gmqcc/ast.h
2012-07-27 15:27:41 +02:00

437 lines
13 KiB
C

/*
* Copyright (C) 2012
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef GMQCC_AST_HDR
#define GMQCC_AST_HDR
#include "ir.h"
/* Note: I will not be using a _t suffix for the
* "main" ast node types for now.
*/
typedef union ast_node_u ast_node;
typedef union ast_expression_u ast_expression;
typedef struct ast_value_s ast_value;
typedef struct ast_function_s ast_function;
typedef struct ast_block_s ast_block;
typedef struct ast_binary_s ast_binary;
typedef struct ast_store_s ast_store;
typedef struct ast_entfield_s ast_entfield;
typedef struct ast_ifthen_s ast_ifthen;
typedef struct ast_ternary_s ast_ternary;
typedef struct ast_loop_s ast_loop;
typedef struct ast_call_s ast_call;
typedef struct ast_unary_s ast_unary;
typedef struct ast_return_s ast_return;
/* Node interface with common components
*/
typedef void ast_node_delete(ast_node*);
typedef struct
{
lex_ctx context;
/* I don't feel comfortable using keywords like 'delete' as names... */
ast_node_delete *destroy;
/* keep: if a node contains this node, 'keep'
* prevents its dtor from destroying this node as well.
*/
bool keep;
} ast_node_common;
#define ast_delete(x) ( ( (ast_node*)(x) ) -> node.destroy )((ast_node*)(x))
#define ast_unref(x) do \
{ \
if (! (((ast_node*)(x))->node.keep) ) { \
ast_delete(x); \
} \
} while(0)
/* Expression interface
*
* Any expression or block returns an ir_value, and needs
* to know the current function.
*/
typedef bool ast_expression_codegen(ast_expression*,
ast_function*,
bool lvalue,
ir_value**);
typedef struct
{
ast_node_common node;
ast_expression_codegen *codegen;
int vtype;
ast_expression *next;
MEM_VECTOR_MAKE(ast_value*, params);
} ast_expression_common;
MEM_VECTOR_PROTO(ast_expression_common, ast_value*, params);
/* Value
*
* Types are also values, both have a type and a name.
* especially considering possible constructs like typedefs.
* typedef float foo;
* is like creating a 'float foo', foo serving as the type's name.
*/
struct ast_value_s
{
ast_expression_common expression;
const char *name;
/*
int vtype;
ast_value *next;
*/
bool isconst;
union {
double vfloat;
int vint;
vector vvec;
const char *vstring;
int ventity;
ast_function *vfunc;
quaternion vquat;
matrix vmat;
} constval;
ir_value *ir_v;
};
ast_value* ast_value_new(lex_ctx ctx, const char *name, int qctype);
/* This will NOT delete an underlying ast_function */
void ast_value_delete(ast_value*);
bool ast_value_set_name(ast_value*, const char *name);
bool ast_value_codegen(ast_value*, ast_function*, bool lvalue, ir_value**);
bool ast_local_codegen(ast_value *self, ir_function *func, bool isparam);
bool ast_global_codegen(ast_value *self, ir_builder *ir);
bool GMQCC_WARN ast_value_params_add(ast_value*, ast_value*);
/* Binary
*
* A value-returning binary expression.
*/
struct ast_binary_s
{
ast_expression_common expression;
int op;
ast_expression *left;
ast_expression *right;
};
ast_binary* ast_binary_new(lex_ctx ctx,
int op,
ast_expression *left,
ast_expression *right);
void ast_binary_delete(ast_binary*);
bool ast_binary_codegen(ast_binary*, ast_function*, bool lvalue, ir_value**);
/* Unary
*
* Regular unary expressions: not,neg
*/
struct ast_unary_s
{
ast_expression_common expression;
int op;
ast_expression *operand;
};
ast_unary* ast_unary_new(lex_ctx ctx,
int op,
ast_expression *expr);
void ast_unary_delete(ast_unary*);
bool ast_unary_codegen(ast_unary*, ast_function*, bool lvalue, ir_value**);
/* Return
*
* Make sure 'return' only happens at the end of a block, otherwise the IR
* will refuse to create further instructions.
* This should be honored by the parser.
*/
struct ast_return_s
{
ast_expression_common expression;
ast_expression *operand;
};
ast_return* ast_return_new(lex_ctx ctx,
ast_expression *expr);
void ast_return_delete(ast_return*);
bool ast_return_codegen(ast_return*, ast_function*, bool lvalue, ir_value**);
/* Entity-field
*
* This must do 2 things:
* -) Provide a way to fetch an entity field value. (Rvalue)
* -) Provide a pointer to an entity field. (Lvalue)
* The problem:
* In original QC, there's only a STORE via pointer, but
* no LOAD via pointer.
* So we must know beforehand if we are going to read or assign
* the field.
* For this we will have to extend the codegen() functions with
* a flag saying whether or not we need an L or an R-value.
*/
struct ast_entfield_s
{
ast_expression_common expression;
/* The entity can come from an expression of course. */
ast_expression *entity;
/* As can the field, it just must result in a value of TYPE_FIELD */
ast_expression *field;
};
ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field);
void ast_entfield_delete(ast_entfield*);
bool ast_entfield_codegen(ast_entfield*, ast_function*, bool lvalue, ir_value**);
/* Store
*
* Stores left<-right and returns left.
* Specialized binary expression node
*/
struct ast_store_s
{
ast_expression_common expression;
int op;
ast_value *dest; /* When we add pointers this might have to change to expression */
ast_expression *source;
};
ast_store* ast_store_new(lex_ctx ctx, int op,
ast_value *d, ast_expression *s);
void ast_store_delete(ast_store*);
bool ast_store_codegen(ast_store*, ast_function*, bool lvalue, ir_value**);
/* If
*
* A general 'if then else' statement, either side can be NULL and will
* thus be omitted. It is an error for *both* cases to be NULL at once.
*
* During its 'codegen' it'll be changing the ast_function's block.
*
* An if is also an "expression". Its codegen will put NULL into the
* output field though. For ternary expressions an ast_ternary will be
* added.
*/
struct ast_ifthen_s
{
ast_expression_common expression;
ast_expression *cond;
/* It's all just 'expressions', since an ast_block is one too. */
ast_expression *on_true;
ast_expression *on_false;
};
ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse);
void ast_ifthen_delete(ast_ifthen*);
bool ast_ifthen_codegen(ast_ifthen*, ast_function*, bool lvalue, ir_value**);
/* Ternary expressions...
*
* Contrary to 'if-then-else' nodes, ternary expressions actually
* return a value, otherwise they behave the very same way.
* The difference in 'codegen' is that it'll return the value of
* a PHI node.
*
* The other difference is that in an ast_ternary, NEITHER side
* must be NULL, there's ALWAYS an else branch.
*
* This is the only ast_node beside ast_value which contains
* an ir_value. Theoretically we don't need to remember it though.
*/
struct ast_ternary_s
{
ast_expression_common expression;
ast_expression *cond;
/* It's all just 'expressions', since an ast_block is one too. */
ast_expression *on_true;
ast_expression *on_false;
/* After a ternary expression we find ourselves in a new IR block
* and start with a PHI node */
ir_value *phi_out;
};
ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse);
void ast_ternary_delete(ast_ternary*);
bool ast_ternary_codegen(ast_ternary*, ast_function*, bool lvalue, ir_value**);
/* A general loop node
*
* For convenience it contains 4 parts:
* -) (ini) = initializing expression
* -) (pre) = pre-loop condition
* -) (pst) = post-loop condition
* -) (inc) = "increment" expression
* The following is a psudo-representation of this loop
* note that '=>' bears the logical meaning of "implies".
* (a => b) equals (!a || b)
{ini};
while (has_pre => {pre})
{
{body};
continue: // a 'continue' will jump here
if (has_pst => {pst})
break;
{inc};
}
*/
struct ast_loop_s
{
ast_expression_common expression;
ast_expression *initexpr;
ast_expression *precond;
ast_expression *postcond;
ast_expression *increment;
ast_expression *body;
};
ast_loop* ast_loop_new(lex_ctx ctx,
ast_expression *initexpr,
ast_expression *precond,
ast_expression *postcond,
ast_expression *increment,
ast_expression *body);
void ast_loop_delete(ast_loop*);
bool ast_loop_codegen(ast_loop*, ast_function*, bool lvalue, ir_value**);
/* CALL node
*
* Contains an ast_expression as target, rather than an ast_function/value.
* Since it's how QC works, every ast_function has an ast_value
* associated anyway - in other words, the VM contains function
* pointers for every function anyway. Thus, this node will call
* expression.
* Additionally it contains a list of ast_expressions as parameters.
* Since calls can return values, an ast_call is also an ast_expression.
*/
struct ast_call_s
{
ast_expression_common expression;
ast_expression *func;
MEM_VECTOR_MAKE(ast_expression*, params);
};
ast_call* ast_call_new(lex_ctx ctx,
ast_expression *funcexpr);
void ast_call_delete(ast_call*);
bool ast_call_codegen(ast_call*, ast_function*, bool lvalue, ir_value**);
MEM_VECTOR_PROTO(ast_call, ast_expression*, params);
/* Blocks
*
*/
struct ast_block_s
{
ast_expression_common expression;
MEM_VECTOR_MAKE(ast_value*, locals);
MEM_VECTOR_MAKE(ast_expression*, exprs);
};
ast_block* ast_block_new(lex_ctx ctx);
void ast_block_delete(ast_block*);
bool ast_block_set_type(ast_block*, ast_expression *from);
MEM_VECTOR_PROTO(ast_block, ast_value*, locals);
MEM_VECTOR_PROTO(ast_block, ast_expression*, exprs);
bool ast_block_codegen(ast_block*, ast_function*, bool lvalue, ir_value**);
/* Function
*
* Contains a list of blocks... at least in theory.
* Usually there's just the main block, other blocks are inside that.
*
* Technically, functions don't need to be an AST node, since we have
* neither functions inside functions, nor lambdas, and function
* pointers could just work with a name. However, this way could be
* more flexible, and adds no real complexity.
*/
struct ast_function_s
{
ast_node_common node;
ast_value *vtype;
const char *name;
int builtin;
ir_function *ir_func;
ir_block *curblock;
ir_block *breakblock;
ir_block *continueblock;
size_t labelcount;
/* in order for thread safety - for the optional
* channel abesed multithreading... keeping a buffer
* here to use in ast_function_label.
*/
char labelbuf[64];
MEM_VECTOR_MAKE(ast_block*, blocks);
};
ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype);
/* This will NOT delete the underlying ast_value */
void ast_function_delete(ast_function*);
/* For "optimized" builds this can just keep returning "foo"...
* or whatever...
*/
const char* ast_function_label(ast_function*, const char *prefix);
MEM_VECTOR_PROTO(ast_function, ast_block*, blocks);
bool ast_function_codegen(ast_function *self, ir_builder *builder);
/* Expression union
*/
union ast_expression_u
{
ast_expression_common expression;
ast_value value;
ast_binary binary;
ast_block block;
ast_ternary ternary;
ast_ifthen ifthen;
ast_store store;
ast_entfield entfield;
};
/* Node union
*/
union ast_node_u
{
ast_node_common node;
ast_expression expression;
};
#endif