = (char*)mem_a(len+3);
memcpy(name, var->m_name.c_str(), len);
name[len+0] = '_';
name[len+1] = 'x'+i;
name[len+2] = 0;
me[i] = ast_member::make(var->m_context, var, i, name);
mem_d(name);
if (!me[i])
break;
}
if (i == 3)
return true;
/* unroll */
do { delete me[--i]; } while(i);
return false;
}
static bool parse_function_body(parser_t *parser, ast_value *var)
{
ast_block *block = nullptr;
ast_function *func;
ast_function *old;
ast_expression *framenum = nullptr;
ast_expression *nextthink = nullptr;
/* None of the following have to be deleted */
ast_expression *fld_think = nullptr, *fld_nextthink = nullptr, *fld_frame = nullptr;
ast_expression *gbl_time = nullptr, *gbl_self = nullptr;
bool has_frame_think;
bool retval = true;
has_frame_think = false;
old = parser->function;
if (var->m_flags & AST_FLAG_ALIAS) {
parseerror(parser, "function aliases cannot have bodies");
return false;
}
if (parser->gotos.size() || parser->labels.size()) {
parseerror(parser, "gotos/labels leaking");
return false;
}
if (!OPTS_FLAG(VARIADIC_ARGS) && var->m_flags & AST_FLAG_VARIADIC) {
if (parsewarning(parser, WARN_VARIADIC_FUNCTION,
"variadic function with implementation will not be able to access additional parameters (try -fvariadic-args)"))
{
return false;
}
}
if (parser->tok == '[') {
/* got a frame definition: [ framenum, nextthink ]
* this translates to:
* self.frame = framenum;
* self.nextthink = time + 0.1;
* self.think = nextthink;
*/
nextthink = nullptr;
fld_think = parser_find_field(parser, "think");
fld_nextthink = parser_find_field(parser, "nextthink");
fld_frame = parser_find_field(parser, "frame");
if (!fld_think || !fld_nextthink || !fld_frame) {
parseerror(parser, "cannot use [frame,think] notation without the required fields");
parseerror(parser, "please declare the following entityfields: `frame`, `think`, `nextthink`");
return false;
}
gbl_time = parser_find_global(parser, "time");
gbl_self = parser_find_global(parser, "self");
if (!gbl_time || !gbl_self) {
parseerror(parser, "cannot use [frame,think] notation without the required globals");
parseerror(parser, "please declare the following globals: `time`, `self`");
return false;
}
if (!parser_next(parser))
return false;
framenum = parse_expression_leave(parser, true, false, false);
if (!framenum) {
parseerror(parser, "expected a framenumber constant in[frame,think] notation");
return false;
}
if (!ast_istype(framenum, ast_value) || !( (ast_value*)framenum )->m_hasvalue) {
ast_unref(framenum);
parseerror(parser, "framenumber in [frame,think] notation must be a constant");
return false;
}
if (parser->tok != ',') {
ast_unref(framenum);
parseerror(parser, "expected comma after frame number in [frame,think] notation");
parseerror(parser, "Got a %i\n", parser->tok);
return false;
}
if (!parser_next(parser)) {
ast_unref(framenum);
return false;
}
if (parser->tok == TOKEN_IDENT && !parser_find_var(parser, parser_tokval(parser)))
{
/* qc allows the use of not-yet-declared functions here
* - this automatically creates a prototype */
ast_value *thinkfunc;
ast_expression *functype = fld_think->m_next;
thinkfunc = new ast_value(parser_ctx(parser), parser_tokval(parser), functype->m_vtype);
if (!thinkfunc) { /* || !thinkfunc->adoptType(*functype)*/
ast_unref(framenum);
parseerror(parser, "failed to create implicit prototype for `%s`", parser_tokval(parser));
return false;
}
thinkfunc->adoptType(*functype);
if (!parser_next(parser)) {
ast_unref(framenum);
delete thinkfunc;
return false;
}
parser_addglobal(parser, thinkfunc->m_name, thinkfunc);
nextthink = thinkfunc;
} else {
nextthink = parse_expression_leave(parser, true, false, false);
if (!nextthink) {
ast_unref(framenum);
parseerror(parser, "expected a think-function in [frame,think] notation");
return false;
}
}
if (!ast_istype(nextthink, ast_value)) {
parseerror(parser, "think-function in [frame,think] notation must be a constant");
retval = false;
}
if (retval && parser->tok != ']') {
parseerror(parser, "expected closing `]` for [frame,think] notation");
retval = false;
}
if (retval && !parser_next(parser)) {
retval = false;
}
if (retval && parser->tok != '{') {
parseerror(parser, "a function body has to be declared after a [frame,think] declaration");
retval = false;
}
if (!retval) {
ast_unref(nextthink);
ast_unref(framenum);
return false;
}
has_frame_think = true;
}
block = new ast_block(parser_ctx(parser));
if (!block) {
parseerror(parser, "failed to allocate block");
if (has_frame_think) {
ast_unref(nextthink);
ast_unref(framenum);
}
return false;
}
if (has_frame_think) {
if (!OPTS_FLAG(EMULATE_STATE)) {
ast_state *state_op = new ast_state(parser_ctx(parser), framenum, nextthink);
if (!block->addExpr(state_op)) {
parseerror(parser, "failed to generate state op for [frame,think]");
ast_unref(nextthink);
ast_unref(framenum);
delete block;
return false;
}
} else {
/* emulate OP_STATE in code: */
lex_ctx_t ctx;
ast_expression *self_frame;
ast_expression *self_nextthink;
ast_expression *self_think;
ast_expression *time_plus_1;
ast_store *store_frame;
ast_store *store_nextthink;
ast_store *store_think;
float frame_delta = 1.0f / (float)OPTS_OPTION_U32(OPTION_STATE_FPS);
ctx = parser_ctx(parser);
self_frame = new ast_entfield(ctx, gbl_self, fld_frame);
self_nextthink = new ast_entfield(ctx, gbl_self, fld_nextthink);
self_think = new ast_entfield(ctx, gbl_self, fld_think);
time_plus_1 = new ast_binary(ctx, INSTR_ADD_F,
gbl_time, parser->m_fold.constgen_float(frame_delta, false));
if (!self_frame || !self_nextthink || !self_think || !time_plus_1) {
if (self_frame) delete self_frame;
if (self_nextthink) delete self_nextthink;
if (self_think) delete self_think;
if (time_plus_1) delete time_plus_1;
retval = false;
}
if (retval)
{
store_frame = new ast_store(ctx, INSTR_STOREP_F, self_frame, framenum);
store_nextthink = new ast_store(ctx, INSTR_STOREP_F, self_nextthink, time_plus_1);
store_think = new ast_store(ctx, INSTR_STOREP_FNC, self_think, nextthink);
if (!store_frame) {
delete self_frame;
retval = false;
}
if (!store_nextthink) {
delete self_nextthink;
retval = false;
}
if (!store_think) {
delete self_think;
retval = false;
}
if (!retval) {
if (store_frame) delete store_frame;
if (store_nextthink) delete store_nextthink;
if (store_think) delete store_think;
retval = false;
}
if (!block->addExpr(store_frame) ||
!block->addExpr(store_nextthink) ||
!block->addExpr(store_think))
{
retval = false;
}
}
if (!retval) {
parseerror(parser, "failed to generate code for [frame,think]");
ast_unref(nextthink);
ast_unref(framenum);
delete block;
return false;
}
}
}
if (var->m_hasvalue) {
if (!(var->m_flags & AST_FLAG_ACCUMULATE)) {
parseerror(parser, "function `%s` declared with multiple bodies", var->m_name);
delete block;
goto enderr;
}
func = var->m_constval.vfunc;
if (!func) {
parseerror(parser, "internal error: nullptr function: `%s`", var->m_name);
delete block;
goto enderr;
}
} else {
func = ast_function::make(var->m_context, var->m_name, var);
if (!func) {
parseerror(parser, "failed to allocate function for `%s`", var->m_name);
delete block;
goto enderr;
}
parser->functions.push_back(func);
}
parser_enterblock(parser);
for (auto &it : var->m_type_params) {
size_t e;
ast_member *me[3];
if (it->m_vtype != TYPE_VECTOR &&
(it->m_vtype != TYPE_FIELD ||
it->m_next->m_vtype != TYPE_VECTOR))
{
continue;
}
if (!create_vector_members(it.get(), me)) {
delete block;
goto enderrfn;
}
for (e = 0; e < 3; ++e) {
parser_addlocal(parser, me[e]->m_name, me[e]);
block->collect(me[e]);
}
}
if (var->m_argcounter && !func->m_argc) {
ast_value *argc = new ast_value(var->m_context, var->m_argcounter, TYPE_FLOAT);
parser_addlocal(parser, argc->m_name, argc);
func->m_argc.reset(argc);
}
if (OPTS_FLAG(VARIADIC_ARGS) && var->m_flags & AST_FLAG_VARIADIC && !func->m_varargs) {
char name[1024];
ast_value *varargs = new ast_value(var->m_context, "reserved:va_args", TYPE_ARRAY);
varargs->m_flags |= AST_FLAG_IS_VARARG;
varargs->m_next = new ast_value(var->m_context, "", TYPE_VECTOR);
varargs->m_count = 0;
util_snprintf(name, sizeof(name), "%s##va##SET", var->m_name.c_str());
if (!parser_create_array_setter_proto(parser, varargs, name)) {
delete varargs;
delete block;
goto enderrfn;
}
util_snprintf(name, sizeof(name), "%s##va##GET", var->m_name.c_str());
if (!parser_create_array_getter_proto(parser, varargs, varargs->m_next, name)) {
delete varargs;
delete block;
goto enderrfn;
}
func->m_varargs.reset(varargs);
func->m_fixedparams = (ast_value*)parser->m_fold.constgen_float(var->m_type_params.size(), false);
}
parser->function = func;
if (!parse_block_into(parser, block)) {
delete block;
goto enderrfn;
}
func->m_blocks.emplace_back(block);
parser->function = old;
if (!parser_leaveblock(parser))
retval = false;
if (vec_size(parser->variables) != PARSER_HT_LOCALS) {
parseerror(parser, "internal error: local scopes left");
retval = false;
}
if (parser->tok == ';')
return parser_next(parser);
else if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC)
parseerror(parser, "missing semicolon after function body (mandatory with -std=qcc)");
return retval;
enderrfn:
(void)!parser_leaveblock(parser);
parser->functions.pop_back();
delete func;
var->m_constval.vfunc = nullptr;
enderr:
parser->function = old;
return false;
}
static ast_expression *array_accessor_split(
parser_t *parser,
ast_value *array,
ast_value *index,
size_t middle,
ast_expression *left,
ast_expression *right
)
{
ast_ifthen *ifthen;
ast_binary *cmp;
lex_ctx_t ctx = array->m_context;
if (!left || !right) {
if (left) delete left;
if (right) delete right;
return nullptr;
}
cmp = new ast_binary(ctx, INSTR_LT,
index,
parser->m_fold.constgen_float(middle, false));
if (!cmp) {
delete left;
delete right;
parseerror(parser, "internal error: failed to create comparison for array setter");
return nullptr;
}
ifthen = new ast_ifthen(ctx, cmp, left, right);
if (!ifthen) {
delete cmp; /* will delete left and right */
parseerror(parser, "internal error: failed to create conditional jump for array setter");
return nullptr;
}
return ifthen;
}
static ast_expression *array_setter_node(parser_t *parser, ast_value *array, ast_value *index, ast_value *value, size_t from, size_t afterend)
{
lex_ctx_t ctx = array->m_context;
if (from+1 == afterend) {
/* set this value */
ast_block *block;
ast_return *ret;
ast_array_index *subscript;
ast_store *st;
int assignop = type_store_instr[value->m_vtype];
if (value->m_vtype == TYPE_FIELD && value->m_next->m_vtype == TYPE_VECTOR)
assignop = INSTR_STORE_V;
subscript = ast_array_index::make(ctx, array, parser->m_fold.constgen_float(from, false));
if (!subscript)
return nullptr;
st = new ast_store(ctx, assignop, subscript, value);
if (!st) {
delete subscript;
return nullptr;
}
block = new ast_block(ctx);
if (!block) {
delete st;
return nullptr;
}
if (!block->addExpr(st)) {
delete block;
return nullptr;
}
ret = new ast_return(ctx, nullptr);
if (!ret) {
delete block;
return nullptr;
}
if (!block->addExpr(ret)) {
delete block;
return nullptr;
}
return block;
} else {
ast_expression *left, *right;
size_t diff = afterend - from;
size_t middle = from + diff/2;
left = array_setter_node(parser, array, index, value, from, middle);
right = array_setter_node(parser, array, index, value, middle, afterend);
return array_accessor_split(parser, array, index, middle, left, right);
}
}
static ast_expression *array_field_setter_node(
parser_t *parser,
ast_value *array,
ast_value *entity,
ast_value *index,
ast_value *value,
size_t from,
size_t afterend)
{
lex_ctx_t ctx = array->m_context;
if (from+1 == afterend) {
/* set this value */
ast_block *block;
ast_return *ret;
ast_entfield *entfield;
ast_array_index *subscript;
ast_store *st;
int assignop = type_storep_instr[value->m_vtype];
if (value->m_vtype == TYPE_FIELD && value->m_next->m_vtype == TYPE_VECTOR)
assignop = INSTR_STOREP_V;
subscript = ast_array_index::make(ctx, array, parser->m_fold.constgen_float(from, false));
if (!subscript)
return nullptr;
subscript->m_next = new ast_expression(ast_copy_type, subscript->m_context, *subscript);
subscript->m_vtype = TYPE_FIELD;
entfield = new ast_entfield(ctx, entity, subscript, subscript);
if (!entfield) {
delete subscript;
return nullptr;
}
st = new ast_store(ctx, assignop, entfield, value);
if (!st) {
delete entfield;
return nullptr;
}
block = new ast_block(ctx);
if (!block) {
delete st;
return nullptr;
}
if (!block->addExpr(st)) {
delete block;
return nullptr;
}
ret = new ast_return(ctx, nullptr);
if (!ret) {
delete block;
return nullptr;
}
if (!block->addExpr(ret)) {
delete block;
return nullptr;
}
return block;
} else {
ast_expression *left, *right;
size_t diff = afterend - from;
size_t middle = from + diff/2;
left = array_field_setter_node(parser, array, entity, index, value, from, middle);
right = array_field_setter_node(parser, array, entity, index, value, middle, afterend);
return array_accessor_split(parser, array, index, middle, left, right);
}
}
static ast_expression *array_getter_node(parser_t *parser, ast_value *array, ast_value *index, size_t from, size_t afterend)
{
lex_ctx_t ctx = array->m_context;
if (from+1 == afterend) {
ast_return *ret;
ast_array_index *subscript;
subscript = ast_array_index::make(ctx, array, parser->m_fold.constgen_float(from, false));
if (!subscript)
return nullptr;
ret = new ast_return(ctx, subscript);
if (!ret) {
delete subscript;
return nullptr;
}
return ret;
} else {
ast_expression *left, *right;
size_t diff = afterend - from;
size_t middle = from + diff/2;
left = array_getter_node(parser, array, index, from, middle);
right = array_getter_node(parser, array, index, middle, afterend);
return array_accessor_split(parser, array, index, middle, left, right);
}
}
static bool parser_create_array_accessor(parser_t *parser, ast_value *array, const char *funcname, ast_value **out)
{
ast_function *func = nullptr;
ast_value *fval = nullptr;
ast_block *body = nullptr;
fval = new ast_value(array->m_context, funcname, TYPE_FUNCTION);
if (!fval) {
parseerror(parser, "failed to create accessor function value");
return false;
}
fval->m_flags &= ~(AST_FLAG_COVERAGE_MASK);
func = ast_function::make(array->m_context, funcname, fval);
if (!func) {
delete fval;
parseerror(parser, "failed to create accessor function node");
return false;
}
body = new ast_block(array->m_context);
if (!body) {
parseerror(parser, "failed to create block for array accessor");
delete fval;
delete func;
return false;
}
func->m_blocks.emplace_back(body);
*out = fval;
parser->accessors.push_back(fval);
return true;
}
static ast_value* parser_create_array_setter_proto(parser_t *parser, ast_value *array, const char *funcname)
{
ast_value *index = nullptr;
ast_value *value = nullptr;
ast_function *func;
ast_value *fval;
if (!ast_istype(array->m_next, ast_value)) {
parseerror(parser, "internal error: array accessor needs to build an ast_value with a copy of the element type");
return nullptr;
}
if (!parser_create_array_accessor(parser, array, funcname, &fval))
return nullptr;
func = fval->m_constval.vfunc;
fval->m_next = new ast_value(array->m_context, "<void>", TYPE_VOID);
index = new ast_value(array->m_context, "index", TYPE_FLOAT);
value = new ast_value(ast_copy_type, *(ast_value*)array->m_next);
if (!index || !value) {
parseerror(parser, "failed to create locals for array accessor");
goto cleanup;
}
value->m_name = "value"; // not important
fval->m_type_params.emplace_back(index);
fval->m_type_params.emplace_back(value);
array->m_setter = fval;
return fval;
cleanup:
if (index) delete index;
if (value) delete value;
delete func;
delete fval;
return nullptr;
}
static bool parser_create_array_setter_impl(parser_t *parser, ast_value *array)
{
ast_expression *root = nullptr;
root = array_setter_node(parser, array,
array->m_setter->m_type_params[0].get(),
array->m_setter->m_type_params[1].get(),
0, array->m_count);
if (!root) {
parseerror(parser, "failed to build accessor search tree");
return false;
}
if (!array->m_setter->m_constval.vfunc->m_blocks[0].get()->addExpr(root)) {
delete root;
return false;
}
return true;
}
static bool parser_create_array_setter(parser_t *parser, ast_value *array, const char *funcname)
{
if (!parser_create_array_setter_proto(parser, array, funcname))
return false;
return parser_create_array_setter_impl(parser, array);
}
static bool parser_create_array_field_setter(parser_t *parser, ast_value *array, const char *funcname)
{
ast_expression *root = nullptr;
ast_value *entity = nullptr;
ast_value *index = nullptr;
ast_value *value = nullptr;
ast_function *func;
ast_value *fval;
if (!ast_istype(array->m_next, ast_value)) {
parseerror(parser, "internal error: array accessor needs to build an ast_value with a copy of the element type");
return false;
}
if (!parser_create_array_accessor(parser, array, funcname, &fval))
return false;
func = fval->m_constval.vfunc;
fval->m_next = new ast_value(array->m_context, "<void>", TYPE_VOID);
entity = new ast_value(array->m_context, "entity", TYPE_ENTITY);
index = new ast_value(array->m_context, "index", TYPE_FLOAT);
value = new ast_value(ast_copy_type, *(ast_value*)array->m_next);
if (!entity || !index || !value) {
parseerror(parser, "failed to create locals for array accessor");
goto cleanup;
}
value->m_name = "value"; // not important
fval->m_type_params.emplace_back(entity);
fval->m_type_params.emplace_back(index);
fval->m_type_params.emplace_back(value);
root = array_field_setter_node(parser, array, entity, index, value, 0, array->m_count);
if (!root) {
parseerror(parser, "failed to build accessor search tree");
goto cleanup;
}
array->m_setter = fval;
return func->m_blocks[0].get()->addExpr(root);
cleanup:
if (entity) delete entity;
if (index) delete index;
if (value) delete value;
if (root) delete root;
delete func;
delete fval;
return false;
}
static ast_value* parser_create_array_getter_proto(parser_t *parser, ast_value *array, const ast_expression *elemtype, const char *funcname)
{
ast_value *index = nullptr;
ast_value *fval;
ast_function *func;
/* NOTE: checking array->m_next rather than elemtype since
* for fields elemtype is a temporary fieldtype.
*/
if (!ast_istype(array->m_next, ast_value)) {
parseerror(parser, "internal error: array accessor needs to build an ast_value with a copy of the element type");
return nullptr;
}
if (!parser_create_array_accessor(parser, array, funcname, &fval))
return nullptr;
func = fval->m_constval.vfunc;
fval->m_next = new ast_expression(ast_copy_type, array->m_context, *elemtype);
index = new ast_value(array->m_context, "index", TYPE_FLOAT);
if (!index) {
parseerror(parser, "failed to create locals for array accessor");
goto cleanup;
}
fval->m_type_params.emplace_back(index);
array->m_getter = fval;
return fval;
cleanup:
if (index) delete index;
delete func;
delete fval;
return nullptr;
}
static bool parser_create_array_getter_impl(parser_t *parser, ast_value *array)
{
ast_expression *root = nullptr;
root = array_getter_node(parser, array, array->m_getter->m_type_params[0].get(), 0, array->m_count);
if (!root) {
parseerror(parser, "failed to build accessor search tree");
return false;
}
if (!array->m_getter->m_constval.vfunc->m_blocks[0].get()->addExpr(root)) {
delete root;
return false;
}
return true;
}
static bool parser_create_array_getter(parser_t *parser, ast_value *array, const ast_expression *elemtype, const char *funcname)
{
if (!parser_create_array_getter_proto(parser, array, elemtype, funcname))
return false;
return parser_create_array_getter_impl(parser, array);
}
static ast_value *parse_parameter_list(parser_t *parser, ast_value *var)
{
lex_ctx_t ctx = parser_ctx(parser);
std::vector<std::unique_ptr<ast_value>> params;
ast_value *fval;
bool first = true;
bool variadic = false;
ast_value *varparam = nullptr;
char *argcounter = nullptr;
/* for the sake of less code we parse-in in this function */
if (!parser_next(parser)) {
delete var;
parseerror(parser, "expected parameter list");
return nullptr;
}
/* parse variables until we hit a closing paren */
while (parser->tok != ')') {
bool is_varargs = false;
if (!first) {
/* there must be commas between them */
if (parser->tok != ',') {
parseerror(parser, "expected comma or end of parameter list");
goto on_error;
}
if (!parser_next(parser)) {
parseerror(parser, "expected parameter");
goto on_error;
}
}
first = false;
ast_value *param = parse_typename(parser, nullptr, nullptr, &is_varargs);
if (!param && !is_varargs)
goto on_error;
if (is_varargs) {
/* '...' indicates a varargs function */
variadic = true;
if (parser->tok != ')' && parser->tok != TOKEN_IDENT) {
parseerror(parser, "`...` must be the last parameter of a variadic function declaration");
goto on_error;
}
if (parser->tok == TOKEN_IDENT) {
argcounter = util_strdup(parser_tokval(parser));
if (!parser_next(parser) || parser->tok != ')') {
parseerror(parser, "`...` must be the last parameter of a variadic function declaration");
goto on_error;
}
}
} else {
params.emplace_back(param);
if (param->m_vtype >= TYPE_VARIANT) {
char tname[1024]; /* typename is reserved in C++ */
ast_type_to_string(param, tname, sizeof(tname));
parseerror(parser, "type not supported as part of a parameter list: %s", tname);
goto on_error;
}
/* type-restricted varargs */
if (parser->tok == TOKEN_DOTS) {
variadic = true;
varparam = params.back().release();
params.pop_back();
if (!parser_next(parser) || (parser->tok != ')' && parser->tok != TOKEN_IDENT)) {
parseerror(parser, "`...` must be the last parameter of a variadic function declaration");
goto on_error;
}
if (parser->tok == TOKEN_IDENT) {
argcounter = util_strdup(parser_tokval(parser));
param->m_name = argcounter;
if (!parser_next(parser) || parser->tok != ')') {
parseerror(parser, "`...` must be the last parameter of a variadic function declaration");
goto on_error;
}
}
}
if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_FTEQCC && param->m_name[0] == '<') {
parseerror(parser, "parameter name omitted");
goto on_error;
}
}
}
if (params.size() == 1 && params[0]->m_vtype == TYPE_VOID)
params.clear();
/* sanity check */
if (params.size() > 8 && OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC)
(void)!parsewarning(parser, WARN_EXTENSIONS, "more than 8 parameters are not supported by this standard");
/* parse-out */
if (!parser_next(parser)) {
parseerror(parser, "parse error after typename");
goto on_error;
}
/* now turn 'var' into a function type */
fval = new ast_value(ctx, "<type()>", TYPE_FUNCTION);
fval->m_next = var;
if (variadic)
fval->m_flags |= AST_FLAG_VARIADIC;
var = fval;
var->m_type_params = move(params);
var->m_varparam = varparam;
var->m_argcounter = argcounter;
return var;
on_error:
if (argcounter)
mem_d(argcounter);
if (varparam)
delete varparam;
delete var;
return nullptr;
}
static ast_value *parse_arraysize(parser_t *parser, ast_value *var)
{
ast_expression *cexp;
ast_value *cval, *tmp;
lex_ctx_t ctx;
ctx = parser_ctx(parser);
if (!parser_next(parser)) {
delete var;
parseerror(parser, "expected array-size");
return nullptr;
}
if (parser->tok != ']') {
cexp = parse_expression_leave(parser, true, false, false);
if (!cexp || !ast_istype(cexp, ast_value)) {
if (cexp)
ast_unref(cexp);
delete var;
parseerror(parser, "expected array-size as constant positive integer");
return nullptr;
}
cval = (ast_value*)cexp;
}
else {
cexp = nullptr;
cval = nullptr;
}
tmp = new ast_value(ctx, "<type[]>", TYPE_ARRAY);
tmp->m_next = var;
var = tmp;
if (cval) {
if (cval->m_vtype == TYPE_INTEGER)
tmp->m_count = cval->m_constval.vint;
else if (cval->m_vtype == TYPE_FLOAT)
tmp->m_count = cval->m_constval.vfloat;
else {
ast_unref(cexp);
delete var;
parseerror(parser, "array-size must be a positive integer constant");
return nullptr;
}
ast_unref(cexp);
} else {
var->m_count = -1;
var->m_flags |= AST_FLAG_ARRAY_INIT;
}
if (parser->tok != ']') {
delete var;
parseerror(parser, "expected ']' after array-size");
return nullptr;
}
if (!parser_next(parser)) {
delete var;
parseerror(parser, "error after parsing array size");
return nullptr;
}
return var;
}
/* Parse a complete typename.
* for single-variables (ie. function parameters or typedefs) storebase should be nullptr
* but when parsing variables separated by comma
* 'storebase' should point to where the base-type should be kept.
* The base type makes up every bit of type information which comes *before* the
* variable name.
*
* NOTE: The value must either be named, have a nullptr name, or a name starting
* with '<'. In the first case, this will be the actual variable or type
* name, in the other cases it is assumed that the name will appear
* later, and an error is generated otherwise.
*
* The following will be parsed in its entirety:
* void() foo()
* The 'basetype' in this case is 'void()'
* and if there's a comma after it, say:
* void() foo(), bar
* then the type-information 'void()' can be stored in 'storebase'
*/
static ast_value *parse_typename(parser_t *parser, ast_value **storebase, ast_value *cached_typedef, bool *is_vararg)
{
ast_value *var, *tmp;
lex_ctx_t ctx;
const char *name = nullptr;
bool isfield = false;
bool wasarray = false;
size_t morefields = 0;
bool vararg = (parser->tok == TOKEN_DOTS);
ctx = parser_ctx(parser);
/* types may start with a dot */
if (parser->tok == '.' || parser->tok == TOKEN_DOTS) {
isfield = true;
if (parser->tok == TOKEN_DOTS)
morefields += 2;
/* if we parsed a dot we need a typename now */
if (!parser_next(parser)) {
parseerror(parser, "expected typename for field definition");
return nullptr;
}
/* Further dots are handled seperately because they won't be part of the
* basetype
*/
while (true) {
if (parser->tok == '.')
++morefields;
else if (parser->tok == TOKEN_DOTS)
morefields += 3;
else
break;
vararg = false;
if (!parser_next(parser)) {
parseerror(parser, "expected typename for field definition");
return nullptr;
}
}
}
if (parser->tok == TOKEN_IDENT)
cached_typedef = parser_find_typedef(parser, parser_tokval(parser), 0);
if (!cached_typedef && parser->tok != TOKEN_TYPENAME) {
if (vararg && is_vararg) {
*is_vararg = true;
return nullptr;
}
parseerror(parser, "expected typename");
return nullptr;
}
/* generate the basic type value */
if (cached_typedef) {
var = new ast_value(ast_copy_type, *cached_typedef);
var->m_name = "<type(from_def)>";
} else
var = new ast_value(ctx, "<type>", parser_token(parser)->constval.t);
for (; morefields; --morefields) {
tmp = new ast_value(ctx, "<.type>", TYPE_FIELD);
tmp->m_next = var;
var = tmp;
}
/* do not yet turn into a field - remember:
* .void() foo; is a field too
* .void()() foo; is a function
*/
/* parse on */
if (!parser_next(parser)) {
delete var;
parseerror(parser, "parse error after typename");
return nullptr;
}
/* an opening paren now starts the parameter-list of a function
* this is where original-QC has parameter lists.
* We allow a single parameter list here.
* Much like fteqcc we don't allow `float()() x`
*/
if (parser->tok == '(') {
var = parse_parameter_list(parser, var);
if (!var)
return nullptr;
}
/* store the base if requested */
if (storebase) {
*storebase = new ast_value(ast_copy_type, *var);
if (isfield) {
tmp = new ast_value(ctx, "<type:f>", TYPE_FIELD);
tmp->m_next = *storebase;
*storebase = tmp;
}
}
/* there may be a name now */
if (parser->tok == TOKEN_IDENT || parser->tok == TOKEN_KEYWORD) {
if (!strcmp(parser_tokval(parser), "break"))
(void)!parsewarning(parser, WARN_BREAKDEF, "break definition ignored (suggest removing it)");
else if (parser->tok == TOKEN_KEYWORD)
goto leave;
name = util_strdup(parser_tokval(parser));
/* parse on */
if (!parser_next(parser)) {
delete var;
mem_d(name);
parseerror(parser, "error after variable or field declaration");
return nullptr;
}
}
leave:
/* now this may be an array */
if (parser->tok == '[') {
wasarray = true;
var = parse_arraysize(parser, var);
if (!var) {
if (name) mem_d(name);
return nullptr;
}
}
/* This is the point where we can turn it into a field */
if (isfield) {
/* turn it into a field if desired */
tmp = new ast_value(ctx, "<type:f>", TYPE_FIELD);
tmp->m_next = var;
var = tmp;
}
/* now there may be function parens again */
if (parser->tok == '(' && OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC)
parseerror(parser, "C-style function syntax is not allowed in -std=qcc");
if (parser->tok == '(' && wasarray)
parseerror(parser, "arrays as part of a return type is not supported");
while (parser->tok == '(') {
var = parse_parameter_list(parser, var);
if (!var) {
if (name) mem_d(name);
return nullptr;
}
}
/* finally name it */
if (name) {
var->m_name = name;
// free the name, ast_value_set_name duplicates
mem_d(name);
}
return var;
}
static bool parse_typedef(parser_t *parser)
{
ast_value *typevar, *oldtype;
ast_expression *old;
typevar = parse_typename(parser, nullptr, nullptr, nullptr);
if (!typevar)
return false;
// while parsing types, the ast_value's get named '<something>'
if (!typevar->m_name.length() || typevar->m_name[0] == '<') {
parseerror(parser, "missing name in typedef");
delete typevar;
return false;
}
if ( (old = parser_find_var(parser, typevar->m_name)) ) {
parseerror(parser, "cannot define a type with the same name as a variable: %s\n"
" -> `%s` has been declared here: %s:%i",
typevar->m_name, old->m_context.file, old->m_context.line);
delete typevar;
return false;
}
if ( (oldtype = parser_find_typedef(parser, typevar->m_name, vec_last(parser->_blocktypedefs))) ) {
parseerror(parser, "type `%s` has already been declared here: %s:%i",
typevar->m_name, oldtype->m_context.file, oldtype->m_context.line);
delete typevar;
return false;
}
vec_push(parser->_typedefs, typevar);
util_htset(vec_last(parser->typedefs), typevar->m_name.c_str(), typevar);
if (parser->tok != ';') {
parseerror(parser, "expected semicolon after typedef");
return false;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error after typedef");
return false;
}
return true;
}
static const char *cvq_to_str(int cvq) {
switch (cvq) {
case CV_NONE: return "none";
case CV_VAR: return "`var`";
case CV_CONST: return "`const`";
default: return "<INVALID>";
}
}
static bool parser_check_qualifiers(parser_t *parser, const ast_value *var, const ast_value *proto)
{
bool av, ao;
if (proto->m_cvq != var->m_cvq) {
if (!(proto->m_cvq == CV_CONST && var->m_cvq == CV_NONE &&
!OPTS_FLAG(INITIALIZED_NONCONSTANTS) &&
parser->tok == '='))
{
return !parsewarning(parser, WARN_DIFFERENT_QUALIFIERS,
"`%s` declared with different qualifiers: %s\n"
" -> previous declaration here: %s:%i uses %s",
var->m_name, cvq_to_str(var->m_cvq),
proto->m_context.file, proto->m_context.line,
cvq_to_str(proto->m_cvq));
}
}
av = (var ->m_flags & AST_FLAG_NORETURN);
ao = (proto->m_flags & AST_FLAG_NORETURN);
if (!av != !ao) {
return !parsewarning(parser, WARN_DIFFERENT_ATTRIBUTES,
"`%s` declared with different attributes%s\n"
" -> previous declaration here: %s:%i",
var->m_name, (av ? ": noreturn" : ""),
proto->m_context.file, proto->m_context.line,
(ao ? ": noreturn" : ""));
}
return true;
}
static bool create_array_accessors(parser_t *parser, ast_value *var)
{
char name[1024];
util_snprintf(name, sizeof(name), "%s##SET", var->m_name.c_str());
if (!parser_create_array_setter(parser, var, name))
return false;
util_snprintf(name, sizeof(name), "%s##GET", var->m_name.c_str());
if (!parser_create_array_getter(parser, var, var->m_next, name))
return false;
return true;
}
static bool parse_array(parser_t *parser, ast_value *array)
{
size_t i;
if (array->m_initlist.size()) {
parseerror(parser, "array already initialized elsewhere");
return false;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error in array initializer");
return false;
}
i = 0;
while (parser->tok != '}') {
ast_value *v = (ast_value*)parse_expression_leave(parser, true, false, false);
if (!v)
return false;
if (!ast_istype(v, ast_value) || !v->m_hasvalue || v->m_cvq != CV_CONST) {
ast_unref(v);
parseerror(parser, "initializing element must be a compile time constant");
return false;
}
array->m_initlist.push_back(v->m_constval);
if (v->m_vtype == TYPE_STRING) {
array->m_initlist[i].vstring = util_strdupe(array->m_initlist[i].vstring);
++i;
}
ast_unref(v);
if (parser->tok == '}')
break;
if (parser->tok != ',' || !parser_next(parser)) {
parseerror(parser, "expected comma or '}' in element list");
return false;
}
}
if (!parser_next(parser) || parser->tok != ';') {
parseerror(parser, "expected semicolon after initializer, got %s");
return false;
}
/*
if (!parser_next(parser)) {
parseerror(parser, "parse error after initializer");
return false;
}
*/
if (array->m_flags & AST_FLAG_ARRAY_INIT) {
if (array->m_count != (size_t)-1) {
parseerror(parser, "array `%s' has already been initialized with %u elements",
array->m_name, (unsigned)array->m_count);
}
array->m_count = array->m_initlist.size();
if (!create_array_accessors(parser, array))
return false;
}
return true;
}
static bool parse_variable(parser_t *parser, ast_block *localblock, bool nofields, int qualifier, ast_value *cached_typedef, bool noref, bool is_static, uint32_t qflags, char *vstring)
{
ast_value *var;
ast_value *proto;
ast_expression *old;
bool was_end;
size_t i;
ast_value *basetype = nullptr;
bool retval = true;
bool isparam = false;
bool isvector = false;
bool cleanvar = true;
bool wasarray = false;
ast_member *me[3] = { nullptr, nullptr, nullptr };
ast_member *last_me[3] = { nullptr, nullptr, nullptr };
if (!localblock && is_static)
parseerror(parser, "`static` qualifier is not supported in global scope");
/* get the first complete variable */
var = parse_typename(parser, &basetype, cached_typedef, nullptr);
if (!var) {
if (basetype)
delete basetype;
return false;
}
/* while parsing types, the ast_value's get named '<something>' */
if (!var->m_name.length() || var->m_name[0] == '<') {
parseerror(parser, "declaration does not declare anything");
if (basetype)
delete basetype;
return false;
}
while (true) {
proto = nullptr;
wasarray = false;
/* Part 0: finish the type */
if (parser->tok == '(') {
if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC)
parseerror(parser, "C-style function syntax is not allowed in -std=qcc");
var = parse_parameter_list(parser, var);
if (!var) {
retval = false;
goto cleanup;
}
}
/* we only allow 1-dimensional arrays */
if (parser->tok == '[') {
wasarray = true;
var = parse_arraysize(parser, var);
if (!var) {
retval = false;
goto cleanup;
}
}
if (parser->tok == '(' && wasarray) {
parseerror(parser, "arrays as part of a return type is not supported");
/* we'll still parse the type completely for now */
}
/* for functions returning functions */
while (parser->tok == '(') {
if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC)
parseerror(parser, "C-style function syntax is not allowed in -std=qcc");
var = parse_parameter_list(parser, var);
if (!var) {
retval = false;
goto cleanup;
}
}
var->m_cvq = qualifier;
if (qflags & AST_FLAG_COVERAGE) /* specified in QC, drop our default */
var->m_flags &= ~(AST_FLAG_COVERAGE_MASK);
var->m_flags |= qflags;
/*
* store the vstring back to var for alias and
* deprecation messages.
*/
if (var->m_flags & AST_FLAG_DEPRECATED ||
var->m_flags & AST_FLAG_ALIAS)
var->m_desc = vstring;
if (parser_find_global(parser, var->m_name) && var->m_flags & AST_FLAG_ALIAS) {
parseerror(parser, "function aliases cannot be forward declared");
retval = false;
goto cleanup;
}
/* Part 1:
* check for validity: (end_sys_..., multiple-definitions, prototypes, ...)
* Also: if there was a prototype, `var` will be deleted and set to `proto` which
* is then filled with the previous definition and the parameter-names replaced.
*/
if (var->m_name == "nil") {
if (OPTS_FLAG(UNTYPED_NIL)) {
if (!localblock || !OPTS_FLAG(PERMISSIVE))
parseerror(parser, "name `nil` not allowed (try -fpermissive)");
} else
(void)!parsewarning(parser, WARN_RESERVED_NAMES, "variable name `nil` is reserved");
}
if (!localblock) {
/* Deal with end_sys_ vars */
was_end = false;
if (var->m_name == "end_sys_globals") {
var->m_uses++;
parser->crc_globals = parser->globals.size();
was_end = true;
}
else if (var->m_name == "end_sys_fields") {
var->m_uses++;
parser->crc_fields = parser->fields.size();
was_end = true;
}
if (was_end && var->m_vtype == TYPE_FIELD) {
if (parsewarning(parser, WARN_END_SYS_FIELDS,
"global '%s' hint should not be a field",
parser_tokval(parser)))
{
retval = false;
goto cleanup;
}
}
if (!nofields && var->m_vtype == TYPE_FIELD)
{
/* deal with field declarations */
old = parser_find_field(parser, var->m_name);
if (old) {
if (parsewarning(parser, WARN_FIELD_REDECLARED, "field `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, (int)old->m_context.line))
{
retval = false;
goto cleanup;
}
delete var;
var = nullptr;
goto skipvar;
/*
parseerror(parser, "field `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, old->m_context.line);
retval = false;
goto cleanup;
*/
}
if ((OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC || OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_FTEQCC) &&
(old = parser_find_global(parser, var->m_name)))
{
parseerror(parser, "cannot declare a field and a global of the same name with -std=qcc");
parseerror(parser, "field `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, old->m_context.line);
retval = false;
goto cleanup;
}
}
else
{
/* deal with other globals */
old = parser_find_global(parser, var->m_name);
if (old && var->m_vtype == TYPE_FUNCTION && old->m_vtype == TYPE_FUNCTION)
{
/* This is a function which had a prototype */
if (!ast_istype(old, ast_value)) {
parseerror(parser, "internal error: prototype is not an ast_value");
retval = false;
goto cleanup;
}
proto = (ast_value*)old;
proto->m_desc = var->m_desc;
if (!proto->compareType(*var)) {
parseerror(parser, "conflicting types for `%s`, previous declaration was here: %s:%i",
proto->m_name,
proto->m_context.file, proto->m_context.line);
retval = false;
goto cleanup;
}
/* we need the new parameter-names */
for (i = 0; i < proto->m_type_params.size(); ++i)
proto->m_type_params[i]->m_name = var->m_type_params[i]->m_name;
if (!parser_check_qualifiers(parser, var, proto)) {
retval = false;
proto = nullptr;
goto cleanup;
}
proto->m_flags |= var->m_flags;
delete var;
var = proto;
}
else
{
/* other globals */
if (old) {
if (parsewarning(parser, WARN_DOUBLE_DECLARATION,
"global `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, old->m_context.line))
{
retval = false;
goto cleanup;
}
if (old->m_flags & AST_FLAG_FINAL_DECL) {
parseerror(parser, "cannot redeclare variable `%s`, declared final here: %s:%i",
var->m_name, old->m_context.file, old->m_context.line);
retval = false;
goto cleanup;
}
proto = (ast_value*)old;
if (!ast_istype(old, ast_value)) {
parseerror(parser, "internal error: not an ast_value");
retval = false;
proto = nullptr;
goto cleanup;
}
if (!parser_check_qualifiers(parser, var, proto)) {
retval = false;
proto = nullptr;
goto cleanup;
}
proto->m_flags |= var->m_flags;
/* copy the context for finals,
* so the error can show where it was actually made 'final'
*/
if (proto->m_flags & AST_FLAG_FINAL_DECL)
old->m_context = var->m_context;
delete var;
var = proto;
}
if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC &&
(old = parser_find_field(parser, var->m_name)))
{
parseerror(parser, "cannot declare a field and a global of the same name with -std=qcc");
parseerror(parser, "global `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, old->m_context.line);
retval = false;
goto cleanup;
}
}
}
}
else /* it's not a global */
{
old = parser_find_local(parser, var->m_name, vec_size(parser->variables)-1, &isparam);
if (old && !isparam) {
parseerror(parser, "local `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, (int)old->m_context.line);
retval = false;
goto cleanup;
}
/* doing this here as the above is just for a single scope */
old = parser_find_local(parser, var->m_name, 0, &isparam);
if (old && isparam) {
if (parsewarning(parser, WARN_LOCAL_SHADOWS,
"local `%s` is shadowing a parameter", var->m_name))
{
parseerror(parser, "local `%s` already declared here: %s:%i",
var->m_name, old->m_context.file, (int)old->m_context.line);
retval = false;
goto cleanup;
}
if (OPTS_OPTION_U32(OPTION_STANDARD) != COMPILER_GMQCC) {
delete var;
if (ast_istype(old, ast_value))
var = proto = (ast_value*)old;
else {
var = nullptr;
goto skipvar;
}
}
}
}
/* in a noref section we simply bump the usecount */
if (noref || parser->noref)
var->m_uses++;
/* Part 2:
* Create the global/local, and deal with vector types.
*/
if (!proto) {
if (var->m_vtype == TYPE_VECTOR)
isvector = true;
else if (var->m_vtype == TYPE_FIELD &&
var->m_next->m_vtype == TYPE_VECTOR)
isvector = true;
if (isvector) {
if (!create_vector_members(var, me)) {
retval = false;
goto cleanup;
}
}
if (!localblock) {
/* deal with global variables, fields, functions */
if (!nofields && var->m_vtype == TYPE_FIELD && parser->tok != '=') {
var->m_isfield = true;
parser->fields.push_back(var);
util_htset(parser->htfields, var->m_name.c_str(), var);
if (isvector) {
for (i = 0; i < 3; ++i) {
parser->fields.push_back(me[i]);
util_htset(parser->htfields, me[i]->m_name.c_str(), me[i]);
}
}
}
else {
if (!(var->m_flags & AST_FLAG_ALIAS)) {
parser_addglobal(parser, var->m_name, var);
if (isvector) {
for (i = 0; i < 3; ++i) {
parser_addglobal(parser, me[i]->m_name.c_str(), me[i]);
}
}
} else {
ast_expression *find = parser_find_global(parser, var->m_desc);
if (!find) {
compile_error(parser_ctx(parser), "undeclared variable `%s` for alias `%s`", var->m_desc, var->m_name);
return false;
}
if (!var->compareType(*find)) {
char ty1[1024];
char ty2[1024];
ast_type_to_string(find, ty1, sizeof(ty1));
ast_type_to_string(var, ty2, sizeof(ty2));
compile_error(parser_ctx(parser), "incompatible types `%s` and `%s` for alias `%s`",
ty1, ty2, var->m_name
);
return false;
}
util_htset(parser->aliases, var->m_name.c_str(), find);
/* generate aliases for vector components */
if (isvector) {
char *buffer[3];
util_asprintf(&buffer[0], "%s_x", var->m_desc.c_str());
util_asprintf(&buffer[1], "%s_y", var->m_desc.c_str());
util_asprintf(&buffer[2], "%s_z", var->m_desc.c_str());
util_htset(parser->aliases, me[0]->m_name.c_str(), parser_find_global(parser, buffer[0]));
util_htset(parser->aliases, me[1]->m_name.c_str(), parser_find_global(parser, buffer[1]));
util_htset(parser->aliases, me[2]->m_name.c_str(), parser_find_global(parser, buffer[2]));
mem_d(buffer[0]);
mem_d(buffer[1]);
mem_d(buffer[2]);
}
}
}
} else {
if (is_static) {
// a static adds itself to be generated like any other global
// but is added to the local namespace instead
std::string defname;
size_t prefix_len;
size_t sn, sn_size;
defname = parser->function->m_name;
defname.append(2, ':');
// remember the length up to here
prefix_len = defname.length();
// Add it to the local scope
util_htset(vec_last(parser->variables), var->m_name.c_str(), (void*)var);
// now rename the global
defname.append(var->m_name);
// if a variable of that name already existed, add the
// counter value.
// The counter is incremented either way.
sn_size = parser->function->m_static_names.size();
for (sn = 0; sn != sn_size; ++sn) {
if (parser->function->m_static_names[sn] == var->m_name.c_str())
break;
}
if (sn != sn_size) {
char *num = nullptr;
int len = util_asprintf(&num, "#%u", parser->function->m_static_count);
defname.append(num, 0, len);
mem_d(num);
}
else
parser->function->m_static_names.emplace_back(var->m_name);
parser->function->m_static_count++;
var->m_name = defname;
// push it to the to-be-generated globals
parser->globals.push_back(var);
// same game for the vector members
if (isvector) {
defname.erase(prefix_len);
for (i = 0; i < 3; ++i) {
util_htset(vec_last(parser->variables), me[i]->m_name.c_str(), (void*)(me[i]));
me[i]->m_name = move(defname + me[i]->m_name);
parser->globals.push_back(me[i]);
}
}
} else {
localblock->m_locals.push_back(var);
parser_addlocal(parser, var->m_name, var);
if (isvector) {
for (i = 0; i < 3; ++i) {
parser_addlocal(parser, me[i]->m_name, me[i]);
localblock->collect(me[i]);
}
}
}
}
}
memcpy(last_me, me, sizeof(me));
me[0] = me[1] = me[2] = nullptr;
cleanvar = false;
/* Part 2.2
* deal with arrays
*/
if (var->m_vtype == TYPE_ARRAY) {
if (var->m_count != (size_t)-1) {
if (!create_array_accessors(parser, var))
goto cleanup;
}
}
else if (!localblock && !nofields &&
var->m_vtype == TYPE_FIELD &&
var->m_next->m_vtype == TYPE_ARRAY)
{
char name[1024];
ast_expression *telem;
ast_value *tfield;
ast_value *array = (ast_value*)var->m_next;
if (!ast_istype(var->m_next, ast_value)) {
parseerror(parser, "internal error: field element type must be an ast_value");
goto cleanup;
}
util_snprintf(name, sizeof(name), "%s##SETF", var->m_name.c_str());
if (!parser_create_array_field_setter(parser, array, name))
goto cleanup;
telem = new ast_expression(ast_copy_type, var->m_context, *array->m_next);
tfield = new ast_value(var->m_context, "<.type>", TYPE_FIELD);
tfield->m_next = telem;
util_snprintf(name, sizeof(name), "%s##GETFP", var->m_name.c_str());
if (!parser_create_array_getter(parser, array, tfield, name)) {
delete tfield;
goto cleanup;
}
delete tfield;
}
skipvar:
if (parser->tok == ';') {
delete basetype;
if (!parser_next(parser)) {
parseerror(parser, "error after variable declaration");
return false;
}
return true;
}
if (parser->tok == ',')
goto another;
/*
if (!var || (!localblock && !nofields && basetype->m_vtype == TYPE_FIELD)) {
*/
if (!var) {
parseerror(parser, "missing comma or semicolon while parsing variables");
break;
}
if (localblock && OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC) {
if (parsewarning(parser, WARN_LOCAL_CONSTANTS,
"initializing expression turns variable `%s` into a constant in this standard",
var->m_name) )
{
break;
}
}
if (parser->tok != '{' || var->m_vtype != TYPE_FUNCTION) {
if (parser->tok != '=') {
parseerror(parser, "missing semicolon or initializer, got: `%s`", parser_tokval(parser));
break;
}
if (!parser_next(parser)) {
parseerror(parser, "error parsing initializer");
break;
}
}
else if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_QCC) {
parseerror(parser, "expected '=' before function body in this standard");
}
if (parser->tok == '#') {
ast_function *func = nullptr;
ast_value *number = nullptr;
float fractional;
float integral;
int builtin_num;
if (localblock) {
parseerror(parser, "cannot declare builtins within functions");
break;
}
if (var->m_vtype != TYPE_FUNCTION) {
parseerror(parser, "unexpected builtin number, '%s' is not a function", var->m_name);
break;
}
if (!parser_next(parser)) {
parseerror(parser, "expected builtin number");
break;
}
if (OPTS_FLAG(EXPRESSIONS_FOR_BUILTINS)) {
number = (ast_value*)parse_expression_leave(parser, true, false, false);
if (!number) {
parseerror(parser, "builtin number expected");
break;
}
if (!ast_istype(number, ast_value) || !number->m_hasvalue || number->m_cvq != CV_CONST)
{
ast_unref(number);
parseerror(parser, "builtin number must be a compile time constant");
break;
}
if (number->m_vtype == TYPE_INTEGER)
builtin_num = number->m_constval.vint;
else if (number->m_vtype == TYPE_FLOAT)
builtin_num = number->m_constval.vfloat;
else {
ast_unref(number);
parseerror(parser, "builtin number must be an integer constant");
break;
}
ast_unref(number);
fractional = modff(builtin_num, &integral);
if (builtin_num < 0 || fractional != 0) {
parseerror(parser, "builtin number must be an integer greater than zero");
break;
}
/* we only want the integral part anyways */
builtin_num = integral;
} else if (parser->tok == TOKEN_INTCONST) {
builtin_num = parser_token(parser)->constval.i;
} else {
parseerror(parser, "builtin number must be a compile time constant");
break;
}
if (var->m_hasvalue) {
(void)!parsewarning(parser, WARN_DOUBLE_DECLARATION,
"builtin `%s` has already been defined\n"
" -> previous declaration here: %s:%i",
var->m_name, var->m_context.file, (int)var->m_context.line);
}
else
{
func = ast_function::make(var->m_context, var->m_name, var);
if (!func) {
parseerror(parser, "failed to allocate function for `%s`", var->m_name);
break;
}
parser->functions.push_back(func);
func->m_builtin = -builtin_num-1;
}
if (OPTS_FLAG(EXPRESSIONS_FOR_BUILTINS)
? (parser->tok != ',' && parser->tok != ';')
: (!parser_next(parser)))
{
parseerror(parser, "expected comma or semicolon");
delete func;
var->m_constval.vfunc = nullptr;
break;
}
}
else if (var->m_vtype == TYPE_ARRAY && parser->tok == '{')
{
if (localblock) {
/* Note that fteqcc and most others don't even *have*
* local arrays, so this is not a high priority.
*/
parseerror(parser, "TODO: initializers for local arrays");
break;
}
var->m_hasvalue = true;
if (!parse_array(parser, var))
break;
}
else if (var->m_vtype == TYPE_FUNCTION && (parser->tok == '{' || parser->tok == '['))
{
if (localblock) {
parseerror(parser, "cannot declare functions within functions");
break;
}
if (proto)
proto->m_context = parser_ctx(parser);
if (!parse_function_body(parser, var))
break;
delete basetype;
for (auto &it : parser->gotos)
parseerror(parser, "undefined label: `%s`", it->m_name);
parser->gotos.clear();
parser->labels.clear();
return true;
} else {
ast_expression *cexp;
ast_value *cval;
bool folded_const = false;
cexp = parse_expression_leave(parser, true, false, false);
if (!cexp)
break;
cval = ast_istype(cexp, ast_value) ? (ast_value*)cexp : nullptr;
/* deal with foldable constants: */
if (localblock &&
var->m_cvq == CV_CONST && cval && cval->m_hasvalue && cval->m_cvq == CV_CONST && !cval->m_isfield)
{
/* remove it from the current locals */
if (isvector) {
for (i = 0; i < 3; ++i) {
vec_pop(parser->_locals);
localblock->m_collect.pop_back();
}
}
/* do sanity checking, this function really needs refactoring */
if (vec_last(parser->_locals) != var)
parseerror(parser, "internal error: unexpected change in local variable handling");
else
vec_pop(parser->_locals);
if (localblock->m_locals.back() != var)
parseerror(parser, "internal error: unexpected change in local variable handling (2)");
else
localblock->m_locals.pop_back();
/* push it to the to-be-generated globals */
parser->globals.push_back(var);
if (isvector)
for (i = 0; i < 3; ++i)
parser->globals.push_back(last_me[i]);
folded_const = true;
}
if (folded_const || !localblock || is_static) {
if (cval != parser->nil &&
(!cval || ((!cval->m_hasvalue || cval->m_cvq != CV_CONST) && !cval->m_isfield))
)
{
parseerror(parser, "initializer is non constant");
}
else
{
if (!is_static &&
!OPTS_FLAG(INITIALIZED_NONCONSTANTS) &&
qualifier != CV_VAR)
{
var->m_cvq = CV_CONST;
}
if (cval == parser->nil)
var->m_flags |= AST_FLAG_INITIALIZED;
else
{
var->m_hasvalue = true;
if (cval->m_vtype == TYPE_STRING)
var->m_constval.vstring = parser_strdup(cval->m_constval.vstring);
else if (cval->m_vtype == TYPE_FIELD)
var->m_constval.vfield = cval;
else
memcpy(&var->m_constval, &cval->m_constval, sizeof(var->m_constval));
ast_unref(cval);
}
}
} else {
int cvq;
shunt sy;
cvq = var->m_cvq;
var->m_cvq = CV_NONE;
sy.out.push_back(syexp(var->m_context, var));
sy.out.push_back(syexp(cexp->m_context, cexp));
sy.ops.push_back(syop(var->m_context, parser->assign_op));
if (!parser_sy_apply_operator(parser, &sy))
ast_unref(cexp);
else {
if (sy.out.size() != 1 && sy.ops.size() != 0)
parseerror(parser, "internal error: leaked operands");
if (!localblock->addExpr(sy.out[0].out))
break;
}
var->m_cvq = cvq;
}
/* a constant initialized to an inexact value should be marked inexact:
* const float x = <inexact>; should propagate the inexact flag
*/
if (var->m_cvq == CV_CONST && var->m_vtype == TYPE_FLOAT) {
if (cval && cval->m_hasvalue && cval->m_cvq == CV_CONST)
var->m_inexact = cval->m_inexact;
}
}
another:
if (parser->tok == ',') {
if (!parser_next(parser)) {
parseerror(parser, "expected another variable");
break;
}
if (parser->tok != TOKEN_IDENT) {
parseerror(parser, "expected another variable");
break;
}
var = new ast_value(ast_copy_type, *basetype);
cleanvar = true;
var->m_name = parser_tokval(parser);
if (!parser_next(parser)) {
parseerror(parser, "error parsing variable declaration");
break;
}
continue;
}
if (parser->tok != ';') {
parseerror(parser, "missing semicolon after variables");
break;
}
if (!parser_next(parser)) {
parseerror(parser, "parse error after variable declaration");
break;
}
delete basetype;
return true;
}
if (cleanvar && var)
delete var;
delete basetype;
return false;
cleanup:
delete basetype;
if (cleanvar && var)
delete var;
delete me[0];
delete me[1];
delete me[2];
return retval;
}
static bool parser_global_statement(parser_t *parser)
{
int cvq = CV_WRONG;
bool noref = false;
bool is_static = false;
uint32_t qflags = 0;
ast_value *istype = nullptr;
char *vstring = nullptr;
if (parser->tok == TOKEN_IDENT)
istype = parser_find_typedef(parser, parser_tokval(parser), 0);
if (istype || parser->tok == TOKEN_TYPENAME || parser->tok == '.' || parser->tok == TOKEN_DOTS)
{
return parse_variable(parser, nullptr, false, CV_NONE, istype, false, false, 0, nullptr);
}
else if (parse_qualifiers(parser, false, &cvq, &noref, &is_static, &qflags, &vstring))
{
if (cvq == CV_WRONG)
return false;
return parse_variable(parser, nullptr, false, cvq, nullptr, noref, is_static, qflags, vstring);
}
else if (parser->tok == TOKEN_IDENT && !strcmp(parser_tokval(parser), "enum"))
{
return parse_enum(parser);
}
else if (parser->tok == TOKEN_KEYWORD)
{
if (!strcmp(parser_tokval(parser), "typedef")) {
if (!parser_next(parser)) {
parseerror(parser, "expected type definition after 'typedef'");
return false;
}
return parse_typedef(parser);
}
parseerror(parser, "unrecognized keyword `%s`", parser_tokval(parser));
return false;
}
else if (parser->tok == '#')
{
return parse_pragma(parser);
}
else if (parser->tok == '$')
{
if (!parser_next(parser)) {
parseerror(parser, "parse error");
return false;
}
}
else
{
parseerror(parser, "unexpected token: `%s`", parser->lex->tok.value);
return false;
}
return true;
}
static uint16_t progdefs_crc_sum(uint16_t old, const char *str)
{
return util_crc16(old, str, strlen(str));
}
static void progdefs_crc_file(const char *str)
{
/* write to progdefs.h here */
(void)str;
}
static uint16_t progdefs_crc_both(uint16_t old, const char *str)
{
old = progdefs_crc_sum(old, str);
progdefs_crc_file(str);
return old;
}
static void generate_checksum(parser_t *parser, ir_builder *ir)
{
uint16_t crc = 0xFFFF;
size_t i;
ast_value *value;
crc = progdefs_crc_both(crc, "\n/* file generated by qcc, do not modify */\n\ntypedef struct\n{");
crc = progdefs_crc_sum(crc, "\tint\tpad[28];\n");
/*
progdefs_crc_file("\tint\tpad;\n");
progdefs_crc_file("\tint\tofs_return[3];\n");
progdefs_crc_file("\tint\tofs_parm0[3];\n");
progdefs_crc_file("\tint\tofs_parm1[3];\n");
progdefs_crc_file("\tint\tofs_parm2[3];\n");
progdefs_crc_file("\tint\tofs_parm3[3];\n");
progdefs_crc_file("\tint\tofs_parm4[3];\n");
progdefs_crc_file("\tint\tofs_parm5[3];\n");
progdefs_crc_file("\tint\tofs_parm6[3];\n");
progdefs_crc_file("\tint\tofs_parm7[3];\n");
*/
for (i = 0; i < parser->crc_globals; ++i) {
if (!ast_istype(parser->globals[i], ast_value))
continue;
value = (ast_value*)(parser->globals[i]);
switch (value->m_vtype) {
case TYPE_FLOAT: crc = progdefs_crc_both(crc, "\tfloat\t"); break;
case TYPE_VECTOR: crc = progdefs_crc_both(crc, "\tvec3_t\t"); break;
case TYPE_STRING: crc = progdefs_crc_both(crc, "\tstring_t\t"); break;
case TYPE_FUNCTION: crc = progdefs_crc_both(crc, "\tfunc_t\t"); break;
default:
crc = progdefs_crc_both(crc, "\tint\t");
break;
}
crc = progdefs_crc_both(crc, value->m_name.c_str());
crc = progdefs_crc_both(crc, ";\n");
}
crc = progdefs_crc_both(crc, "} globalvars_t;\n\ntypedef struct\n{\n");
for (i = 0; i < parser->crc_fields; ++i) {
if (!ast_istype(parser->fields[i], ast_value))
continue;
value = (ast_value*)(parser->fields[i]);
switch (value->m_next->m_vtype) {
case TYPE_FLOAT: crc = progdefs_crc_both(crc, "\tfloat\t"); break;
case TYPE_VECTOR: crc = progdefs_crc_both(crc, "\tvec3_t\t"); break;
case TYPE_STRING: crc = progdefs_crc_both(crc, "\tstring_t\t"); break;
case TYPE_FUNCTION: crc = progdefs_crc_both(crc, "\tfunc_t\t"); break;
default:
crc = progdefs_crc_both(crc, "\tint\t");
break;
}
crc = progdefs_crc_both(crc, value->m_name.c_str());
crc = progdefs_crc_both(crc, ";\n");
}
crc = progdefs_crc_both(crc, "} entvars_t;\n\n");
ir->m_code->crc = crc;
}
parser_t *parser_create()
{
parser_t *parser;
lex_ctx_t empty_ctx;
size_t i;
parser = (parser_t*)mem_a(sizeof(parser_t));
if (!parser)
return nullptr;
memset(parser, 0, sizeof(*parser));
// TODO: remove
new (parser) parser_t();
for (i = 0; i < operator_count; ++i) {
if (operators[i].id == opid1('=')) {
parser->assign_op = operators+i;
break;
}
}
if (!parser->assign_op) {
con_err("internal error: initializing parser: failed to find assign operator\n");
mem_d(parser);
return nullptr;
}
vec_push(parser->variables, parser->htfields = util_htnew(PARSER_HT_SIZE));
vec_push(parser->variables, parser->htglobals = util_htnew(PARSER_HT_SIZE));
vec_push(parser->typedefs, util_htnew(TYPEDEF_HT_SIZE));
vec_push(parser->_blocktypedefs, 0);
parser->aliases = util_htnew(PARSER_HT_SIZE);
empty_ctx.file = "<internal>";
empty_ctx.line = 0;
empty_ctx.column = 0;
parser->nil = new ast_value(empty_ctx, "nil", TYPE_NIL);
parser->nil->m_cvq = CV_CONST;
if (OPTS_FLAG(UNTYPED_NIL))
util_htset(parser->htglobals, "nil", (void*)parser->nil);
parser->max_param_count = 1;
parser->const_vec[0] = new ast_value(empty_ctx, "<vector.x>", TYPE_NOEXPR);
parser->const_vec[1] = new ast_value(empty_ctx, "<vector.y>", TYPE_NOEXPR);
parser->const_vec[2] = new ast_value(empty_ctx, "<vector.z>", TYPE_NOEXPR);
if (OPTS_OPTION_BOOL(OPTION_ADD_INFO)) {
parser->reserved_version = new ast_value(empty_ctx, "reserved:version", TYPE_STRING);
parser->reserved_version->m_cvq = CV_CONST;
parser->reserved_version->m_hasvalue = true;
parser->reserved_version->m_flags |= AST_FLAG_INCLUDE_DEF;
parser->reserved_version->m_constval.vstring = util_strdup(GMQCC_FULL_VERSION_STRING);
} else {
parser->reserved_version = nullptr;
}
parser->m_fold = fold(parser);
parser->m_intrin = intrin(parser);
return parser;
}
static bool parser_compile(parser_t *parser)
{
/* initial lexer/parser state */
parser->lex->flags.noops = true;
if (parser_next(parser))
{
while (parser->tok != TOKEN_EOF && parser->tok < TOKEN_ERROR)
{
if (!parser_global_statement(parser)) {
if (parser->tok == TOKEN_EOF)
parseerror(parser, "unexpected end of file");
else if (compile_errors)
parseerror(parser, "there have been errors, bailing out");
lex_close(parser->lex);
parser->lex = nullptr;
return false;
}
}
} else {
parseerror(parser, "parse error");
lex_close(parser->lex);
parser->lex = nullptr;
return false;
}
lex_close(parser->lex);
parser->lex = nullptr;
return !compile_errors;
}
bool parser_compile_file(parser_t *parser, const char *filename)
{
parser->lex = lex_open(filename);
if (!parser->lex) {
con_err("failed to open file \"%s\"\n", filename);
return false;
}
return parser_compile(parser);
}
bool parser_compile_string(parser_t *parser, const char *name, const char *str, size_t len)
{
parser->lex = lex_open_string(str, len, name);
if (!parser->lex) {
con_err("failed to create lexer for string \"%s\"\n", name);
return false;
}
return parser_compile(parser);
}
static void parser_remove_ast(parser_t *parser)
{
size_t i;
if (parser->ast_cleaned)
return;
parser->ast_cleaned = true;
for (auto &it : parser->accessors) {
delete it->m_constval.vfunc;
it->m_constval.vfunc = nullptr;
delete it;
}
for (auto &it : parser->functions) delete it;
for (auto &it : parser->globals) delete it;
for (auto &it : parser->fields) delete it;
for (i = 0; i < vec_size(parser->variables); ++i)
util_htdel(parser->variables[i]);
vec_free(parser->variables);
vec_free(parser->_blocklocals);
vec_free(parser->_locals);
for (i = 0; i < vec_size(parser->_typedefs); ++i)
delete parser->_typedefs[i];
vec_free(parser->_typedefs);
for (i = 0; i < vec_size(parser->typedefs); ++i)
util_htdel(parser->typedefs[i]);
vec_free(parser->typedefs);
vec_free(parser->_blocktypedefs);
vec_free(parser->_block_ctx);
delete parser->nil;
delete parser->const_vec[0];
delete parser->const_vec[1];
delete parser->const_vec[2];
if (parser->reserved_version)
delete parser->reserved_version;
util_htdel(parser->aliases);
}
void parser_cleanup(parser_t *parser)
{
parser_remove_ast(parser);
parser->~parser_t();
mem_d(parser);
}
static bool parser_set_coverage_func(parser_t *parser, ir_builder *ir) {
ast_expression *expr;
ast_value *cov;
ast_function *func;
if (!OPTS_OPTION_BOOL(OPTION_COVERAGE))
return true;
func = nullptr;
for (auto &it : parser->functions) {
if (it->m_name == "coverage") {
func = it;
break;
}
}
if (!func) {
if (OPTS_OPTION_BOOL(OPTION_COVERAGE)) {
con_out("coverage support requested but no coverage() builtin declared\n");
delete ir;
return false;
}
return true;
}
cov = func->m_function_type;
expr = cov;
if (expr->m_vtype != TYPE_FUNCTION || expr->m_type_params.size()) {
char ty[1024];
ast_type_to_string(expr, ty, sizeof(ty));
con_out("invalid type for coverage(): %s\n", ty);
delete ir;
return false;
}
ir->m_coverage_func = func->m_ir_func->m_value;
return true;
}
bool parser_finish(parser_t *parser, const char *output)
{
ir_builder *ir;
bool retval = true;
if (compile_errors) {
con_out("*** there were compile errors\n");
return false;
}
ir = new ir_builder("gmqcc_out");
if (!ir) {
con_out("failed to allocate builder\n");
return false;
}
for (auto &it : parser->fields) {
bool hasvalue;
if (!ast_istype(it, ast_value))
continue;
ast_value *field = (ast_value*)it;
hasvalue = field->m_hasvalue;
field->m_hasvalue = false;
if (!reinterpret_cast<ast_value*>(field)->generateGlobal(ir, true)) {
con_out("failed to generate field %s\n", field->m_name.c_str());
delete ir;
return false;
}
if (hasvalue) {
ir_value *ifld;
ast_expression *subtype;
field->m_hasvalue = true;
subtype = field->m_next;
ifld = ir->createField(field->m_name, subtype->m_vtype);
if (subtype->m_vtype == TYPE_FIELD)
ifld->m_fieldtype = subtype->m_next->m_vtype;
else if (subtype->m_vtype == TYPE_FUNCTION)
ifld->m_outtype = subtype->m_next->m_vtype;
(void)!field->m_ir_v->setField(ifld);
}
}
for (auto &it : parser->globals) {
ast_value *asvalue;
if (!ast_istype(it, ast_value))
continue;
asvalue = (ast_value*)it;
if (!asvalue->m_uses && asvalue->m_cvq != CV_CONST && asvalue->m_vtype != TYPE_FUNCTION) {
retval = retval && !compile_warning(asvalue->m_context, WARN_UNUSED_VARIABLE,
"unused global: `%s`", asvalue->m_name);
}
if (!asvalue->generateGlobal(ir, false)) {
con_out("failed to generate global %s\n", asvalue->m_name.c_str());
delete ir;
return false;
}
}
/* Build function vararg accessor ast tree now before generating
* immediates, because the accessors may add new immediates
*/
for (auto &f : parser->functions) {
if (f->m_varargs) {
if (parser->max_param_count > f->m_function_type->m_type_params.size()) {
f->m_varargs->m_count = parser->max_param_count - f->m_function_type->m_type_params.size();
if (!parser_create_array_setter_impl(parser, f->m_varargs.get())) {
con_out("failed to generate vararg setter for %s\n", f->m_name.c_str());
delete ir;
return false;
}
if (!parser_create_array_getter_impl(parser, f->m_varargs.get())) {
con_out("failed to generate vararg getter for %s\n", f->m_name.c_str());
delete ir;
return false;
}
} else {
f->m_varargs = nullptr;
}
}
}
/* Now we can generate immediates */
if (!parser->m_fold.generate(ir))
return false;
/* before generating any functions we need to set the coverage_func */
if (!parser_set_coverage_func(parser, ir))
return false;
for (auto &it : parser->globals) {
if (!ast_istype(it, ast_value))
continue;
ast_value *asvalue = (ast_value*)it;
if (!(asvalue->m_flags & AST_FLAG_INITIALIZED))
{
if (asvalue->m_cvq == CV_CONST && !asvalue->m_hasvalue)
(void)!compile_warning(asvalue->m_context, WARN_UNINITIALIZED_CONSTANT,
"uninitialized constant: `%s`",
asvalue->m_name);
else if ((asvalue->m_cvq == CV_NONE || asvalue->m_cvq == CV_CONST) && !asvalue->m_hasvalue)
(void)!compile_warning(asvalue->m_context, WARN_UNINITIALIZED_GLOBAL,
"uninitialized global: `%s`",
asvalue->m_name);
}
if (!asvalue->generateAccessors(ir)) {
delete ir;
return false;
}
}
for (auto &it : parser->fields) {
ast_value *asvalue = (ast_value*)it->m_next;
if (!ast_istype(asvalue, ast_value))
continue;
if (asvalue->m_vtype != TYPE_ARRAY)
continue;
if (!asvalue->generateAccessors(ir)) {
delete ir;
return false;
}
}
if (parser->reserved_version &&
!parser->reserved_version->generateGlobal(ir, false))
{
con_out("failed to generate reserved::version");
delete ir;
return false;
}
for (auto &f : parser->functions) {
if (!f->generateFunction(ir)) {
con_out("failed to generate function %s\n", f->m_name.c_str());
delete ir;
return false;
}
}
generate_checksum(parser, ir);
if (OPTS_OPTION_BOOL(OPTION_DUMP))
ir->dump(con_out);
for (auto &it : parser->functions) {
if (!ir_function_finalize(it->m_ir_func)) {
con_out("failed to finalize function %s\n", it->m_name.c_str());
delete ir;
return false;
}
}
parser_remove_ast(parser);
auto fnCheckWErrors = [&retval]() {
if (compile_Werrors) {
con_out("*** there were warnings treated as errors\n");
compile_show_werrors();
retval = false;
}
};
fnCheckWErrors();
if (retval) {
if (OPTS_OPTION_BOOL(OPTION_DUMPFIN))
ir->dump(con_out);
if (!ir->generate(output)) {
con_out("*** failed to generate output file\n");
delete ir;
return false;
}
// ir->generate can generate compiler warnings
fnCheckWErrors();
}
delete ir;
return retval;
}