gmqcc/fold.c
2013-11-06 16:57:04 +01:00

884 lines
32 KiB
C

/*
* Copyright (C) 2012, 2013
* Dale Weiler
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <string.h>
#include <math.h>
#include "ast.h"
#include "parser.h"
#define FOLD_STRING_UNTRANSLATE_HTSIZE 1024
#define FOLD_STRING_DOTRANSLATE_HTSIZE 1024
/*
* There is two stages to constant folding in GMQCC: there is the parse
* stage constant folding, where, witht he help of the AST, operator
* usages can be constant folded. Then there is the constant folding
* in the IR for things like eliding if statements, can occur.
*
* This file is thus, split into two parts.
*/
#define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT)
#define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR)
#define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING)
#define isfloats(X,Y) (isfloat (X) && isfloat (Y))
/*
* Implementation of basic vector math for vec3_t, for trivial constant
* folding.
*
* TODO: gcc/clang hinting for autovectorization
*/
static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) {
vec3_t out;
out.x = a.x + b.x;
out.y = a.y + b.y;
out.z = a.z + b.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_sub(vec3_t a, vec3_t b) {
vec3_t out;
out.x = a.x + b.x;
out.y = a.y + b.y;
out.z = a.z + b.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) {
vec3_t out;
out.x = -a.x;
out.y = -a.y;
out.z = -a.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_not(vec3_t a) {
vec3_t out;
out.x = (qcfloat_t)(~((qcint_t)a.x));
out.y = (qcfloat_t)(~((qcint_t)a.y));
out.z = (qcfloat_t)(~((qcint_t)a.z));
return out;
}
static GMQCC_INLINE qcfloat_t vec3_mulvv(vec3_t a, vec3_t b) {
return (a.x * b.x + a.y * b.y + a.z * b.z);
}
static GMQCC_INLINE vec3_t vec3_mulvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = a.x * b;
out.y = a.y * b;
out.z = a.z * b;
return out;
}
static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
return a.x == b.x &&
a.y == b.y &&
a.z == b.z;
}
static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) {
vec3_t out;
out.x = x;
out.y = y;
out.z = z;
return out;
}
static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) {
return (!a.x && !a.y && !a.z);
}
static GMQCC_INLINE bool vec3_pbool(vec3_t a) {
return (a.x && a.y && a.z);
}
static GMQCC_INLINE vec3_t vec3_cross(vec3_t a, vec3_t b) {
vec3_t out;
out.x = a.y * b.z - a.z * b.y;
out.y = a.z * b.x - a.x * b.z;
out.z = a.x * b.y - a.y * b.x;
return out;
}
static lex_ctx_t fold_ctx(fold_t *fold) {
lex_ctx_t ctx;
if (fold->parser->lex)
return parser_ctx(fold->parser);
memset(&ctx, 0, sizeof(ctx));
return ctx;
}
static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) {
switch (v->expression.vtype) {
case TYPE_FLOAT:
return !!v->constval.vfloat;
case TYPE_INTEGER:
return !!v->constval.vint;
case TYPE_VECTOR:
if (OPTS_FLAG(CORRECT_LOGIC))
return vec3_pbool(v->constval.vvec);
return !!(v->constval.vvec.x);
case TYPE_STRING:
if (!v->constval.vstring)
return false;
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
return true;
return !!v->constval.vstring[0];
default:
compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type");
break;
}
return !!v->constval.vfunc;
}
/* Handy macros to determine if an ast_value can be constant folded. */
#define fold_can_1(X) \
(ast_istype(((ast_expression*)(X)), ast_value) && (X)->hasvalue && ((X)->cvq == CV_CONST) && \
((ast_expression*)(X))->vtype != TYPE_FUNCTION)
#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y))
#define fold_immvalue_float(E) ((E)->constval.vfloat)
#define fold_immvalue_vector(E) ((E)->constval.vvec)
#define fold_immvalue_string(E) ((E)->constval.vstring)
fold_t *fold_init(parser_t *parser) {
fold_t *fold = (fold_t*)mem_a(sizeof(fold_t));
fold->parser = parser;
fold->imm_float = NULL;
fold->imm_vector = NULL;
fold->imm_string = NULL;
fold->imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE);
fold->imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE);
/*
* prime the tables with common constant values at constant
* locations.
*/
(void)fold_constgen_float (fold, 0.0f);
(void)fold_constgen_float (fold, 1.0f);
(void)fold_constgen_float (fold, -1.0f);
(void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f));
(void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f));
return fold;
}
bool fold_generate(fold_t *fold, ir_builder *ir) {
/* generate globals for immediate folded values */
size_t i;
ast_value *cur;
for (i = 0; i < vec_size(fold->imm_float); ++i)
if (!ast_global_codegen ((cur = fold->imm_float[i]), ir, false)) goto err;
for (i = 0; i < vec_size(fold->imm_vector); ++i)
if (!ast_global_codegen((cur = fold->imm_vector[i]), ir, false)) goto err;
for (i = 0; i < vec_size(fold->imm_string); ++i)
if (!ast_global_codegen((cur = fold->imm_string[i]), ir, false)) goto err;
return true;
err:
con_out("failed to generate global %s\n", cur->name);
ir_builder_delete(ir);
return false;
}
void fold_cleanup(fold_t *fold) {
size_t i;
for (i = 0; i < vec_size(fold->imm_float); ++i) ast_delete(fold->imm_float[i]);
for (i = 0; i < vec_size(fold->imm_vector); ++i) ast_delete(fold->imm_vector[i]);
for (i = 0; i < vec_size(fold->imm_string); ++i) ast_delete(fold->imm_string[i]);
vec_free(fold->imm_float);
vec_free(fold->imm_vector);
vec_free(fold->imm_string);
util_htdel(fold->imm_string_untranslate);
util_htdel(fold->imm_string_dotranslate);
mem_d(fold);
}
ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value) {
ast_value *out = NULL;
size_t i;
for (i = 0; i < vec_size(fold->imm_float); i++) {
if (!memcmp(&fold->imm_float[i]->constval.vfloat, &value, sizeof(qcfloat_t)))
return (ast_expression*)fold->imm_float[i];
}
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_FLOAT);
out->cvq = CV_CONST;
out->hasvalue = true;
out->constval.vfloat = value;
vec_push(fold->imm_float, out);
return (ast_expression*)out;
}
ast_expression *fold_constgen_vector(fold_t *fold, vec3_t value) {
ast_value *out;
size_t i;
for (i = 0; i < vec_size(fold->imm_vector); i++) {
if (vec3_cmp(fold->imm_vector[i]->constval.vvec, value))
return (ast_expression*)fold->imm_vector[i];
}
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_VECTOR);
out->cvq = CV_CONST;
out->hasvalue = true;
out->constval.vvec = value;
vec_push(fold->imm_vector, out);
return (ast_expression*)out;
}
ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool translate) {
hash_table_t *table = (translate) ? fold->imm_string_untranslate : fold->imm_string_dotranslate;
ast_value *out = NULL;
size_t hash = util_hthash(table, str);
if ((out = (ast_value*)util_htgeth(table, str, hash)))
return (ast_expression*)out;
if (translate) {
char name[32];
util_snprintf(name, sizeof(name), "dotranslate_%lu", (unsigned long)(fold->parser->translated++));
out = ast_value_new(parser_ctx(fold->parser), name, TYPE_STRING);
out->expression.flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */
} else
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_STRING);
out->cvq = CV_CONST;
out->hasvalue = true;
out->isimm = true;
out->constval.vstring = parser_strdup(str);
vec_push(fold->imm_string, out);
util_htseth(table, str, hash, out);
return (ast_expression*)out;
}
static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) {
/*
* vector-component constant folding works by matching the component sets
* to eliminate expensive operations on whole-vectors (3 components at runtime).
* to achive this effect in a clean manner this function generalizes the
* values through the use of a set paramater, which is used as an indexing method
* for creating the elided ast binary expression.
*
* Consider 'n 0 0' where y, and z need to be tested for 0, and x is
* used as the value in a binary operation generating an INSTR_MUL instruction,
* to acomplish the indexing of the correct component value we use set[0], set[1], set[2]
* as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because
* of how ASCII works we can easily deliniate:
* vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a
* literal value of 2, using this 2, we know that taking the address of vec->x (float)
* and indxing it with this literal will yeild the immediate address of that component
*
* Of course more work needs to be done to generate the correct index for the ast_member_new
* call, which is no problem: set[0]-'x' suffices that job.
*/
qcfloat_t x = (&vec.x)[set[0]-'x'];
qcfloat_t y = (&vec.x)[set[1]-'x'];
qcfloat_t z = (&vec.x)[set[2]-'x'];
if (!y && !z) {
ast_expression *out;
++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL);
out->node.keep = false;
((ast_member*)out)->rvalue = true;
if (x != -1.0f)
return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out);
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return fold_constgen_float(fold, -fold_immvalue_float(a));
} else if (isvector(a)) {
if (fold_can_1(a))
return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a)));
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return fold_constgen_float(fold, !fold_immvalue_float(a));
} else if (isvector(a)) {
if (fold_can_1(a))
return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a)));
} else if (isstring(a)) {
if (fold_can_1(a)) {
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
return fold_constgen_float(fold, !fold_immvalue_string(a));
else
return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a));
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b));
} else if (isvector(a)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b)));
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b));
} else if (isvector(a)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b)));
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (isvector(b)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a)));
} else {
if (fold_can_2(a, b))
return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b));
}
} else if (isvector(a)) {
if (isfloat(b)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
} else {
if (fold_can_2(a, b)) {
return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b)));
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) {
ast_expression *out;
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out;
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "yxz"))) return out;
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "zxy"))) return out;
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) {
ast_expression *out;
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "xyz"))) return out;
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "yxz"))) return out;
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "zxy"))) return out;
}
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b));
} else if (fold_can_1(b)) {
return (ast_expression*)ast_binary_new(
fold_ctx(fold),
INSTR_MUL_F,
(ast_expression*)a,
fold_constgen_float(fold, 1.0f / fold_immvalue_float(b))
);
}
} else if (isvector(a)) {
if (fold_can_2(a, b)) {
return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b)));
} else {
return (ast_expression*)ast_binary_new(
fold_ctx(fold),
INSTR_MUL_VF,
(ast_expression*)a,
(fold_can_1(b))
? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b))
: (ast_expression*)ast_binary_new(
fold_ctx(fold),
INSTR_DIV_F,
(ast_expression*)fold->imm_float[1],
(ast_expression*)b
)
);
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) {
return (fold_can_2(a, b))
? fold_constgen_float(fold, fmod(fold_immvalue_float(a), fold_immvalue_float(b)))
: NULL;
}
static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b))));
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b))));
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b))));
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) {
if (fold_can_2(a, b) && isfloats(a, b))
return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) << (qcuint_t)(fold_immvalue_float(b))));
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) {
if (fold_can_2(a, b) && isfloats(a, b))
return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) >> (qcuint_t)(fold_immvalue_float(b))));
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) {
if (fold_can_2(a, b)) {
if (OPTS_FLAG(PERL_LOGIC)) {
if (fold_immediate_true(fold, a))
return (ast_expression*)b;
} else {
return fold_constgen_float (
fold,
((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b))
: (fold_immediate_true(fold, a) && fold_immediate_true(fold, b)))
? 1
: 0
);
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast_value *b, ast_value *c) {
if (fold_can_1(a)) {
return fold_immediate_true(fold, a)
? (ast_expression*)b
: (ast_expression*)c;
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) {
if (fold_can_2(a, b))
return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b)));
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) {
if (fold_can_2(a,b)) {
if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2];
if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0];
if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1];
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) {
if (fold_can_2(a, b)) {
return fold_constgen_float(
fold,
(ne) ? (fold_immvalue_float(a) != fold_immvalue_float(b))
: (fold_immvalue_float(a) == fold_immvalue_float(b))
);
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return fold_constgen_float(fold, ~((qcint_t)fold_immvalue_float(a)));
} else {
if (isvector(a)) {
if (fold_can_1(a))
return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a)));
}
}
return NULL;
}
static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) {
if (fold_can_2(a, b))
return fold_constgen_vector(fold, vec3_cross(fold_immvalue_vector(a), fold_immvalue_vector(b)));
return NULL;
}
ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) {
ast_value *a = (ast_value*)opexprs[0];
ast_value *b = (ast_value*)opexprs[1];
ast_value *c = (ast_value*)opexprs[2];
ast_expression *e = NULL;
/* can a fold operation be applied to this operator usage? */
if (!info->folds)
return NULL;
switch(info->operands) {
case 3: if(!c) return NULL;
case 2: if(!b) return NULL;
case 1:
if(!a) {
compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n");
return NULL;
}
}
/*
* we could use a boolean and default case but ironically gcc produces
* invalid broken assembly from that operation. clang/tcc get it right,
* but interestingly ignore compiling this to a jump-table when I do that,
* this happens to be the most efficent method, since you have per-level
* granularity on the pointer check happening only for the case you check
* it in. Opposed to the default method which would involve a boolean and
* pointer check after wards.
*/
#define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \
case opid##ARGS ARGS_OPID: \
if ((e = fold_op_##OP ARGS_FOLD)) { \
++opts_optimizationcount[OPTIM_CONST_FOLD]; \
} \
return e
switch(info->id) {
fold_op_case(2, ('-', 'P'), neg, (fold, a));
fold_op_case(2, ('!', 'P'), not, (fold, a));
fold_op_case(1, ('+'), add, (fold, a, b));
fold_op_case(1, ('-'), sub, (fold, a, b));
fold_op_case(1, ('*'), mul, (fold, a, b));
fold_op_case(1, ('/'), div, (fold, a, b));
fold_op_case(1, ('%'), mod, (fold, a, b));
fold_op_case(1, ('|'), bor, (fold, a, b));
fold_op_case(1, ('&'), band, (fold, a, b));
fold_op_case(1, ('^'), xor, (fold, a, b));
fold_op_case(2, ('<', '<'), lshift, (fold, a, b));
fold_op_case(2, ('>', '>'), rshift, (fold, a, b));
fold_op_case(2, ('|', '|'), andor, (fold, a, b, true));
fold_op_case(2, ('&', '&'), andor, (fold, a, b, false));
fold_op_case(2, ('?', ':'), tern, (fold, a, b, c));
fold_op_case(2, ('*', '*'), exp, (fold, a, b));
fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b));
fold_op_case(2, ('!', '='), cmp, (fold, a, b, true));
fold_op_case(2, ('=', '='), cmp, (fold, a, b, false));
fold_op_case(2, ('~', 'P'), bnot, (fold, a));
fold_op_case(2, ('>', '<'), cross, (fold, a, b));
}
#undef fold_op_case
compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator");
return NULL;
}
/*
* Constant folding for compiler intrinsics, simaler approach to operator
* folding, primarly: individual functions for each intrinsics to fold,
* and a generic selection function.
*/
static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) {
return fold_constgen_float(
fold,
fmodf(
fold_immvalue_float(lhs),
fold_immvalue_float(rhs)
)
);
}
static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) {
return fold_constgen_float(
fold,
powf(
fold_immvalue_float(lhs),
fold_immvalue_float(rhs)
)
);
}
static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *value) {
return fold_constgen_float(fold, exp(fold_immvalue_float(value)));
}
static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *value) {
return fold_constgen_float(fold, isnan(fold_immvalue_float(value)) != 0.0f);
}
static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *value) {
return fold_constgen_float(fold, fabs(fold_immvalue_float(value)));
}
ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) {
ast_expression *ret = NULL;
if (!strcmp(intrin, "mod")) ret = fold_intrin_mod (fold, (ast_value*)arg[0], (ast_value*)arg[1]);
if (!strcmp(intrin, "pow")) ret = fold_intrin_pow (fold, (ast_value*)arg[0], (ast_value*)arg[1]);
if (!strcmp(intrin, "exp")) ret = fold_intrin_exp (fold, (ast_value*)arg[0]);
if (!strcmp(intrin, "isnan")) ret = fold_intrin_isnan(fold, (ast_value*)arg[0]);
if (!strcmp(intrin, "fabs")) ret = fold_intrin_fabs (fold, (ast_value*)arg[0]);
if (ret)
++opts_optimizationcount[OPTIM_CONST_FOLD];
return ret;
}
/*
* These are all the actual constant folding methods that happen in between
* the AST/IR stage of the compiler , i.e eliminating branches for const
* expressions, which is the only supported thing so far. We undefine the
* testing macros here because an ir_value is differant than an ast_value.
*/
#undef expect
#undef isfloat
#undef isstring
#undef isvector
#undef fold_immvalue_float
#undef fold_immvalue_string
#undef fold_immvalue_vector
#undef fold_can_1
#undef fold_can_2
#define isfloat(X) ((X)->vtype == TYPE_FLOAT)
/*#define isstring(X) ((X)->vtype == TYPE_STRING)*/
/*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/
#define fold_immvalue_float(X) ((X)->constval.vfloat)
#define fold_immvalue_vector(X) ((X)->constval.vvec)
/*#define fold_immvalue_string(X) ((X)->constval.vstring)*/
#define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST)
/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/
static ast_expression *fold_superfluous(ast_expression *left, ast_expression *right, int op) {
ast_expression *swapped = NULL; /* using this as bool */
ast_value *load;
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) {
swapped = left;
left = right;
right = swapped;
}
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right)))
return NULL;
switch (op) {
case INSTR_DIV_F:
if (swapped)
return NULL;
case INSTR_MUL_F:
if (fold_immvalue_float(load) == 1.0f) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_SUB_F:
if (swapped)
return NULL;
case INSTR_ADD_F:
if (fold_immvalue_float(load) == 0.0f) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_MUL_V:
if (vec3_cmp(fold_immvalue_vector(load), vec3_create(1, 1, 1))) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_SUB_V:
if (swapped)
return NULL;
case INSTR_ADD_V:
if (vec3_cmp(fold_immvalue_vector(load), vec3_create(0, 0, 0))) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
}
return NULL;
}
ast_expression *fold_binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) {
ast_expression *ret = fold_superfluous(left, right, op);
if (ret)
return ret;
return (ast_expression*)ast_binary_new(ctx, op, left, right);
}
static GMQCC_INLINE int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) {
if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) {
ast_expression_codegen *cgen;
ir_block *elide;
ir_value *dummy;
bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true);
bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false);
ast_expression *path = (istrue) ? branch->on_true :
(isfalse) ? branch->on_false : NULL;
if (!path) {
/*
* no path to take implies that the evaluation is if(0) and there
* is no else block. so eliminate all the code.
*/
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
return true;
}
if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse")))))
return false;
if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy))
return false;
if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide))
return false;
/*
* now the branch has been eliminated and the correct block for the constant evaluation
* is expanded into the current block for the function.
*/
func->curblock = elide;
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
return true;
}
return -1; /* nothing done */
}
int fold_cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) {
return fold_cond(condval, func, (ast_ifthen*)branch);
}
int fold_cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) {
return fold_cond(condval, func, branch);
}