gmqcc/ast.c

1728 lines
48 KiB
C

/*
* Copyright (C) 2012
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gmqcc.h"
#include "ast.h"
#define ast_instantiate(T, ctx, destroyfn) \
T* self = (T*)mem_a(sizeof(T)); \
if (!self) { \
return NULL; \
} \
ast_node_init((ast_node*)self, ctx, TYPE_##T); \
( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
/* error handling */
static void asterror(lex_ctx ctx, const char *msg, ...)
{
va_list ap;
va_start(ap, msg);
cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
va_end(ap);
}
/* It must not be possible to get here. */
static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
{
fprintf(stderr, "ast node missing destroy()\n");
abort();
}
/* Initialize main ast node aprts */
static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
{
self->node.context = ctx;
self->node.destroy = &_ast_node_destroy;
self->node.keep = false;
self->node.uses = 0;
self->node.nodetype = nodetype;
}
/* General expression initialization */
static void ast_expression_init(ast_expression *self,
ast_expression_codegen *codegen)
{
self->expression.codegen = codegen;
self->expression.vtype = TYPE_VOID;
self->expression.next = NULL;
self->expression.outl = NULL;
self->expression.outr = NULL;
MEM_VECTOR_INIT(&self->expression, params);
}
static void ast_expression_delete(ast_expression *self)
{
size_t i;
if (self->expression.next)
ast_delete(self->expression.next);
for (i = 0; i < self->expression.params_count; ++i) {
ast_delete(self->expression.params[i]);
}
MEM_VECTOR_CLEAR(&self->expression, params);
}
static void ast_expression_delete_full(ast_expression *self)
{
ast_expression_delete(self);
mem_d(self);
}
MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
static ast_value* ast_value_copy(const ast_value *self)
{
ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
if (self->expression.next) {
cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
if (!cp->expression.next) {
ast_value_delete(cp);
return NULL;
}
}
return cp;
}
static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
{
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
self->expression.codegen = NULL;
self->expression.next = NULL;
self->expression.vtype = vtype;
return self;
}
static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
{
size_t i;
const ast_expression_common *fromex;
ast_expression_common *selfex;
if (!ex)
return NULL;
else
{
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
fromex = &ex->expression;
selfex = &self->expression;
/* This may never be codegen()d */
selfex->codegen = NULL;
selfex->vtype = fromex->vtype;
if (fromex->next)
{
selfex->next = ast_type_copy(ctx, fromex->next);
if (!selfex->next) {
ast_expression_delete_full(self);
return NULL;
}
}
else
selfex->next = NULL;
for (i = 0; i < fromex->params_count; ++i) {
ast_value *v = ast_value_copy(fromex->params[i]);
if (!v || !ast_expression_common_params_add(selfex, v)) {
ast_expression_delete_full(self);
return NULL;
}
}
return self;
}
}
bool ast_compare_type(ast_expression *a, ast_expression *b)
{
if (a->expression.vtype != b->expression.vtype)
return false;
if (!a->expression.next != !b->expression.next)
return false;
if (a->expression.params_count != b->expression.params_count)
return false;
if (a->expression.params_count) {
size_t i;
for (i = 0; i < a->expression.params_count; ++i) {
if (!ast_compare_type((ast_expression*)a->expression.params[i],
(ast_expression*)b->expression.params[i]))
return false;
}
}
if (a->expression.next)
return ast_compare_type(a->expression.next, b->expression.next);
return true;
}
ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
{
ast_instantiate(ast_value, ctx, ast_value_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_value_codegen);
self->expression.node.keep = true; /* keep */
self->name = name ? util_strdup(name) : NULL;
self->expression.vtype = t;
self->expression.next = NULL;
self->isconst = false;
memset(&self->constval, 0, sizeof(self->constval));
self->ir_v = NULL;
return self;
}
void ast_value_delete(ast_value* self)
{
if (self->name)
mem_d((void*)self->name);
if (self->isconst) {
switch (self->expression.vtype)
{
case TYPE_STRING:
mem_d((void*)self->constval.vstring);
break;
case TYPE_FUNCTION:
/* unlink us from the function node */
self->constval.vfunc->vtype = NULL;
break;
/* NOTE: delete function? currently collected in
* the parser structure
*/
default:
break;
}
}
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
{
return ast_expression_common_params_add(&self->expression, p);
}
bool ast_value_set_name(ast_value *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
return !!self->name;
}
ast_binary* ast_binary_new(lex_ctx ctx, int op,
ast_expression* left, ast_expression* right)
{
ast_instantiate(ast_binary, ctx, ast_binary_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
self->op = op;
self->left = left;
self->right = right;
if (op >= INSTR_EQ_F && op <= INSTR_GT)
self->expression.vtype = TYPE_FLOAT;
else if (op == INSTR_AND || op == INSTR_OR ||
op == INSTR_BITAND || op == INSTR_BITOR)
self->expression.vtype = TYPE_FLOAT;
else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
self->expression.vtype = TYPE_VECTOR;
else if (op == INSTR_MUL_V)
self->expression.vtype = TYPE_FLOAT;
else
self->expression.vtype = left->expression.vtype;
ast_use(left);
ast_use(right);
return self;
}
void ast_binary_delete(ast_binary *self)
{
ast_unref(self->left);
ast_unref(self->right);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
ast_expression* left, ast_expression* right)
{
ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
self->opstore = storop;
self->opbin = op;
self->dest = left;
self->source = right;
self->expression.vtype = left->expression.vtype;
if (left->expression.next) {
self->expression.next = ast_type_copy(ctx, left);
if (!self->expression.next) {
ast_delete(self);
return NULL;
}
}
else
self->expression.next = NULL;
ast_use(left);
ast_use(right);
ast_use(left);
return self;
}
void ast_binstore_delete(ast_binstore *self)
{
ast_unref(self->dest);
ast_unref(self->source);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_unary* ast_unary_new(lex_ctx ctx, int op,
ast_expression *expr)
{
ast_instantiate(ast_unary, ctx, ast_unary_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
self->op = op;
self->operand = expr;
ast_use(expr);
return self;
}
void ast_unary_delete(ast_unary *self)
{
ast_unref(self->operand);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
{
ast_instantiate(ast_return, ctx, ast_return_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
self->operand = expr;
ast_use(expr);
return self;
}
void ast_return_delete(ast_return *self)
{
ast_unref(self->operand);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
{
const ast_expression *outtype;
ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
if (field->expression.vtype != TYPE_FIELD) {
mem_d(self);
return NULL;
}
outtype = field->expression.next;
if (!outtype) {
mem_d(self);
/* Error: field has no type... */
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
self->expression.vtype = outtype->expression.vtype;
self->expression.next = ast_type_copy(ctx, outtype->expression.next);
self->entity = entity;
self->field = field;
ast_use(entity);
ast_use(field);
return self;
}
void ast_entfield_delete(ast_entfield *self)
{
ast_unref(self->entity);
ast_unref(self->field);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
{
ast_instantiate(ast_member, ctx, ast_member_delete);
if (field >= 3) {
mem_d(self);
return NULL;
}
if (owner->expression.vtype != TYPE_VECTOR &&
owner->expression.vtype != TYPE_FIELD) {
asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
if (owner->expression.vtype == TYPE_VECTOR) {
self->expression.vtype = TYPE_FLOAT;
self->expression.next = NULL;
} else {
self->expression.vtype = TYPE_FIELD;
self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
}
self->owner = owner;
self->field = field;
ast_use(owner);
return self;
}
void ast_member_delete(ast_member *self)
{
ast_unref(self->owner);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
if (!ontrue && !onfalse) {
/* because it is invalid */
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
ast_use(cond);
if (ontrue) ast_use(ontrue);
if (onfalse) ast_use(onfalse);
return self;
}
void ast_ifthen_delete(ast_ifthen *self)
{
ast_unref(self->cond);
if (self->on_true)
ast_unref(self->on_true);
if (self->on_false)
ast_unref(self->on_false);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
/* This time NEITHER must be NULL */
if (!ontrue || !onfalse) {
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
self->phi_out = NULL;
ast_use(cond);
ast_use(ontrue);
ast_use(onfalse);
return self;
}
void ast_ternary_delete(ast_ternary *self)
{
ast_unref(self->cond);
ast_unref(self->on_true);
ast_unref(self->on_false);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_loop* ast_loop_new(lex_ctx ctx,
ast_expression *initexpr,
ast_expression *precond,
ast_expression *postcond,
ast_expression *increment,
ast_expression *body)
{
ast_instantiate(ast_loop, ctx, ast_loop_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
self->initexpr = initexpr;
self->precond = precond;
self->postcond = postcond;
self->increment = increment;
self->body = body;
if (initexpr) ast_use(initexpr);
if (precond) ast_use(precond);
if (postcond) ast_use(postcond);
if (increment) ast_use(increment);
if (body) ast_use(body);
return self;
}
void ast_loop_delete(ast_loop *self)
{
if (self->initexpr)
ast_unref(self->initexpr);
if (self->precond)
ast_unref(self->precond);
if (self->postcond)
ast_unref(self->postcond);
if (self->increment)
ast_unref(self->increment);
if (self->body)
ast_unref(self->body);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_call* ast_call_new(lex_ctx ctx,
ast_expression *funcexpr)
{
ast_instantiate(ast_call, ctx, ast_call_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
MEM_VECTOR_INIT(self, params);
self->func = funcexpr;
ast_use(funcexpr);
return self;
}
MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
bool ast_call_add_param(ast_call *self, ast_expression *expr)
{
if (!ast_call_params_add(self, expr))
return false;
ast_use(expr);
return true;
}
void ast_call_delete(ast_call *self)
{
size_t i;
for (i = 0; i < self->params_count; ++i)
ast_unref(self->params[i]);
MEM_VECTOR_CLEAR(self, params);
if (self->func)
ast_unref(self->func);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_store* ast_store_new(lex_ctx ctx, int op,
ast_expression *dest, ast_expression *source)
{
ast_instantiate(ast_store, ctx, ast_store_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
self->op = op;
self->dest = dest;
self->source = source;
ast_use(dest);
ast_use(source);
return self;
}
void ast_store_delete(ast_store *self)
{
ast_unref(self->dest);
ast_unref(self->source);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_block* ast_block_new(lex_ctx ctx)
{
ast_instantiate(ast_block, ctx, ast_block_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_block_codegen);
MEM_VECTOR_INIT(self, locals);
MEM_VECTOR_INIT(self, exprs);
return self;
}
MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
bool ast_block_add_expr(ast_block *self, ast_expression *expr)
{
if (!ast_block_exprs_add(self, expr))
return false;
ast_use(expr);
return true;
}
void ast_block_delete(ast_block *self)
{
size_t i;
for (i = 0; i < self->exprs_count; ++i)
ast_unref(self->exprs[i]);
MEM_VECTOR_CLEAR(self, exprs);
for (i = 0; i < self->locals_count; ++i)
ast_delete(self->locals[i]);
MEM_VECTOR_CLEAR(self, locals);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
bool ast_block_set_type(ast_block *self, ast_expression *from)
{
if (self->expression.next)
ast_delete(self->expression.next);
self->expression.vtype = from->expression.vtype;
if (from->expression.next) {
self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
if (!self->expression.next)
return false;
}
return true;
}
ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
{
ast_instantiate(ast_function, ctx, ast_function_delete);
if (!vtype ||
vtype->isconst ||
vtype->expression.vtype != TYPE_FUNCTION)
{
mem_d(self);
return NULL;
}
self->vtype = vtype;
self->name = name ? util_strdup(name) : NULL;
MEM_VECTOR_INIT(self, blocks);
self->labelcount = 0;
self->builtin = 0;
self->ir_func = NULL;
self->curblock = NULL;
self->breakblock = NULL;
self->continueblock = NULL;
vtype->isconst = true;
vtype->constval.vfunc = self;
return self;
}
MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
void ast_function_delete(ast_function *self)
{
size_t i;
if (self->name)
mem_d((void*)self->name);
if (self->vtype) {
/* ast_value_delete(self->vtype); */
self->vtype->isconst = false;
self->vtype->constval.vfunc = NULL;
/* We use unref - if it was stored in a global table it is supposed
* to be deleted from *there*
*/
ast_unref(self->vtype);
}
for (i = 0; i < self->blocks_count; ++i)
ast_delete(self->blocks[i]);
MEM_VECTOR_CLEAR(self, blocks);
mem_d(self);
}
static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
{
unsigned int base = 10;
#define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
#define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
if (size < 1)
return;
checknul();
if (!num)
addch('0');
else {
while (num)
{
int digit = num % base;
num /= base;
addch('0' + digit);
}
}
*buf = 0;
#undef addch
#undef checknul
}
const char* ast_function_label(ast_function *self, const char *prefix)
{
size_t id = (self->labelcount++);
size_t len = strlen(prefix);
strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
return self->labelbuf;
}
/*********************************************************************/
/* AST codegen part
* by convention you must never pass NULL to the 'ir_value **out'
* parameter. If you really don't care about the output, pass a dummy.
* But I can't imagine a pituation where the output is truly unnecessary.
*/
bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
{
/* NOTE: This is the codegen for a variable used in an expression.
* It is not the codegen to generate the value. For this purpose,
* ast_local_codegen and ast_global_codegen are to be used before this
* is executed. ast_function_codegen should take care of its locals,
* and the ast-user should take care of ast_global_codegen to be used
* on all the globals.
*/
if (!self->ir_v) {
asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
return false;
}
*out = self->ir_v;
return true;
}
bool ast_global_codegen(ast_value *self, ir_builder *ir)
{
ir_value *v = NULL;
if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
{
ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
if (!func)
return false;
self->constval.vfunc->ir_func = func;
self->ir_v = func->value;
/* The function is filled later on ast_function_codegen... */
return true;
}
if (self->expression.vtype == TYPE_FIELD) {
v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
if (!v)
return false;
if (self->isconst) {
asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
goto error;
}
self->ir_v = v;
return true;
}
v = ir_builder_create_global(ir, self->name, self->expression.vtype);
if (!v) {
asterror(ast_ctx(self), "ir_builder_create_global failed\n");
return false;
}
if (self->isconst) {
switch (self->expression.vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
case TYPE_FUNCTION:
asterror(ast_ctx(self), "global of type function not properly generated\n");
goto error;
/* Cannot generate an IR value for a function,
* need a pointer pointing to a function rather.
*/
default:
asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
break;
}
}
/* link us to the ir_value */
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
{
ir_value *v = NULL;
if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
{
/* Do we allow local functions? I think not...
* this is NOT a function pointer atm.
*/
return false;
}
v = ir_function_create_local(func, self->name, self->expression.vtype, param);
if (!v)
return false;
/* A constant local... hmmm...
* I suppose the IR will have to deal with this
*/
if (self->isconst) {
switch (self->expression.vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
default:
asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
break;
}
}
/* link us to the ir_value */
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_function_codegen(ast_function *self, ir_builder *ir)
{
ir_function *irf;
ir_value *dummy;
ast_expression_common *ec;
size_t i;
irf = self->ir_func;
if (!irf) {
asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
return false;
}
/* fill the parameter list */
ec = &self->vtype->expression;
for (i = 0; i < ec->params_count; ++i)
{
if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
return false;
if (!self->builtin) {
if (!ast_local_codegen(ec->params[i], self->ir_func, true))
return false;
}
}
if (self->builtin) {
irf->builtin = self->builtin;
return true;
}
if (!self->blocks_count) {
asterror(ast_ctx(self), "function `%s` has no body", self->name);
return false;
}
self->curblock = ir_function_create_block(irf, "entry");
if (!self->curblock)
return false;
for (i = 0; i < self->blocks_count; ++i) {
ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
return false;
}
/* TODO: check return types */
if (!self->curblock->is_return)
{
if (!self->vtype->expression.next ||
self->vtype->expression.next->expression.vtype == TYPE_VOID)
{
return ir_block_create_return(self->curblock, NULL);
}
else
{
/* error("missing return"); */
asterror(ast_ctx(self), "function `%s` missing return value", self->name);
return false;
}
}
return true;
}
/* Note, you will not see ast_block_codegen generate ir_blocks.
* To the AST and the IR, blocks are 2 different things.
* In the AST it represents a block of code, usually enclosed in
* curly braces {...}.
* While in the IR it represents a block in terms of control-flow.
*/
bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
{
size_t i;
/* We don't use this
* Note: an ast-representation using the comma-operator
* of the form: (a, b, c) = x should not assign to c...
*/
(void)lvalue;
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
/* output is NULL at first, we'll have each expression
* assign to out output, thus, a comma-operator represention
* using an ast_block will return the last generated value,
* so: (b, c) + a executed both b and c, and returns c,
* which is then added to a.
*/
*out = NULL;
/* generate locals */
for (i = 0; i < self->locals_count; ++i)
{
if (!ast_local_codegen(self->locals[i], func->ir_func, false))
return false;
}
for (i = 0; i < self->exprs_count; ++i)
{
ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
if (!(*gen)(self->exprs[i], func, false, out))
return false;
}
self->expression.outr = *out;
return true;
}
bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
return true;
}
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->dest->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
return false;
self->expression.outl = left;
cgen = self->source->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
if (!ir_block_create_store_op(func->curblock, self->op, left, right))
return false;
self->expression.outr = right;
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? left : right);
return true;
}
bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
/* In the context of a binary operation, we can disregard
* the lvalue flag.
*/
(void)lvalue;
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->left->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
return false;
cgen = self->right->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
return false;
*out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
self->op, left, right);
if (!*out)
return false;
self->expression.outr = *out;
return true;
}
bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *leftl, *leftr, *right, *bin;
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
return true;
}
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
return true;
}
/* for a binstore we need both an lvalue and an rvalue for the left side */
/* rvalue of destination! */
cgen = self->dest->expression.codegen;
if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
return false;
/* source as rvalue only */
cgen = self->source->expression.codegen;
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
/* now the binary */
bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
self->opbin, leftr, right);
self->expression.outr = bin;
/* now store them */
cgen = self->dest->expression.codegen;
/* lvalue of destination */
if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
return false;
self->expression.outl = leftl;
if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
return false;
self->expression.outr = bin;
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? leftl : bin);
return true;
}
bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *operand;
/* In the context of a unary operation, we can disregard
* the lvalue flag.
*/
(void)lvalue;
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->operand->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
return false;
*out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
self->op, operand);
if (!*out)
return false;
self->expression.outr = *out;
return true;
}
bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *operand;
/* In the context of a return operation, we can disregard
* the lvalue flag.
*/
(void)lvalue;
if (self->expression.outr) {
asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
return false;
}
self->expression.outr = (ir_value*)1;
cgen = self->operand->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
return false;
if (!ir_block_create_return(func->curblock, operand))
return false;
return true;
}
bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *ent, *field;
/* This function needs to take the 'lvalue' flag into account!
* As lvalue we provide a field-pointer, as rvalue we provide the
* value in a temp.
*/
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
return true;
}
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->entity->expression.codegen;
if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
return false;
cgen = self->field->expression.codegen;
if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
return false;
if (lvalue) {
/* address! */
*out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
ent, field);
} else {
*out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
ent, field, self->expression.vtype);
}
if (!*out) {
asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
(lvalue ? "ADDRESS" : "FIELD"),
type_name[self->expression.vtype]);
return false;
}
if (lvalue)
self->expression.outl = *out;
else
self->expression.outr = *out;
/* Hm that should be it... */
return true;
}
bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *vec;
/* in QC this is always an lvalue */
(void)lvalue;
if (self->expression.outl) {
*out = self->expression.outl;
return true;
}
cgen = self->owner->expression.codegen;
if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
return false;
if (vec->vtype != TYPE_VECTOR &&
!(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
{
return false;
}
*out = ir_value_vector_member(vec, self->field);
self->expression.outl = *out;
return (*out != NULL);
}
bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *condval;
ir_value *dummy;
ir_block *cond = func->curblock;
ir_block *ontrue;
ir_block *onfalse;
ir_block *merge;
/* We don't output any value, thus also don't care about r/lvalue */
(void)out;
(void)lvalue;
if (self->expression.outr) {
asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
return false;
}
self->expression.outr = (ir_value*)1;
/* generate the condition */
func->curblock = cond;
cgen = self->cond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
return false;
/* on-true path */
if (self->on_true) {
/* create on-true block */
ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
if (!ontrue)
return false;
/* enter the block */
func->curblock = ontrue;
/* generate */
cgen = self->on_true->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
return false;
} else
ontrue = NULL;
/* on-false path */
if (self->on_false) {
/* create on-false block */
onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
if (!onfalse)
return false;
/* enter the block */
func->curblock = onfalse;
/* generate */
cgen = self->on_false->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
return false;
} else
onfalse = NULL;
/* Merge block were they all merge in to */
merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
if (!merge)
return false;
/* add jumps ot the merge block */
if (ontrue && !ir_block_create_jump(ontrue, merge))
return false;
if (onfalse && !ir_block_create_jump(onfalse, merge))
return false;
/* we create the if here, that way all blocks are ordered :)
*/
if (!ir_block_create_if(cond, condval,
(ontrue ? ontrue : merge),
(onfalse ? onfalse : merge)))
{
return false;
}
/* Now enter the merge block */
func->curblock = merge;
return true;
}
bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *condval;
ir_value *trueval, *falseval;
ir_instr *phi;
ir_block *cond = func->curblock;
ir_block *ontrue;
ir_block *onfalse;
ir_block *merge;
/* Ternary can never create an lvalue... */
if (lvalue)
return false;
/* In theory it shouldn't be possible to pass through a node twice, but
* in case we add any kind of optimization pass for the AST itself, it
* may still happen, thus we remember a created ir_value and simply return one
* if it already exists.
*/
if (self->phi_out) {
*out = self->phi_out;
return true;
}
/* In the following, contraty to ast_ifthen, we assume both paths exist. */
/* generate the condition */
func->curblock = cond;
cgen = self->cond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
return false;
/* create on-true block */
ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
if (!ontrue)
return false;
else
{
/* enter the block */
func->curblock = ontrue;
/* generate */
cgen = self->on_true->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
return false;
}
/* create on-false block */
onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
if (!onfalse)
return false;
else
{
/* enter the block */
func->curblock = onfalse;
/* generate */
cgen = self->on_false->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
return false;
}
/* create merge block */
merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
if (!merge)
return false;
/* jump to merge block */
if (!ir_block_create_jump(ontrue, merge))
return false;
if (!ir_block_create_jump(onfalse, merge))
return false;
/* create if instruction */
if (!ir_block_create_if(cond, condval, ontrue, onfalse))
return false;
/* Now enter the merge block */
func->curblock = merge;
/* Here, now, we need a PHI node
* but first some sanity checking...
*/
if (trueval->vtype != falseval->vtype) {
/* error("ternary with different types on the two sides"); */
return false;
}
/* create PHI */
phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
if (!phi ||
!ir_phi_add(phi, ontrue, trueval) ||
!ir_phi_add(phi, onfalse, falseval))
{
return false;
}
self->phi_out = ir_phi_value(phi);
*out = self->phi_out;
return true;
}
bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *dummy = NULL;
ir_value *precond = NULL;
ir_value *postcond = NULL;
/* Since we insert some jumps "late" so we have blocks
* ordered "nicely", we need to keep track of the actual end-blocks
* of expressions to add the jumps to.
*/
ir_block *bbody = NULL, *end_bbody = NULL;
ir_block *bprecond = NULL, *end_bprecond = NULL;
ir_block *bpostcond = NULL, *end_bpostcond = NULL;
ir_block *bincrement = NULL, *end_bincrement = NULL;
ir_block *bout = NULL, *bin = NULL;
/* let's at least move the outgoing block to the end */
size_t bout_id;
/* 'break' and 'continue' need to be able to find the right blocks */
ir_block *bcontinue = NULL;
ir_block *bbreak = NULL;
ir_block *old_bcontinue = NULL;
ir_block *old_bbreak = NULL;
ir_block *tmpblock = NULL;
(void)lvalue;
(void)out;
if (self->expression.outr) {
asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
return false;
}
self->expression.outr = (ir_value*)1;
/* NOTE:
* Should we ever need some kind of block ordering, better make this function
* move blocks around than write a block ordering algorithm later... after all
* the ast and ir should work together, not against each other.
*/
/* initexpr doesn't get its own block, it's pointless, it could create more blocks
* anyway if for example it contains a ternary.
*/
if (self->initexpr)
{
cgen = self->initexpr->expression.codegen;
if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
return false;
}
/* Store the block from which we enter this chaos */
bin = func->curblock;
/* The pre-loop condition needs its own block since we
* need to be able to jump to the start of that expression.
*/
if (self->precond)
{
bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
if (!bprecond)
return false;
/* the pre-loop-condition the least important place to 'continue' at */
bcontinue = bprecond;
/* enter */
func->curblock = bprecond;
/* generate */
cgen = self->precond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
return false;
end_bprecond = func->curblock;
} else {
bprecond = end_bprecond = NULL;
}
/* Now the next blocks won't be ordered nicely, but we need to
* generate them this early for 'break' and 'continue'.
*/
if (self->increment) {
bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
if (!bincrement)
return false;
bcontinue = bincrement; /* increment comes before the pre-loop-condition */
} else {
bincrement = end_bincrement = NULL;
}
if (self->postcond) {
bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
if (!bpostcond)
return false;
bcontinue = bpostcond; /* postcond comes before the increment */
} else {
bpostcond = end_bpostcond = NULL;
}
bout_id = func->ir_func->blocks_count;
bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
if (!bout)
return false;
bbreak = bout;
/* The loop body... */
if (self->body)
{
bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
if (!bbody)
return false;
/* enter */
func->curblock = bbody;
old_bbreak = func->breakblock;
old_bcontinue = func->continueblock;
func->breakblock = bbreak;
func->continueblock = bcontinue;
/* generate */
cgen = self->body->expression.codegen;
if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
return false;
end_bbody = func->curblock;
func->breakblock = old_bbreak;
func->continueblock = old_bcontinue;
}
/* post-loop-condition */
if (self->postcond)
{
/* enter */
func->curblock = bpostcond;
/* generate */
cgen = self->postcond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
return false;
end_bpostcond = func->curblock;
}
/* The incrementor */
if (self->increment)
{
/* enter */
func->curblock = bincrement;
/* generate */
cgen = self->increment->expression.codegen;
if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
return false;
end_bincrement = func->curblock;
}
/* In any case now, we continue from the outgoing block */
func->curblock = bout;
/* Now all blocks are in place */
/* From 'bin' we jump to whatever comes first */
if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else if (bpostcond) tmpblock = bpostcond;
else tmpblock = bout;
if (!ir_block_create_jump(bin, tmpblock))
return false;
/* From precond */
if (bprecond)
{
ir_block *ontrue, *onfalse;
if (bbody) ontrue = bbody;
else if (bincrement) ontrue = bincrement;
else if (bpostcond) ontrue = bpostcond;
else ontrue = bprecond;
onfalse = bout;
if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
return false;
}
/* from body */
if (bbody)
{
if (bincrement) tmpblock = bincrement;
else if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else tmpblock = bout;
if (!ir_block_create_jump(end_bbody, tmpblock))
return false;
}
/* from increment */
if (bincrement)
{
if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else tmpblock = bout;
if (!ir_block_create_jump(end_bincrement, tmpblock))
return false;
}
/* from postcond */
if (bpostcond)
{
ir_block *ontrue, *onfalse;
if (bprecond) ontrue = bprecond;
else if (bbody) ontrue = bbody;
else if (bincrement) ontrue = bincrement;
else ontrue = bpostcond;
onfalse = bout;
if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
return false;
}
/* Move 'bout' to the end */
if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
!ir_function_blocks_add(func->ir_func, bout))
{
ir_block_delete(bout);
return false;
}
return true;
}
bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value_vector params;
ir_instr *callinstr;
size_t i;
ir_value *funval = NULL;
/* return values are never lvalues */
(void)lvalue;
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->func->expression.codegen;
if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
return false;
if (!funval)
return false;
MEM_VECTOR_INIT(&params, v);
/* parameters */
for (i = 0; i < self->params_count; ++i)
{
ir_value *param;
ast_expression *expr = self->params[i];
cgen = expr->expression.codegen;
if (!(*cgen)(expr, func, false, &param))
goto error;
if (!param)
goto error;
if (!ir_value_vector_v_add(&params, param))
goto error;
}
callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
if (!callinstr)
goto error;
for (i = 0; i < params.v_count; ++i) {
if (!ir_call_param(callinstr, params.v[i]))
goto error;
}
*out = ir_call_value(callinstr);
self->expression.outr = *out;
MEM_VECTOR_CLEAR(&params, v);
return true;
error:
MEM_VECTOR_CLEAR(&params, v);
return false;
}