mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-24 04:41:25 +00:00
833 lines
31 KiB
C
833 lines
31 KiB
C
/*
|
|
* Copyright (C) 2012, 2013
|
|
* Dale Weiler
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished to do
|
|
* so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "ast.h"
|
|
#include "parser.h"
|
|
|
|
#define FOLD_STRING_UNTRANSLATE_HTSIZE 1024
|
|
#define FOLD_STRING_DOTRANSLATE_HTSIZE 1024
|
|
|
|
/*
|
|
* There is two stages to constant folding in GMQCC: there is the parse
|
|
* stage constant folding, where, witht he help of the AST, operator
|
|
* usages can be constant folded. Then there is the constant folding
|
|
* in the IR for things like eliding if statements, can occur.
|
|
*
|
|
* This file is thus, split into two parts.
|
|
*/
|
|
|
|
#define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT)
|
|
#define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR)
|
|
#define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING)
|
|
#define isfloats(X,Y) (isfloat (X) && isfloat (Y))
|
|
|
|
/*
|
|
* Implementation of basic vector math for vec3_t, for trivial constant
|
|
* folding.
|
|
*
|
|
* TODO: gcc/clang hinting for autovectorization
|
|
*/
|
|
static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = a.x + b.x;
|
|
out.y = a.y + b.y;
|
|
out.z = a.z + b.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_sub(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = a.x + b.x;
|
|
out.y = a.y + b.y;
|
|
out.z = a.z + b.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) {
|
|
vec3_t out;
|
|
out.x = -a.x;
|
|
out.y = -a.y;
|
|
out.z = -a.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_not(vec3_t a) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(~((qcint_t)a.x));
|
|
out.y = (qcfloat_t)(~((qcint_t)a.y));
|
|
out.z = (qcfloat_t)(~((qcint_t)a.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE qcfloat_t vec3_mulvv(vec3_t a, vec3_t b) {
|
|
return (a.x * b.x + a.y * b.y + a.z * b.z);
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_mulvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = a.x * b;
|
|
out.y = a.y * b;
|
|
out.z = a.z * b;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
|
|
return a.x == b.x &&
|
|
a.y == b.y &&
|
|
a.z == b.z;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) {
|
|
vec3_t out;
|
|
out.x = x;
|
|
out.y = y;
|
|
out.z = z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) {
|
|
return (!a.x && !a.y && !a.z);
|
|
}
|
|
|
|
static GMQCC_INLINE bool vec3_pbool(vec3_t a) {
|
|
return (a.x && a.y && a.z);
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_cross(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = a.y * b.z - a.z * b.y;
|
|
out.y = a.z * b.x - a.x * b.z;
|
|
out.z = a.x * b.y - a.y * b.x;
|
|
return out;
|
|
}
|
|
|
|
static lex_ctx_t fold_ctx(fold_t *fold) {
|
|
lex_ctx_t ctx;
|
|
if (fold->parser->lex)
|
|
return parser_ctx(fold->parser);
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
return ctx;
|
|
}
|
|
|
|
static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) {
|
|
switch (v->expression.vtype) {
|
|
case TYPE_FLOAT:
|
|
return !!v->constval.vfloat;
|
|
case TYPE_INTEGER:
|
|
return !!v->constval.vint;
|
|
case TYPE_VECTOR:
|
|
if (OPTS_FLAG(CORRECT_LOGIC))
|
|
return vec3_pbool(v->constval.vvec);
|
|
return !!(v->constval.vvec.x);
|
|
case TYPE_STRING:
|
|
if (!v->constval.vstring)
|
|
return false;
|
|
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
|
|
return true;
|
|
return !!v->constval.vstring[0];
|
|
default:
|
|
compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type");
|
|
break;
|
|
}
|
|
return !!v->constval.vfunc;
|
|
}
|
|
|
|
/* Handy macros to determine if an ast_value can be constant folded. */
|
|
#define fold_can_1(X) \
|
|
(ast_istype(((ast_expression*)(X)), ast_value) && (X)->hasvalue && ((X)->cvq == CV_CONST) && \
|
|
((ast_expression*)(X))->vtype != TYPE_FUNCTION)
|
|
|
|
#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y))
|
|
#define fold_can_div(X) (fold_immvalue_float(X) != 0.0f)
|
|
|
|
#define fold_immvalue_float(E) ((E)->constval.vfloat)
|
|
#define fold_immvalue_vector(E) ((E)->constval.vvec)
|
|
#define fold_immvalue_string(E) ((E)->constval.vstring)
|
|
|
|
#ifdef INFINITY
|
|
# define fold_infinity_float INFINITY
|
|
#else
|
|
# define fold_infinity_float (1.0 / 0.0)
|
|
#endif /*! INFINITY */
|
|
|
|
#define fold_infinity_vector \
|
|
vec3_create( \
|
|
fold_infinity_float, \
|
|
fold_infinity_float, \
|
|
fold_infinity_float \
|
|
)
|
|
|
|
fold_t *fold_init(parser_t *parser) {
|
|
fold_t *fold = (fold_t*)mem_a(sizeof(fold_t));
|
|
fold->parser = parser;
|
|
fold->imm_float = NULL;
|
|
fold->imm_vector = NULL;
|
|
fold->imm_string = NULL;
|
|
fold->imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE);
|
|
fold->imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE);
|
|
|
|
/*
|
|
* prime the tables with common constant values at constant
|
|
* locations.
|
|
*/
|
|
(void)fold_constgen_float (fold, 0.0f);
|
|
(void)fold_constgen_float (fold, 1.0f);
|
|
(void)fold_constgen_float (fold, -1.0f);
|
|
(void)fold_constgen_float (fold, fold_infinity_float); /* +inf */
|
|
|
|
(void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f));
|
|
(void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f));
|
|
(void)fold_constgen_vector(fold, fold_infinity_vector); /* +inf */
|
|
|
|
return fold;
|
|
}
|
|
|
|
bool fold_generate(fold_t *fold, ir_builder *ir) {
|
|
/* generate globals for immediate folded values */
|
|
size_t i;
|
|
ast_value *cur;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_float); ++i)
|
|
if (!ast_global_codegen ((cur = fold->imm_float[i]), ir, false)) goto err;
|
|
for (i = 0; i < vec_size(fold->imm_vector); ++i)
|
|
if (!ast_global_codegen((cur = fold->imm_vector[i]), ir, false)) goto err;
|
|
for (i = 0; i < vec_size(fold->imm_string); ++i)
|
|
if (!ast_global_codegen((cur = fold->imm_string[i]), ir, false)) goto err;
|
|
|
|
return true;
|
|
|
|
err:
|
|
con_out("failed to generate global %s\n", cur->name);
|
|
ir_builder_delete(ir);
|
|
return false;
|
|
}
|
|
|
|
void fold_cleanup(fold_t *fold) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_float); ++i) ast_delete(fold->imm_float[i]);
|
|
for (i = 0; i < vec_size(fold->imm_vector); ++i) ast_delete(fold->imm_vector[i]);
|
|
for (i = 0; i < vec_size(fold->imm_string); ++i) ast_delete(fold->imm_string[i]);
|
|
|
|
vec_free(fold->imm_float);
|
|
vec_free(fold->imm_vector);
|
|
vec_free(fold->imm_string);
|
|
|
|
util_htdel(fold->imm_string_untranslate);
|
|
util_htdel(fold->imm_string_dotranslate);
|
|
|
|
mem_d(fold);
|
|
}
|
|
|
|
ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value) {
|
|
ast_value *out = NULL;
|
|
size_t i;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_float); i++) {
|
|
if (fold->imm_float[i]->constval.vfloat == value)
|
|
return (ast_expression*)fold->imm_float[i];
|
|
}
|
|
|
|
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_FLOAT);
|
|
out->cvq = CV_CONST;
|
|
out->hasvalue = true;
|
|
out->constval.vfloat = value;
|
|
|
|
vec_push(fold->imm_float, out);
|
|
|
|
return (ast_expression*)out;
|
|
}
|
|
|
|
ast_expression *fold_constgen_vector(fold_t *fold, vec3_t value) {
|
|
ast_value *out;
|
|
size_t i;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_vector); i++) {
|
|
if (vec3_cmp(fold->imm_vector[i]->constval.vvec, value))
|
|
return (ast_expression*)fold->imm_vector[i];
|
|
}
|
|
|
|
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_VECTOR);
|
|
out->cvq = CV_CONST;
|
|
out->hasvalue = true;
|
|
out->constval.vvec = value;
|
|
|
|
vec_push(fold->imm_vector, out);
|
|
|
|
return (ast_expression*)out;
|
|
}
|
|
|
|
ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool translate) {
|
|
hash_table_t *table = (translate) ? fold->imm_string_untranslate : fold->imm_string_dotranslate;
|
|
ast_value *out = NULL;
|
|
size_t hash = util_hthash(table, str);
|
|
|
|
if ((out = (ast_value*)util_htgeth(table, str, hash)))
|
|
return (ast_expression*)out;
|
|
|
|
if (translate) {
|
|
char name[32];
|
|
util_snprintf(name, sizeof(name), "dotranslate_%lu", (unsigned long)(fold->parser->translated++));
|
|
out = ast_value_new(parser_ctx(fold->parser), name, TYPE_STRING);
|
|
out->expression.flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */
|
|
} else
|
|
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_STRING);
|
|
|
|
out->cvq = CV_CONST;
|
|
out->hasvalue = true;
|
|
out->isimm = true;
|
|
out->constval.vstring = parser_strdup(str);
|
|
|
|
vec_push(fold->imm_string, out);
|
|
util_htseth(table, str, hash, out);
|
|
|
|
return (ast_expression*)out;
|
|
}
|
|
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) {
|
|
/*
|
|
* vector-component constant folding works by matching the component sets
|
|
* to eliminate expensive operations on whole-vectors (3 components at runtime).
|
|
* to achive this effect in a clean manner this function generalizes the
|
|
* values through the use of a set paramater, which is used as an indexing method
|
|
* for creating the elided ast binary expression.
|
|
*
|
|
* Consider 'n 0 0' where y, and z need to be tested for 0, and x is
|
|
* used as the value in a binary operation generating an INSTR_MUL instruction,
|
|
* to acomplish the indexing of the correct component value we use set[0], set[1], set[2]
|
|
* as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because
|
|
* of how ASCII works we can easily deliniate:
|
|
* vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a
|
|
* literal value of 2, using this 2, we know that taking the address of vec->x (float)
|
|
* and indxing it with this literal will yeild the immediate address of that component
|
|
*
|
|
* Of course more work needs to be done to generate the correct index for the ast_member_new
|
|
* call, which is no problem: set[0]-'x' suffices that job.
|
|
*/
|
|
qcfloat_t x = (&vec.x)[set[0]-'x'];
|
|
qcfloat_t y = (&vec.x)[set[1]-'x'];
|
|
qcfloat_t z = (&vec.x)[set[2]-'x'];
|
|
|
|
if (!y && !z) {
|
|
ast_expression *out;
|
|
++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
|
|
out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL);
|
|
out->node.keep = false;
|
|
((ast_member*)out)->rvalue = true;
|
|
if (x != -1.0f)
|
|
return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, -fold_immvalue_float(a));
|
|
} else if (isvector(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a)));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, !fold_immvalue_float(a));
|
|
} else if (isvector(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a)));
|
|
} else if (isstring(a)) {
|
|
if (fold_can_1(a)) {
|
|
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
|
|
return fold_constgen_float(fold, !fold_immvalue_string(a));
|
|
else
|
|
return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b));
|
|
} else if (isvector(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b));
|
|
} else if (isvector(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a)));
|
|
} else {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b));
|
|
}
|
|
} else if (isvector(a)) {
|
|
if (isfloat(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
} else {
|
|
if (fold_can_2(a, b)) {
|
|
return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) {
|
|
ast_expression *out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "yxz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "zxy"))) return out;
|
|
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) {
|
|
ast_expression *out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "xyz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "yxz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "zxy"))) return out;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b)) {
|
|
if (fold_can_div(b))
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b));
|
|
else
|
|
return (ast_expression*)fold->imm_float[3]; /* inf */
|
|
} else if (fold_can_1(b)) {
|
|
return (ast_expression*)ast_binary_new(
|
|
fold_ctx(fold),
|
|
INSTR_MUL_F,
|
|
(ast_expression*)a,
|
|
fold_constgen_float(fold, 1.0f / fold_immvalue_float(b))
|
|
);
|
|
}
|
|
} else if (isvector(a)) {
|
|
if (fold_can_2(a, b)) {
|
|
if (fold_can_div(b)) {
|
|
return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b)));
|
|
}
|
|
else {
|
|
return (ast_expression*)fold->imm_vector[2]; /* inf */
|
|
}
|
|
} else {
|
|
return (ast_expression*)ast_binary_new(
|
|
fold_ctx(fold),
|
|
INSTR_MUL_VF,
|
|
(ast_expression*)a,
|
|
(fold_can_1(b))
|
|
? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b))
|
|
: (ast_expression*)ast_binary_new(
|
|
fold_ctx(fold),
|
|
INSTR_DIV_F,
|
|
(ast_expression*)fold->imm_float[1],
|
|
(ast_expression*)b
|
|
)
|
|
);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b)) {
|
|
if (fold_can_div(b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) % ((qcint_t)fold_immvalue_float(b))));
|
|
else
|
|
return (ast_expression*)fold->imm_float[3]; /* inf */
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b))));
|
|
} else {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
} else {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b))));
|
|
} else {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
} else {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b))));
|
|
} else {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
} else {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b) && isfloats(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) << (qcuint_t)(fold_immvalue_float(b))));
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b) && isfloats(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) >> (qcuint_t)(fold_immvalue_float(b))));
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) {
|
|
if (fold_can_2(a, b)) {
|
|
if (OPTS_FLAG(PERL_LOGIC)) {
|
|
if (fold_immediate_true(fold, a))
|
|
return (ast_expression*)b;
|
|
} else {
|
|
return fold_constgen_float (
|
|
fold,
|
|
((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b))
|
|
: (fold_immediate_true(fold, a) && fold_immediate_true(fold, b)))
|
|
? 1
|
|
: 0
|
|
);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast_value *b, ast_value *c) {
|
|
if (fold_can_1(a)) {
|
|
return fold_immediate_true(fold, a)
|
|
? (ast_expression*)b
|
|
: (ast_expression*)c;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b)));
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a,b)) {
|
|
if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2];
|
|
if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0];
|
|
if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) {
|
|
if (fold_can_2(a, b)) {
|
|
return fold_constgen_float(
|
|
fold,
|
|
(ne) ? (fold_immvalue_float(a) != fold_immvalue_float(b))
|
|
: (fold_immvalue_float(a) == fold_immvalue_float(b))
|
|
);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, ~((qcint_t)fold_immvalue_float(a)));
|
|
} else {
|
|
if (isvector(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_cross(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
return NULL;
|
|
}
|
|
|
|
ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) {
|
|
ast_value *a = (ast_value*)opexprs[0];
|
|
ast_value *b = (ast_value*)opexprs[1];
|
|
ast_value *c = (ast_value*)opexprs[2];
|
|
ast_expression *e = NULL;
|
|
|
|
/* can a fold operation be applied to this operator usage? */
|
|
if (!info->folds)
|
|
return NULL;
|
|
|
|
switch(info->operands) {
|
|
case 3: if(!c) return NULL;
|
|
case 2: if(!b) return NULL;
|
|
case 1:
|
|
if(!a) {
|
|
compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* we could use a boolean and default case but ironically gcc produces
|
|
* invalid broken assembly from that operation. clang/tcc get it right,
|
|
* but interestingly ignore compiling this to a jump-table when I do that,
|
|
* this happens to be the most efficent method, since you have per-level
|
|
* granularity on the pointer check happening only for the case you check
|
|
* it in. Opposed to the default method which would involve a boolean and
|
|
* pointer check after wards.
|
|
*/
|
|
#define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \
|
|
case opid##ARGS ARGS_OPID: \
|
|
if ((e = fold_op_##OP ARGS_FOLD)) { \
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD]; \
|
|
} \
|
|
return e
|
|
|
|
switch(info->id) {
|
|
fold_op_case(2, ('-', 'P'), neg, (fold, a));
|
|
fold_op_case(2, ('!', 'P'), not, (fold, a));
|
|
fold_op_case(1, ('+'), add, (fold, a, b));
|
|
fold_op_case(1, ('-'), sub, (fold, a, b));
|
|
fold_op_case(1, ('*'), mul, (fold, a, b));
|
|
fold_op_case(1, ('/'), div, (fold, a, b));
|
|
fold_op_case(1, ('%'), mod, (fold, a, b));
|
|
fold_op_case(1, ('|'), bor, (fold, a, b));
|
|
fold_op_case(1, ('&'), band, (fold, a, b));
|
|
fold_op_case(1, ('^'), xor, (fold, a, b));
|
|
fold_op_case(2, ('<', '<'), lshift, (fold, a, b));
|
|
fold_op_case(2, ('>', '>'), rshift, (fold, a, b));
|
|
fold_op_case(2, ('|', '|'), andor, (fold, a, b, true));
|
|
fold_op_case(2, ('&', '&'), andor, (fold, a, b, false));
|
|
fold_op_case(2, ('?', ':'), tern, (fold, a, b, c));
|
|
fold_op_case(2, ('*', '*'), exp, (fold, a, b));
|
|
fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b));
|
|
fold_op_case(2, ('!', '='), cmp, (fold, a, b, true));
|
|
fold_op_case(2, ('=', '='), cmp, (fold, a, b, false));
|
|
fold_op_case(2, ('~', 'P'), bnot, (fold, a));
|
|
fold_op_case(2, ('>', '<'), cross, (fold, a, b));
|
|
}
|
|
#undef fold_op_case
|
|
compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Constant folding for compiler intrinsics, simaler approach to operator
|
|
* folding, primarly: individual functions for each intrinsics to fold,
|
|
* and a generic selection function.
|
|
*/
|
|
static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) {
|
|
return fold_constgen_float(
|
|
fold,
|
|
fmodf(
|
|
fold_immvalue_float(lhs),
|
|
fold_immvalue_float(rhs)
|
|
)
|
|
);
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) {
|
|
return fold_constgen_float(
|
|
fold,
|
|
powf(
|
|
fold_immvalue_float(lhs),
|
|
fold_immvalue_float(rhs)
|
|
)
|
|
);
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *value) {
|
|
return fold_constgen_float(fold, exp(fold_immvalue_float(value)));
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *value) {
|
|
return fold_constgen_float(fold, isnan(fold_immvalue_float(value)) != 0.0f);
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *value) {
|
|
return fold_constgen_float(fold, fabs(fold_immvalue_float(value)));
|
|
}
|
|
|
|
ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) {
|
|
if (!strcmp(intrin, "mod")) return fold_intrin_mod (fold, (ast_value*)arg[0], (ast_value*)arg[1]);
|
|
if (!strcmp(intrin, "pow")) return fold_intrin_pow (fold, (ast_value*)arg[0], (ast_value*)arg[1]);
|
|
if (!strcmp(intrin, "exp")) return fold_intrin_exp (fold, (ast_value*)arg[0]);
|
|
if (!strcmp(intrin, "isnan")) return fold_intrin_isnan(fold, (ast_value*)arg[0]);
|
|
if (!strcmp(intrin, "fabs")) return fold_intrin_fabs (fold, (ast_value*)arg[0]);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* These are all the actual constant folding methods that happen in between
|
|
* the AST/IR stage of the compiler , i.e eliminating branches for const
|
|
* expressions, which is the only supported thing so far. We undefine the
|
|
* testing macros here because an ir_value is differant than an ast_value.
|
|
*/
|
|
#undef expect
|
|
#undef isfloat
|
|
#undef isstring
|
|
#undef isvector
|
|
#undef fold_immvalue_float
|
|
#undef fold_immvalue_string
|
|
#undef fold_immvalue_vector
|
|
#undef fold_can_1
|
|
#undef fold_can_2
|
|
|
|
#define isfloat(X) ((X)->vtype == TYPE_FLOAT)
|
|
/*#define isstring(X) ((X)->vtype == TYPE_STRING)*/
|
|
/*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/
|
|
#define fold_immvalue_float(X) ((X)->constval.vfloat)
|
|
/*#define fold_immvalue_vector(X) ((X)->constval.vvec)*/
|
|
/*#define fold_immvalue_string(X) ((X)->constval.vstring)*/
|
|
#define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST)
|
|
/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/
|
|
|
|
|
|
int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) {
|
|
if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) {
|
|
ast_expression_codegen *cgen;
|
|
ir_block *elide;
|
|
ir_value *dummy;
|
|
bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true);
|
|
bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false);
|
|
ast_expression *path = (istrue) ? branch->on_true :
|
|
(isfalse) ? branch->on_false : NULL;
|
|
if (!path) {
|
|
/*
|
|
* no path to take implies that the evaluation is if(0) and there
|
|
* is no else block. so eliminate all the code.
|
|
*/
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
|
|
return true;
|
|
}
|
|
|
|
if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse")))))
|
|
return false;
|
|
if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy))
|
|
return false;
|
|
if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide))
|
|
return false;
|
|
/*
|
|
* now the branch has been eliminated and the correct block for the constant evaluation
|
|
* is expanded into the current block for the function.
|
|
*/
|
|
func->curblock = elide;
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
|
|
return true;
|
|
}
|
|
return -1; /* nothing done */
|
|
}
|