gmqcc/ast.cpp
Dale Weiler 092067482f added -fdefault-eraseable which is the same as adding [[eraseable]] to all definitions
instead the opposite behavior can be controlled with [[noerase]] attribute
2018-05-09 21:18:37 -04:00

3115 lines
91 KiB
C++

#include <new>
#include <stdlib.h>
#include <string.h>
#include "gmqcc.h"
#include "ast.h"
#include "fold.h"
//#include "parser.h"
#include "algo.h"
/* Initialize main ast node aprts */
ast_node::ast_node(lex_ctx_t ctx, int node_type)
: m_context(ctx)
, m_node_type(node_type)
, m_keep_node(false)
, m_side_effects(false)
{
}
ast_node::~ast_node()
{
}
/* weight and side effects */
void ast_node::propagateSideEffects(const ast_node *other)
{
if (other->m_side_effects)
m_side_effects = true;
}
/* General expression initialization */
ast_expression::ast_expression(lex_ctx_t ctx, int nodetype, qc_type type)
: ast_node(ctx, nodetype)
, m_vtype(type)
{
if (OPTS_OPTION_BOOL(OPTION_COVERAGE))
m_flags |= AST_FLAG_BLOCK_COVERAGE;
if (OPTS_FLAG(DEFAULT_ERASEABLE))
m_flags |= AST_FLAG_ERASEABLE;
}
ast_expression::ast_expression(lex_ctx_t ctx, int nodetype)
: ast_expression(ctx, nodetype, TYPE_VOID)
{}
ast_expression::~ast_expression()
{
if (m_next)
delete m_next;
if (m_varparam)
delete m_varparam;
}
ast_expression::ast_expression(ast_copy_type_t, const ast_expression &other)
: ast_expression(ast_copy_type, other.m_context, other)
{}
ast_expression::ast_expression(ast_copy_type_t, lex_ctx_t ctx, const ast_expression &other)
: ast_expression(ast_copy_type, TYPE_ast_expression, ctx, other)
{}
ast_expression::ast_expression(ast_copy_type_t, int nodetype, const ast_expression &other)
: ast_expression(ast_copy_type, nodetype, other.m_context, other)
{}
ast_expression::ast_expression(ast_copy_type_t, int nodetype, lex_ctx_t ctx, const ast_expression &other)
: ast_expression(ctx, nodetype)
{
m_vtype = other.m_vtype;
m_count = other.m_count;
m_flags = other.m_flags;
if (other.m_next)
m_next = new ast_expression(ast_copy_type, *other.m_next);
m_type_params.reserve(other.m_type_params.size());
for (auto &it : other.m_type_params)
m_type_params.emplace_back(new ast_value(ast_copy_type, *it));
}
ast_expression *ast_expression::shallowType(lex_ctx_t ctx, qc_type vtype) {
auto expr = new ast_expression(ctx, TYPE_ast_expression);
expr->m_vtype = vtype;
return expr;
}
void ast_expression::adoptType(const ast_expression &other)
{
m_vtype = other.m_vtype;
if (other.m_next)
m_next = new ast_expression(ast_copy_type, *other.m_next);
m_count = other.m_count;
m_flags = other.m_flags;
m_type_params.clear();
m_type_params.reserve(other.m_type_params.size());
for (auto &it : other.m_type_params)
m_type_params.emplace_back(new ast_value(ast_copy_type, *it));
}
bool ast_expression::compareType(const ast_expression &other) const
{
if (m_vtype == TYPE_NIL ||
other.m_vtype == TYPE_NIL)
return true;
if (m_vtype != other.m_vtype)
return false;
if (!m_next != !other.m_next)
return false;
if (m_type_params.size() != other.m_type_params.size())
return false;
if ((m_flags & AST_FLAG_TYPE_MASK) !=
(other.m_flags & AST_FLAG_TYPE_MASK) )
{
return false;
}
if (m_type_params.size()) {
size_t i;
for (i = 0; i < m_type_params.size(); ++i) {
if (!m_type_params[i]->compareType(*other.m_type_params[i]))
return false;
}
}
if (m_next)
return m_next->compareType(*other.m_next);
return true;
}
bool ast_expression::codegen(ast_function*, bool, ir_value**) {
compile_error(m_context, "ast_expression::codegen called!");
abort();
return false;
}
ast_value::ast_value(ast_copy_type_t, const ast_value &other, const std::string &name)
: ast_value(ast_copy_type, static_cast<const ast_expression&>(other), name)
{
m_keep_node = true; // keep values, always
memset(&m_constval, 0, sizeof(m_constval));
}
ast_value::ast_value(ast_copy_type_t, const ast_value &other)
: ast_value(ast_copy_type, static_cast<const ast_expression&>(other), other.m_name)
{
m_keep_node = true; // keep values, always
memset(&m_constval, 0, sizeof(m_constval));
}
ast_value::ast_value(ast_copy_type_t, const ast_expression &other, const std::string &name)
: ast_expression(ast_copy_type, TYPE_ast_value, other)
, m_name(name)
{
m_keep_node = true; // keep values, always
memset(&m_constval, 0, sizeof(m_constval));
}
ast_value::ast_value(lex_ctx_t ctx, const std::string &name, qc_type t)
: ast_expression(ctx, TYPE_ast_value, t)
, m_name(name)
{
m_keep_node = true; // keep values, always
memset(&m_constval, 0, sizeof(m_constval));
}
ast_value::~ast_value()
{
if (m_argcounter)
mem_d((void*)m_argcounter);
if (m_hasvalue) {
switch (m_vtype)
{
case TYPE_STRING:
mem_d((void*)m_constval.vstring);
break;
case TYPE_FUNCTION:
// unlink us from the function node
m_constval.vfunc->m_function_type = nullptr;
break;
// NOTE: delete function? currently collected in
// the parser structure
default:
break;
}
}
// initlist imples an array which implies .next in the expression exists.
if (m_initlist.size() && m_next->m_vtype == TYPE_STRING) {
for (auto &it : m_initlist)
if (it.vstring)
mem_d(it.vstring);
}
}
static size_t ast_type_to_string_impl(const ast_expression *e, char *buf, size_t bufsize, size_t pos)
{
const char *typestr;
size_t typelen;
size_t i;
if (!e) {
if (pos + 6 >= bufsize)
goto full;
util_strncpy(buf + pos, "(null)", 6);
return pos + 6;
}
if (pos + 1 >= bufsize)
goto full;
switch (e->m_vtype) {
case TYPE_VARIANT:
util_strncpy(buf + pos, "(variant)", 9);
return pos + 9;
case TYPE_FIELD:
buf[pos++] = '.';
return ast_type_to_string_impl(e->m_next, buf, bufsize, pos);
case TYPE_POINTER:
if (pos + 3 >= bufsize)
goto full;
buf[pos++] = '*';
buf[pos++] = '(';
pos = ast_type_to_string_impl(e->m_next, buf, bufsize, pos);
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = ')';
return pos;
case TYPE_FUNCTION:
pos = ast_type_to_string_impl(e->m_next, buf, bufsize, pos);
if (pos + 2 >= bufsize)
goto full;
if (e->m_type_params.empty()) {
buf[pos++] = '(';
buf[pos++] = ')';
return pos;
}
buf[pos++] = '(';
pos = ast_type_to_string_impl(e->m_type_params[0].get(), buf, bufsize, pos);
for (i = 1; i < e->m_type_params.size(); ++i) {
if (pos + 2 >= bufsize)
goto full;
buf[pos++] = ',';
buf[pos++] = ' ';
pos = ast_type_to_string_impl(e->m_type_params[i].get(), buf, bufsize, pos);
}
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = ')';
return pos;
case TYPE_ARRAY:
pos = ast_type_to_string_impl(e->m_next, buf, bufsize, pos);
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = '[';
pos += util_snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->m_count);
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = ']';
return pos;
default:
typestr = type_name[e->m_vtype];
typelen = strlen(typestr);
if (pos + typelen >= bufsize)
goto full;
util_strncpy(buf + pos, typestr, typelen);
return pos + typelen;
}
full:
buf[bufsize-3] = '.';
buf[bufsize-2] = '.';
buf[bufsize-1] = '.';
return bufsize;
}
void ast_type_to_string(const ast_expression *e, char *buf, size_t bufsize)
{
size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
buf[pos] = 0;
}
void ast_value::addParam(ast_value *p)
{
m_type_params.emplace_back(p);
}
ast_binary::ast_binary(lex_ctx_t ctx, int op,
ast_expression* left, ast_expression* right)
: ast_expression(ctx, TYPE_ast_binary)
, m_op(op)
// m_left/m_right happen after the peephole step right below
, m_right_first(false)
{
if (ast_istype(right, ast_unary) && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
ast_unary *unary = ((ast_unary*)right);
ast_expression *normal = unary->m_operand;
/* make a-(-b) => a + b */
if (unary->m_op == VINSTR_NEG_F || unary->m_op == VINSTR_NEG_V) {
if (op == INSTR_SUB_F) {
op = INSTR_ADD_F;
right = normal;
++opts_optimizationcount[OPTIM_PEEPHOLE];
} else if (op == INSTR_SUB_V) {
op = INSTR_ADD_V;
right = normal;
++opts_optimizationcount[OPTIM_PEEPHOLE];
}
}
}
m_left = left;
m_right = right;
propagateSideEffects(left);
propagateSideEffects(right);
if (op >= INSTR_EQ_F && op <= INSTR_GT)
m_vtype = TYPE_FLOAT;
else if (op == INSTR_AND || op == INSTR_OR) {
if (OPTS_FLAG(PERL_LOGIC))
adoptType(*right);
else
m_vtype = TYPE_FLOAT;
}
else if (op == INSTR_BITAND || op == INSTR_BITOR)
m_vtype = TYPE_FLOAT;
else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
m_vtype = TYPE_VECTOR;
else if (op == INSTR_MUL_V)
m_vtype = TYPE_FLOAT;
else
m_vtype = left->m_vtype;
// references all
m_refs = AST_REF_ALL;
}
ast_binary::~ast_binary()
{
if (m_refs & AST_REF_LEFT) ast_unref(m_left);
if (m_refs & AST_REF_RIGHT) ast_unref(m_right);
}
ast_binstore::ast_binstore(lex_ctx_t ctx, int storop, int mathop,
ast_expression* left, ast_expression* right)
: ast_expression(ctx, TYPE_ast_binstore)
, m_opstore(storop)
, m_opbin(mathop)
, m_dest(left)
, m_source(right)
, m_keep_dest(false)
{
m_side_effects = true;
adoptType(*left);
}
ast_binstore::~ast_binstore()
{
if (!m_keep_dest)
ast_unref(m_dest);
ast_unref(m_source);
}
ast_unary* ast_unary::make(lex_ctx_t ctx, int op, ast_expression *expr)
{
// handle double negation, double bitwise or logical not
if (op == opid2('!','P') ||
op == opid2('~','P') ||
op == opid2('-','P'))
{
if (ast_istype(expr, ast_unary) && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
ast_unary *unary = reinterpret_cast<ast_unary*>(expr);
if (unary->m_op == op) {
auto out = reinterpret_cast<ast_unary*>(unary->m_operand);
unary->m_operand = nullptr;
delete unary;
++opts_optimizationcount[OPTIM_PEEPHOLE];
return out;
}
}
}
return new ast_unary(ctx, op, expr);
}
ast_unary::ast_unary(lex_ctx_t ctx, int op, ast_expression *expr)
: ast_expression(ctx, TYPE_ast_unary)
, m_op(op)
, m_operand(expr)
{
propagateSideEffects(expr);
if ((op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) || op == VINSTR_NEG_F) {
m_vtype = TYPE_FLOAT;
} else if (op == VINSTR_NEG_V) {
m_vtype = TYPE_VECTOR;
} else {
compile_error(ctx, "cannot determine type of unary operation %s", util_instr_str[op]);
}
}
ast_unary::~ast_unary()
{
if (m_operand)
ast_unref(m_operand);
}
ast_return::ast_return(lex_ctx_t ctx, ast_expression *expr)
: ast_expression(ctx, TYPE_ast_return)
, m_operand(expr)
{
if (expr)
propagateSideEffects(expr);
}
ast_return::~ast_return()
{
if (m_operand)
ast_unref(m_operand);
}
ast_entfield::ast_entfield(lex_ctx_t ctx, ast_expression *entity, ast_expression *field)
: ast_entfield(ctx, entity, field, field->m_next)
{
if (field->m_vtype != TYPE_FIELD)
compile_error(ctx, "ast_entfield with expression not of type field");
}
ast_entfield::ast_entfield(lex_ctx_t ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
: ast_expression(ctx, TYPE_ast_entfield)
, m_entity(entity)
, m_field(field)
{
propagateSideEffects(m_entity);
propagateSideEffects(m_field);
if (!outtype) {
compile_error(ctx, "ast_entfield: field has no type");
m_vtype = TYPE_VOID;
}
else
adoptType(*outtype);
}
ast_entfield::~ast_entfield()
{
ast_unref(m_entity);
ast_unref(m_field);
}
ast_member *ast_member::make(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const std::string &name)
{
if (field >= 3) {
compile_error(ctx, "ast_member: invalid field (>=3): %u", field);
return nullptr;
}
if (owner->m_vtype != TYPE_VECTOR &&
owner->m_vtype != TYPE_FIELD)
{
compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->m_vtype]);
return nullptr;
}
return new ast_member(ctx, owner, field, name);
}
ast_member::ast_member(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const std::string &name)
: ast_expression(ctx, TYPE_ast_member)
, m_owner(owner)
, m_field(field)
, m_name(name)
, m_rvalue(false)
{
m_keep_node = true;
if (m_owner->m_vtype == TYPE_VECTOR) {
m_vtype = TYPE_FLOAT;
m_next = nullptr;
} else {
m_vtype = TYPE_FIELD;
m_next = ast_expression::shallowType(ctx, TYPE_FLOAT);
}
propagateSideEffects(owner);
}
ast_member::~ast_member()
{
// The owner is always an ast_value, which has .keep_node=true,
// also: ast_members are usually deleted after the owner, thus
// this will cause invalid access
//ast_unref(self->m_owner);
// once we allow (expression).x to access a vector-member, we need
// to change this: preferably by creating an alternate ast node for this
// purpose that is not garbage-collected.
}
ast_array_index* ast_array_index::make(lex_ctx_t ctx, ast_expression *array, ast_expression *index)
{
ast_expression *outtype = array->m_next;
if (!outtype) {
// field has no type
return nullptr;
}
return new ast_array_index(ctx, array, index);
}
ast_array_index::ast_array_index(lex_ctx_t ctx, ast_expression *array, ast_expression *index)
: ast_expression(ctx, TYPE_ast_array_index)
, m_array(array)
, m_index(index)
{
propagateSideEffects(array);
propagateSideEffects(index);
ast_expression *outtype = m_array->m_next;
adoptType(*outtype);
if (array->m_vtype == TYPE_FIELD && outtype->m_vtype == TYPE_ARRAY) {
// FIXME: investigate - this is not possible after adoptType
//if (m_vtype != TYPE_ARRAY) {
// compile_error(self->m_context, "array_index node on type");
// ast_array_index_delete(self);
// return nullptr;
//}
m_array = outtype;
m_vtype = TYPE_FIELD;
}
}
ast_array_index::~ast_array_index()
{
if (m_array)
ast_unref(m_array);
if (m_index)
ast_unref(m_index);
}
ast_argpipe::ast_argpipe(lex_ctx_t ctx, ast_expression *index)
: ast_expression(ctx, TYPE_ast_argpipe)
, m_index(index)
{
m_vtype = TYPE_NOEXPR;
}
ast_argpipe::~ast_argpipe()
{
if (m_index)
ast_unref(m_index);
}
ast_store::ast_store(lex_ctx_t ctx, int op, ast_expression *dest, ast_expression *source)
: ast_expression(ctx, TYPE_ast_store)
, m_op(op)
, m_dest(dest)
, m_source(source)
{
m_side_effects = true;
adoptType(*dest);
}
ast_store::~ast_store()
{
ast_unref(m_dest);
ast_unref(m_source);
}
ast_ifthen::ast_ifthen(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
: ast_expression(ctx, TYPE_ast_ifthen)
, m_cond(cond)
, m_on_true(ontrue)
, m_on_false(onfalse)
{
propagateSideEffects(cond);
if (ontrue)
propagateSideEffects(ontrue);
if (onfalse)
propagateSideEffects(onfalse);
}
ast_ifthen::~ast_ifthen()
{
ast_unref(m_cond);
if (m_on_true)
ast_unref(m_on_true);
if (m_on_false)
ast_unref(m_on_false);
}
ast_ternary::ast_ternary(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
: ast_expression(ctx, TYPE_ast_ternary)
, m_cond(cond)
, m_on_true(ontrue)
, m_on_false(onfalse)
{
propagateSideEffects(cond);
propagateSideEffects(ontrue);
propagateSideEffects(onfalse);
if (ontrue->m_vtype == TYPE_NIL)
adoptType(*onfalse);
else
adoptType(*ontrue);
}
ast_ternary::~ast_ternary()
{
/* the if()s are only there because computed-gotos can set them
* to nullptr
*/
if (m_cond) ast_unref(m_cond);
if (m_on_true) ast_unref(m_on_true);
if (m_on_false) ast_unref(m_on_false);
}
ast_loop::ast_loop(lex_ctx_t ctx,
ast_expression *initexpr,
ast_expression *precond, bool pre_not,
ast_expression *postcond, bool post_not,
ast_expression *increment,
ast_expression *body)
: ast_expression(ctx, TYPE_ast_loop)
, m_initexpr(initexpr)
, m_precond(precond)
, m_postcond(postcond)
, m_increment(increment)
, m_body(body)
, m_pre_not(pre_not)
, m_post_not(post_not)
{
if (initexpr)
propagateSideEffects(initexpr);
if (precond)
propagateSideEffects(precond);
if (postcond)
propagateSideEffects(postcond);
if (increment)
propagateSideEffects(increment);
if (body)
propagateSideEffects(body);
}
ast_loop::~ast_loop()
{
if (m_initexpr)
ast_unref(m_initexpr);
if (m_precond)
ast_unref(m_precond);
if (m_postcond)
ast_unref(m_postcond);
if (m_increment)
ast_unref(m_increment);
if (m_body)
ast_unref(m_body);
}
ast_breakcont::ast_breakcont(lex_ctx_t ctx, bool iscont, unsigned int levels)
: ast_expression(ctx, TYPE_ast_breakcont)
, m_is_continue(iscont)
, m_levels(levels)
{
}
ast_breakcont::~ast_breakcont()
{
}
ast_switch::ast_switch(lex_ctx_t ctx, ast_expression *op)
: ast_expression(ctx, TYPE_ast_switch)
, m_operand(op)
{
propagateSideEffects(op);
}
ast_switch::~ast_switch()
{
ast_unref(m_operand);
for (auto &it : m_cases) {
if (it.m_value)
ast_unref(it.m_value);
ast_unref(it.m_code);
}
}
ast_label::ast_label(lex_ctx_t ctx, const std::string &name, bool undefined)
: ast_expression(ctx, TYPE_ast_label)
, m_name(name)
, m_irblock(nullptr)
, m_undefined(undefined)
{
m_vtype = TYPE_NOEXPR;
}
ast_label::~ast_label()
{
}
void ast_label::registerGoto(ast_goto *g)
{
m_gotos.push_back(g);
}
ast_goto::ast_goto(lex_ctx_t ctx, const std::string &name)
: ast_expression(ctx, TYPE_ast_goto)
, m_name(name)
, m_target(nullptr)
, m_irblock_from(nullptr)
{
}
ast_goto::~ast_goto()
{
}
void ast_goto::setLabel(ast_label *label)
{
m_target = label;
}
ast_state::ast_state(lex_ctx_t ctx, ast_expression *frame, ast_expression *think)
: ast_expression(ctx, TYPE_ast_expression)
, m_framenum(frame)
, m_nextthink(think)
{
}
ast_state::~ast_state()
{
if (m_framenum)
ast_unref(m_framenum);
if (m_nextthink)
ast_unref(m_nextthink);
}
ast_call *ast_call::make(lex_ctx_t ctx, ast_expression *funcexpr)
{
if (!funcexpr->m_next) {
compile_error(ctx, "not a function");
return nullptr;
}
return new ast_call(ctx, funcexpr);
}
ast_call::ast_call(lex_ctx_t ctx, ast_expression *funcexpr)
: ast_expression(ctx, TYPE_ast_call)
, m_func(funcexpr)
, m_va_count(nullptr)
{
m_side_effects = true;
adoptType(*funcexpr->m_next);
}
ast_call::~ast_call()
{
for (auto &it : m_params)
ast_unref(it);
if (m_func)
ast_unref(m_func);
if (m_va_count)
ast_unref(m_va_count);
}
bool ast_call::checkVararg(ast_expression *va_type, ast_expression *exp_type) const
{
char texp[1024];
char tgot[1024];
if (!exp_type)
return true;
if (!va_type || !va_type->compareType(*exp_type))
{
if (va_type && exp_type)
{
ast_type_to_string(va_type, tgot, sizeof(tgot));
ast_type_to_string(exp_type, texp, sizeof(texp));
if (OPTS_FLAG(UNSAFE_VARARGS)) {
if (compile_warning(m_context, WARN_UNSAFE_TYPES,
"piped variadic argument differs in type: constrained to type %s, expected type %s",
tgot, texp))
return false;
} else {
compile_error(m_context,
"piped variadic argument differs in type: constrained to type %s, expected type %s",
tgot, texp);
return false;
}
}
else
{
ast_type_to_string(exp_type, texp, sizeof(texp));
if (OPTS_FLAG(UNSAFE_VARARGS)) {
if (compile_warning(m_context, WARN_UNSAFE_TYPES,
"piped variadic argument may differ in type: expected type %s",
texp))
return false;
} else {
compile_error(m_context,
"piped variadic argument may differ in type: expected type %s",
texp);
return false;
}
}
}
return true;
}
bool ast_call::checkTypes(ast_expression *va_type) const
{
char texp[1024];
char tgot[1024];
size_t i;
bool retval = true;
size_t count = m_params.size();
if (count > m_func->m_type_params.size())
count = m_func->m_type_params.size();
for (i = 0; i < count; ++i) {
if (ast_istype(m_params[i], ast_argpipe)) {
/* warn about type safety instead */
if (i+1 != count) {
compile_error(m_context, "argpipe must be the last parameter to a function call");
return false;
}
if (!checkVararg(va_type, m_func->m_type_params[i].get()))
retval = false;
}
else if (!m_params[i]->compareType(*m_func->m_type_params[i]))
{
ast_type_to_string(m_params[i], tgot, sizeof(tgot));
ast_type_to_string(m_func->m_type_params[i].get(), texp, sizeof(texp));
compile_error(m_context, "invalid type for parameter %u in function call: expected %s, got %s",
(unsigned int)(i+1), texp, tgot);
/* we don't immediately return */
retval = false;
}
}
count = m_params.size();
if (count > m_func->m_type_params.size() && m_func->m_varparam) {
for (; i < count; ++i) {
if (ast_istype(m_params[i], ast_argpipe)) {
/* warn about type safety instead */
if (i+1 != count) {
compile_error(m_context, "argpipe must be the last parameter to a function call");
return false;
}
if (!checkVararg(va_type, m_func->m_varparam))
retval = false;
}
else if (!m_params[i]->compareType(*m_func->m_varparam))
{
ast_type_to_string(m_params[i], tgot, sizeof(tgot));
ast_type_to_string(m_func->m_varparam, texp, sizeof(texp));
compile_error(m_context, "invalid type for variadic parameter %u in function call: expected %s, got %s",
(unsigned int)(i+1), texp, tgot);
/* we don't immediately return */
retval = false;
}
}
}
return retval;
}
ast_block::ast_block(lex_ctx_t ctx)
: ast_expression(ctx, TYPE_ast_block)
{
}
ast_block::~ast_block()
{
for (auto &it : m_exprs) ast_unref(it);
for (auto &it : m_locals) delete it;
for (auto &it : m_collect) delete it;
}
void ast_block::setType(const ast_expression &from)
{
if (m_next)
delete m_next;
adoptType(from);
}
bool ast_block::addExpr(ast_expression *e)
{
propagateSideEffects(e);
m_exprs.push_back(e);
if (m_next) {
delete m_next;
m_next = nullptr;
}
adoptType(*e);
return true;
}
void ast_block::collect(ast_expression *expr)
{
m_collect.push_back(expr);
expr->m_keep_node = true;
}
ast_function *ast_function::make(lex_ctx_t ctx, const std::string &name, ast_value *vtype)
{
if (!vtype) {
compile_error(ctx, "internal error: ast_function_new condition 0");
return nullptr;
} else if (vtype->m_hasvalue || vtype->m_vtype != TYPE_FUNCTION) {
compile_error(ctx, "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
(int)!vtype,
(int)vtype->m_hasvalue,
vtype->m_vtype);
return nullptr;
}
return new ast_function(ctx, name, vtype);
}
ast_function::ast_function(lex_ctx_t ctx, const std::string &name, ast_value *vtype)
: ast_node(ctx, TYPE_ast_function)
, m_function_type(vtype)
, m_name(name)
, m_builtin(0)
, m_static_count(0)
, m_ir_func(nullptr)
, m_curblock(nullptr)
, m_labelcount(0)
, m_varargs(nullptr)
, m_argc(nullptr)
, m_fixedparams(nullptr)
, m_return_value(nullptr)
{
vtype->m_hasvalue = true;
vtype->m_constval.vfunc = this;
}
ast_function::~ast_function()
{
if (m_function_type) {
// ast_value_delete(m_function_type);
m_function_type->m_hasvalue = false;
m_function_type->m_constval.vfunc = nullptr;
// We use unref - if it was stored in a global table it is supposed
// to be deleted from *there*
ast_unref(m_function_type);
}
if (m_fixedparams)
ast_unref(m_fixedparams);
if (m_return_value)
ast_unref(m_return_value);
// force this to be cleared before m_varargs/m_argc as blocks might
// try to access them via ast_unref()
m_blocks.clear();
}
const char* ast_function::makeLabel(const char *prefix)
{
size_t id;
size_t len;
char *from;
if (!OPTS_OPTION_BOOL(OPTION_DUMP) &&
!OPTS_OPTION_BOOL(OPTION_DUMPFIN) &&
!OPTS_OPTION_BOOL(OPTION_DEBUG))
{
return nullptr;
}
id = (m_labelcount++);
len = strlen(prefix);
from = m_labelbuf + sizeof(m_labelbuf)-1;
*from-- = 0;
do {
*from-- = (id%10) + '0';
id /= 10;
} while (id);
++from;
memcpy(from - len, prefix, len);
return from - len;
}
/*********************************************************************/
/* AST codegen part
* by convention you must never pass nullptr to the 'ir_value **out'
* parameter. If you really don't care about the output, pass a dummy.
* But I can't imagine a pituation where the output is truly unnecessary.
*/
static void codegen_output_type(ast_expression *self, ir_value *out)
{
if (out->m_vtype == TYPE_FIELD)
out->m_fieldtype = self->m_next->m_vtype;
if (out->m_vtype == TYPE_FUNCTION)
out->m_outtype = self->m_next->m_vtype;
}
bool ast_value::codegen(ast_function *func, bool lvalue, ir_value **out)
{
(void)func;
(void)lvalue;
if (m_vtype == TYPE_NIL) {
*out = func->m_ir_func->m_owner->m_nil;
return true;
}
// NOTE: This is the codegen for a variable used in an expression.
// It is not the codegen to generate the value storage. For this purpose,
// generateLocal and generateGlobal are to be used before this
// is executed. ast_function::generateFunction should take care of its
// locals, and the ast-user should take care of generateGlobal to be used
// on all the globals.
if (!m_ir_v) {
char tname[1024]; /* typename is reserved in C++ */
ast_type_to_string(this, tname, sizeof(tname));
compile_error(m_context, "ast_value used before generated %s %s", tname, m_name);
return false;
}
*out = m_ir_v;
return true;
}
bool ast_value::setGlobalArray()
{
size_t count = m_initlist.size();
size_t i;
if (count > m_count) {
compile_error(m_context, "too many elements in initializer");
count = m_count;
}
else if (count < m_count) {
/* add this?
compile_warning(m_context, "not all elements are initialized");
*/
}
for (i = 0; i != count; ++i) {
switch (m_next->m_vtype) {
case TYPE_FLOAT:
if (!m_ir_values[i]->setFloat(m_initlist[i].vfloat))
return false;
break;
case TYPE_VECTOR:
if (!m_ir_values[i]->setVector(m_initlist[i].vvec))
return false;
break;
case TYPE_STRING:
if (!m_ir_values[i]->setString(m_initlist[i].vstring))
return false;
break;
case TYPE_ARRAY:
/* we don't support them in any other place yet either */
compile_error(m_context, "TODO: nested arrays");
return false;
case TYPE_FUNCTION:
/* this requiers a bit more work - similar to the fields I suppose */
compile_error(m_context, "global of type function not properly generated");
return false;
case TYPE_FIELD:
if (!m_initlist[i].vfield) {
compile_error(m_context, "field constant without vfield set");
return false;
}
if (!m_initlist[i].vfield->m_ir_v) {
compile_error(m_context, "field constant generated before its field");
return false;
}
if (!m_ir_values[i]->setField(m_initlist[i].vfield->m_ir_v))
return false;
break;
default:
compile_error(m_context, "TODO: global constant type %i", m_vtype);
break;
}
}
return true;
}
bool ast_value::checkArray(const ast_value &array) const
{
if (array.m_flags & AST_FLAG_ARRAY_INIT && array.m_initlist.empty()) {
compile_error(m_context, "array without size: %s", m_name);
return false;
}
// we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements
if (!array.m_count || array.m_count > OPTS_OPTION_U32(OPTION_MAX_ARRAY_SIZE)) {
compile_error(m_context, "Invalid array of size %lu", (unsigned long)array.m_count);
return false;
}
return true;
}
bool ast_value::generateGlobal(ir_builder *ir, bool isfield)
{
if (m_vtype == TYPE_NIL) {
compile_error(m_context, "internal error: trying to generate a variable of TYPE_NIL");
return false;
}
if (m_hasvalue && m_vtype == TYPE_FUNCTION)
return generateGlobalFunction(ir);
if (isfield && m_vtype == TYPE_FIELD)
return generateGlobalField(ir);
ir_value *v = nullptr;
if (m_vtype == TYPE_ARRAY) {
v = prepareGlobalArray(ir);
if (!v)
return false;
} else {
// Arrays don't do this since there's no "array" value which spans across the
// whole thing.
v = ir->createGlobal(m_name, m_vtype);
if (!v) {
compile_error(m_context, "ir_builder::createGlobal failed on `%s`", m_name);
return false;
}
codegen_output_type(this, v);
v->m_context = m_context;
}
/* link us to the ir_value */
v->m_cvq = m_cvq;
m_ir_v = v;
if (m_flags & AST_FLAG_INCLUDE_DEF)
m_ir_v->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_ERASEABLE && !(m_flags & AST_FLAG_NOERASE))
m_ir_v->m_flags |= IR_FLAG_ERASABLE;
if (m_flags & AST_FLAG_NOREF)
m_ir_v->m_flags |= IR_FLAG_NOREF;
/* initialize */
if (m_hasvalue) {
switch (m_vtype)
{
case TYPE_FLOAT:
if (!v->setFloat(m_constval.vfloat))
return false;
break;
case TYPE_VECTOR:
if (!v->setVector(m_constval.vvec))
return false;
break;
case TYPE_STRING:
if (!v->setString(m_constval.vstring))
return false;
break;
case TYPE_ARRAY:
if (!setGlobalArray())
return false;
break;
case TYPE_FUNCTION:
compile_error(m_context, "global of type function not properly generated");
return false;
/* Cannot generate an IR value for a function,
* need a pointer pointing to a function rather.
*/
case TYPE_FIELD:
if (!m_constval.vfield) {
compile_error(m_context, "field constant without vfield set");
return false;
}
if (!m_constval.vfield->m_ir_v) {
compile_error(m_context, "field constant generated before its field");
return false;
}
if (!v->setField(m_constval.vfield->m_ir_v))
return false;
break;
default:
compile_error(m_context, "TODO: global constant type %i", m_vtype);
break;
}
}
return true;
}
bool ast_value::generateGlobalFunction(ir_builder *ir)
{
ir_function *func = ir->createFunction(m_name, m_next->m_vtype);
if (!func)
return false;
func->m_context = m_context;
func->m_value->m_context = m_context;
m_constval.vfunc->m_ir_func = func;
m_ir_v = func->m_value;
if (m_flags & AST_FLAG_INCLUDE_DEF)
m_ir_v->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_ERASEABLE && !(m_flags & AST_FLAG_NOERASE))
m_ir_v->m_flags |= IR_FLAG_ERASABLE;
if (m_flags & AST_FLAG_BLOCK_COVERAGE)
func->m_flags |= IR_FLAG_BLOCK_COVERAGE;
// The function is filled later on ast_function::generateFunction...
return true;
}
bool ast_value::generateGlobalField(ir_builder *ir)
{
ast_expression *fieldtype = m_next;
if (m_hasvalue) {
compile_error(m_context, "TODO: constant field pointers with value");
return false;
}
if (fieldtype->m_vtype == TYPE_ARRAY) {
if (!ast_istype(fieldtype, ast_value)) {
compile_error(m_context, "internal error: ast_value required");
return false;
}
ast_value *array = reinterpret_cast<ast_value*>(fieldtype);
if (!checkArray(*array))
return false;
ast_expression *elemtype = array->m_next;
qc_type vtype = elemtype->m_vtype;
ir_value *v = ir->createField(m_name, vtype);
if (!v) {
compile_error(m_context, "ir_builder::createGlobal failed on `%s`", m_name);
return false;
}
v->m_context = m_context;
v->m_unique_life = true;
v->m_locked = true;
array->m_ir_v = m_ir_v = v;
if (m_flags & AST_FLAG_INCLUDE_DEF)
m_ir_v->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_ERASEABLE && !(m_flags & AST_FLAG_NOERASE))
m_ir_v->m_flags |= IR_FLAG_ERASABLE;
if (m_flags & AST_FLAG_NOREF)
m_ir_v->m_flags |= IR_FLAG_NOREF;
const size_t namelen = m_name.length();
std::unique_ptr<char[]> name(new char[namelen+16]);
util_strncpy(name.get(), m_name.c_str(), namelen);
array->m_ir_values.resize(array->m_count);
array->m_ir_values[0] = v;
for (size_t ai = 1; ai < array->m_count; ++ai) {
util_snprintf(name.get() + namelen, 16, "[%u]", (unsigned int)ai);
array->m_ir_values[ai] = ir->createField(name.get(), vtype);
if (!array->m_ir_values[ai]) {
compile_error(m_context, "ir_builder::createGlobal failed on `%s`", name.get());
return false;
}
array->m_ir_values[ai]->m_context = m_context;
array->m_ir_values[ai]->m_unique_life = true;
array->m_ir_values[ai]->m_locked = true;
if (m_flags & AST_FLAG_INCLUDE_DEF)
array->m_ir_values[ai]->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_NOREF)
array->m_ir_values[ai]->m_flags |= IR_FLAG_NOREF;
}
}
else
{
ir_value *v = ir->createField(m_name, m_next->m_vtype);
if (!v)
return false;
v->m_context = m_context;
m_ir_v = v;
if (m_flags & AST_FLAG_INCLUDE_DEF)
m_ir_v->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_ERASEABLE && !(m_flags & AST_FLAG_NOERASE))
m_ir_v->m_flags |= IR_FLAG_ERASABLE;
if (m_flags & AST_FLAG_NOREF)
m_ir_v->m_flags |= IR_FLAG_NOREF;
}
return true;
}
ir_value *ast_value::prepareGlobalArray(ir_builder *ir)
{
ast_expression *elemtype = m_next;
qc_type vtype = elemtype->m_vtype;
if (m_flags & AST_FLAG_ARRAY_INIT && !m_count) {
compile_error(m_context, "array `%s' has no size", m_name);
return nullptr;
}
/* same as with field arrays */
if (!checkArray(*this))
return nullptr;
ir_value *v = ir->createGlobal(m_name, vtype);
if (!v) {
compile_error(m_context, "ir_builder::createGlobal failed `%s`", m_name);
return nullptr;
}
v->m_context = m_context;
v->m_unique_life = true;
v->m_locked = true;
if (m_flags & AST_FLAG_INCLUDE_DEF)
v->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_ERASEABLE && !(m_flags & AST_FLAG_NOERASE))
v->m_flags |= IR_FLAG_ERASABLE;
if (m_flags & AST_FLAG_NOREF)
v->m_flags |= IR_FLAG_NOREF;
const size_t namelen = m_name.length();
std::unique_ptr<char[]> name(new char[namelen+16]);
util_strncpy(name.get(), m_name.c_str(), namelen);
m_ir_values.resize(m_count);
m_ir_values[0] = v;
for (size_t ai = 1; ai < m_count; ++ai) {
util_snprintf(name.get() + namelen, 16, "[%u]", (unsigned int)ai);
m_ir_values[ai] = ir->createGlobal(name.get(), vtype);
if (!m_ir_values[ai]) {
compile_error(m_context, "ir_builder::createGlobal failed `%s`", name.get());
return nullptr;
}
m_ir_values[ai]->m_context = m_context;
m_ir_values[ai]->m_unique_life = true;
m_ir_values[ai]->m_locked = true;
if (m_flags & AST_FLAG_INCLUDE_DEF)
m_ir_values[ai]->m_flags |= IR_FLAG_INCLUDE_DEF;
if (m_flags & AST_FLAG_NOREF)
m_ir_values[ai]->m_flags |= IR_FLAG_NOREF;
}
return v;
}
bool ast_value::generateLocal(ir_function *func, bool param)
{
if (m_vtype == TYPE_NIL) {
compile_error(m_context, "internal error: trying to generate a variable of TYPE_NIL");
return false;
}
if (m_hasvalue && m_vtype == TYPE_FUNCTION)
{
/* Do we allow local functions? I think not...
* this is NOT a function pointer atm.
*/
return false;
}
ir_value *v = nullptr;
if (m_vtype == TYPE_ARRAY) {
ast_expression *elemtype = m_next;
qc_type vtype = elemtype->m_vtype;
func->m_flags |= IR_FLAG_HAS_ARRAYS;
if (param && !(m_flags & AST_FLAG_IS_VARARG)) {
compile_error(m_context, "array-parameters are not supported");
return false;
}
/* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
if (!checkArray(*this))
return false;
m_ir_values.resize(m_count);
v = ir_function_create_local(func, m_name, vtype, param);
if (!v) {
compile_error(m_context, "internal error: ir_function_create_local failed");
return false;
}
v->m_context = m_context;
v->m_unique_life = true;
v->m_locked = true;
if (m_flags & AST_FLAG_NOREF)
v->m_flags |= IR_FLAG_NOREF;
const size_t namelen = m_name.length();
std::unique_ptr<char[]> name(new char[namelen+16]);
util_strncpy(name.get(), m_name.c_str(), namelen);
m_ir_values[0] = v;
for (size_t ai = 1; ai < m_count; ++ai) {
util_snprintf(name.get() + namelen, 16, "[%u]", (unsigned int)ai);
m_ir_values[ai] = ir_function_create_local(func, name.get(), vtype, param);
if (!m_ir_values[ai]) {
compile_error(m_context, "internal_error: ir_builder::createGlobal failed on `%s`", name.get());
return false;
}
m_ir_values[ai]->m_context = m_context;
m_ir_values[ai]->m_unique_life = true;
m_ir_values[ai]->m_locked = true;
if (m_flags & AST_FLAG_NOREF)
m_ir_values[ai]->m_flags |= IR_FLAG_NOREF;
}
}
else
{
v = ir_function_create_local(func, m_name, m_vtype, param);
if (!v)
return false;
codegen_output_type(this, v);
v->m_context = m_context;
}
// A constant local... hmmm...
// I suppose the IR will have to deal with this
if (m_hasvalue) {
switch (m_vtype)
{
case TYPE_FLOAT:
if (!v->setFloat(m_constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!v->setVector(m_constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!v->setString(m_constval.vstring))
goto error;
break;
default:
compile_error(m_context, "TODO: global constant type %i", m_vtype);
break;
}
}
// link us to the ir_value
v->m_cvq = m_cvq;
m_ir_v = v;
if (m_flags & AST_FLAG_NOREF)
m_ir_v->m_flags |= IR_FLAG_NOREF;
if (!generateAccessors(func->m_owner))
return false;
return true;
error: /* clean up */
delete v;
return false;
}
bool ast_value::generateAccessors(ir_builder *ir)
{
size_t i;
bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
if (!m_setter || !m_getter)
return true;
if (m_count && m_ir_values.empty()) {
compile_error(m_context, "internal error: no array values generated for `%s`", m_name);
return false;
}
for (i = 0; i < m_count; ++i) {
if (!m_ir_values[i]) {
compile_error(m_context, "internal error: not all array values have been generated for `%s`", m_name);
return false;
}
if (!m_ir_values[i]->m_life.empty()) {
compile_error(m_context, "internal error: function containing `%s` already generated", m_name);
return false;
}
}
opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
if (m_setter) {
if (!m_setter->generateGlobal(ir, false) ||
!m_setter->m_constval.vfunc->generateFunction(ir) ||
!ir_function_finalize(m_setter->m_constval.vfunc->m_ir_func))
{
compile_error(m_context, "internal error: failed to generate setter for `%s`", m_name);
opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
return false;
}
}
if (m_getter) {
if (!m_getter->generateGlobal(ir, false) ||
!m_getter->m_constval.vfunc->generateFunction(ir) ||
!ir_function_finalize(m_getter->m_constval.vfunc->m_ir_func))
{
compile_error(m_context, "internal error: failed to generate getter for `%s`", m_name);
opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
return false;
}
}
for (i = 0; i < m_count; ++i)
m_ir_values[i]->m_life.clear();
opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
return true;
}
bool ast_function::generateFunction(ir_builder *ir)
{
(void)ir;
ir_value *dummy;
ir_function *irf = m_ir_func;
if (!irf) {
compile_error(m_context, "internal error: ast_function's related ast_value was not generated yet");
return false;
}
/* fill the parameter list */
for (auto &it : m_function_type->m_type_params) {
if (it->m_vtype == TYPE_FIELD)
irf->m_params.push_back(it->m_next->m_vtype);
else
irf->m_params.push_back(it->m_vtype);
if (!m_builtin) {
if (!it->generateLocal(m_ir_func, true))
return false;
}
}
if (m_varargs) {
if (!m_varargs->generateLocal(m_ir_func, true))
return false;
irf->m_max_varargs = m_varargs->m_count;
}
if (m_builtin) {
irf->m_builtin = m_builtin;
return true;
}
/* have a local return value variable? */
if (m_return_value) {
if (!m_return_value->generateLocal(m_ir_func, false))
return false;
}
if (m_blocks.empty()) {
compile_error(m_context, "function `%s` has no body", m_name);
return false;
}
irf->m_first = m_curblock = ir_function_create_block(m_context, irf, "entry");
if (!m_curblock) {
compile_error(m_context, "failed to allocate entry block for `%s`", m_name);
return false;
}
if (m_argc) {
ir_value *va_count;
ir_value *fixed;
ir_value *sub;
if (!m_argc->generateLocal(m_ir_func, true))
return false;
if (!m_argc->codegen(this, false, &va_count))
return false;
if (!m_fixedparams->codegen(this, false, &fixed))
return false;
sub = ir_block_create_binop(m_curblock, m_context,
makeLabel("va_count"), INSTR_SUB_F,
ir->get_va_count(), fixed);
if (!sub)
return false;
if (!ir_block_create_store_op(m_curblock, m_context, INSTR_STORE_F,
va_count, sub))
{
return false;
}
}
for (auto &it : m_blocks) {
if (!it->codegen(this, false, &dummy))
return false;
}
/* TODO: check return types */
if (!m_curblock->m_final)
{
if (!m_function_type->m_next ||
m_function_type->m_next->m_vtype == TYPE_VOID)
{
return ir_block_create_return(m_curblock, m_context, nullptr);
}
else if (m_curblock->m_entries.size() || m_curblock == irf->m_first)
{
if (m_return_value) {
if (!m_return_value->codegen(this, false, &dummy))
return false;
return ir_block_create_return(m_curblock, m_context, dummy);
}
else if (compile_warning(m_context, WARN_MISSING_RETURN_VALUES,
"control reaches end of non-void function (`%s`) via %s",
m_name.c_str(), m_curblock->m_label.c_str()))
{
return false;
}
return ir_block_create_return(m_curblock, m_context, nullptr);
}
}
return true;
}
static bool starts_a_label(const ast_expression *ex)
{
while (ex && ast_istype(ex, ast_block)) {
auto b = reinterpret_cast<const ast_block*>(ex);
ex = b->m_exprs[0];
}
if (!ex)
return false;
return ast_istype(ex, ast_label);
}
/* Note, you will not see ast_block_codegen generate ir_blocks.
* To the AST and the IR, blocks are 2 different things.
* In the AST it represents a block of code, usually enclosed in
* curly braces {...}.
* While in the IR it represents a block in terms of control-flow.
*/
bool ast_block::codegen(ast_function *func, bool lvalue, ir_value **out)
{
/* We don't use this
* Note: an ast-representation using the comma-operator
* of the form: (a, b, c) = x should not assign to c...
*/
if (lvalue) {
compile_error(m_context, "not an l-value (code-block)");
return false;
}
if (m_outr) {
*out = m_outr;
return true;
}
/* output is nullptr at first, we'll have each expression
* assign to out output, thus, a comma-operator represention
* using an ast_block will return the last generated value,
* so: (b, c) + a executed both b and c, and returns c,
* which is then added to a.
*/
*out = nullptr;
/* generate locals */
for (auto &it : m_locals) {
if (!it->generateLocal(func->m_ir_func, false)) {
if (OPTS_OPTION_BOOL(OPTION_DEBUG))
compile_error(m_context, "failed to generate local `%s`", it->m_name);
return false;
}
}
for (auto &it : m_exprs) {
if (func->m_curblock->m_final && !starts_a_label(it)) {
if (compile_warning(it->m_context, WARN_UNREACHABLE_CODE, "unreachable statement"))
return false;
continue;
}
if (!it->codegen(func, false, out))
return false;
}
m_outr = *out;
return true;
}
bool ast_store::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *left = nullptr;
ir_value *right = nullptr;
ast_value *idx = 0;
ast_array_index *ai = nullptr;
if (lvalue && m_outl) {
*out = m_outl;
return true;
}
if (!lvalue && m_outr) {
*out = m_outr;
return true;
}
if (ast_istype(m_dest, ast_array_index))
{
ai = (ast_array_index*)m_dest;
idx = (ast_value*)ai->m_index;
if (ast_istype(ai->m_index, ast_value) && idx->m_hasvalue && idx->m_cvq == CV_CONST)
ai = nullptr;
}
if (ai) {
/* we need to call the setter */
ir_value *iridx, *funval;
ir_instr *call;
if (lvalue) {
compile_error(m_context, "array-subscript assignment cannot produce lvalues");
return false;
}
auto arr = reinterpret_cast<ast_value*>(ai->m_array);
if (!ast_istype(ai->m_array, ast_value) || !arr->m_setter) {
compile_error(m_context, "value has no setter (%s)", arr->m_name);
return false;
}
if (!idx->codegen(func, false, &iridx))
return false;
if (!arr->m_setter->codegen(func, true, &funval))
return false;
if (!m_source->codegen(func, false, &right))
return false;
call = ir_block_create_call(func->m_curblock, m_context, func->makeLabel("store"), funval, false);
if (!call)
return false;
ir_call_param(call, iridx);
ir_call_param(call, right);
m_outr = right;
}
else
{
// regular code
// lvalue!
if (!m_dest->codegen(func, true, &left))
return false;
m_outl = left;
/* rvalue! */
if (!m_source->codegen(func, false, &right))
return false;
if (!ir_block_create_store_op(func->m_curblock, m_context, m_op, left, right))
return false;
m_outr = right;
}
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? left : right);
return true;
}
bool ast_binary::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *left, *right;
/* A binary operation cannot yield an l-value */
if (lvalue) {
compile_error(m_context, "not an l-value (binop)");
return false;
}
if (m_outr) {
*out = m_outr;
return true;
}
if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
(m_op == INSTR_AND || m_op == INSTR_OR))
{
/* NOTE: The short-logic path will ignore right_first */
/* short circuit evaluation */
ir_block *other, *merge;
ir_block *from_left, *from_right;
ir_instr *phi;
size_t merge_id;
/* prepare end-block */
merge_id = func->m_ir_func->m_blocks.size();
merge = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("sce_merge"));
/* generate the left expression */
if (!m_left->codegen(func, false, &left))
return false;
/* remember the block */
from_left = func->m_curblock;
/* create a new block for the right expression */
other = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("sce_other"));
if (m_op == INSTR_AND) {
/* on AND: left==true -> other */
if (!ir_block_create_if(func->m_curblock, m_context, left, other, merge))
return false;
} else {
/* on OR: left==false -> other */
if (!ir_block_create_if(func->m_curblock, m_context, left, merge, other))
return false;
}
/* use the likely flag */
func->m_curblock->m_instr.back()->m_likely = true;
/* enter the right-expression's block */
func->m_curblock = other;
/* generate */
if (!m_right->codegen(func, false, &right))
return false;
/* remember block */
from_right = func->m_curblock;
/* jump to the merge block */
if (!ir_block_create_jump(func->m_curblock, m_context, merge))
return false;
algo::shiftback(func->m_ir_func->m_blocks.begin() + merge_id,
func->m_ir_func->m_blocks.end());
// FIXME::DELME::
//func->m_ir_func->m_blocks[merge_id].release();
//func->m_ir_func->m_blocks.erase(func->m_ir_func->m_blocks.begin() + merge_id);
//func->m_ir_func->m_blocks.emplace_back(merge);
func->m_curblock = merge;
phi = ir_block_create_phi(func->m_curblock, m_context,
func->makeLabel("sce_value"),
m_vtype);
ir_phi_add(phi, from_left, left);
ir_phi_add(phi, from_right, right);
*out = ir_phi_value(phi);
if (!*out)
return false;
if (!OPTS_FLAG(PERL_LOGIC)) {
/* cast-to-bool */
if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->m_vtype == TYPE_VECTOR) {
*out = ir_block_create_unary(func->m_curblock, m_context,
func->makeLabel("sce_bool_v"),
INSTR_NOT_V, *out);
if (!*out)
return false;
*out = ir_block_create_unary(func->m_curblock, m_context,
func->makeLabel("sce_bool"),
INSTR_NOT_F, *out);
if (!*out)
return false;
}
else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->m_vtype == TYPE_STRING) {
*out = ir_block_create_unary(func->m_curblock, m_context,
func->makeLabel("sce_bool_s"),
INSTR_NOT_S, *out);
if (!*out)
return false;
*out = ir_block_create_unary(func->m_curblock, m_context,
func->makeLabel("sce_bool"),
INSTR_NOT_F, *out);
if (!*out)
return false;
}
else {
*out = ir_block_create_binop(func->m_curblock, m_context,
func->makeLabel("sce_bool"),
INSTR_AND, *out, *out);
if (!*out)
return false;
}
}
m_outr = *out;
codegen_output_type(this, *out);
return true;
}
if (m_right_first) {
if (!m_right->codegen(func, false, &right))
return false;
if (!m_left->codegen(func, false, &left))
return false;
} else {
if (!m_left->codegen(func, false, &left))
return false;
if (!m_right->codegen(func, false, &right))
return false;
}
*out = ir_block_create_binop(func->m_curblock, m_context, func->makeLabel("bin"),
m_op, left, right);
if (!*out)
return false;
m_outr = *out;
codegen_output_type(this, *out);
return true;
}
bool ast_binstore::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *leftl = nullptr, *leftr, *right, *bin;
ast_value *arr;
ast_value *idx = 0;
ast_array_index *ai = nullptr;
ir_value *iridx = nullptr;
if (lvalue && m_outl) {
*out = m_outl;
return true;
}
if (!lvalue && m_outr) {
*out = m_outr;
return true;
}
if (ast_istype(m_dest, ast_array_index))
{
ai = (ast_array_index*)m_dest;
idx = (ast_value*)ai->m_index;
if (ast_istype(ai->m_index, ast_value) && idx->m_hasvalue && idx->m_cvq == CV_CONST)
ai = nullptr;
}
/* for a binstore we need both an lvalue and an rvalue for the left side */
/* rvalue of destination! */
if (ai) {
if (!idx->codegen(func, false, &iridx))
return false;
}
if (!m_dest->codegen(func, false, &leftr))
return false;
/* source as rvalue only */
if (!m_source->codegen(func, false, &right))
return false;
/* now the binary */
bin = ir_block_create_binop(func->m_curblock, m_context, func->makeLabel("binst"),
m_opbin, leftr, right);
m_outr = bin;
if (ai) {
/* we need to call the setter */
ir_value *funval;
ir_instr *call;
if (lvalue) {
compile_error(m_context, "array-subscript assignment cannot produce lvalues");
return false;
}
arr = (ast_value*)ai->m_array;
if (!ast_istype(ai->m_array, ast_value) || !arr->m_setter) {
compile_error(m_context, "value has no setter (%s)", arr->m_name);
return false;
}
if (!arr->m_setter->codegen(func, true, &funval))
return false;
call = ir_block_create_call(func->m_curblock, m_context, func->makeLabel("store"), funval, false);
if (!call)
return false;
ir_call_param(call, iridx);
ir_call_param(call, bin);
m_outr = bin;
} else {
// now store them
// lvalue of destination
if (!m_dest->codegen(func, true, &leftl))
return false;
m_outl = leftl;
if (!ir_block_create_store_op(func->m_curblock, m_context, m_opstore, leftl, bin))
return false;
m_outr = bin;
}
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? leftl : bin);
return true;
}
bool ast_unary::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *operand;
/* An unary operation cannot yield an l-value */
if (lvalue) {
compile_error(m_context, "not an l-value (binop)");
return false;
}
if (m_outr) {
*out = m_outr;
return true;
}
/* lvalue! */
if (!m_operand->codegen(func, false, &operand))
return false;
*out = ir_block_create_unary(func->m_curblock, m_context, func->makeLabel("unary"),
m_op, operand);
if (!*out)
return false;
m_outr = *out;
return true;
}
bool ast_return::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *operand;
*out = nullptr;
/* In the context of a return operation, we don't actually return
* anything...
*/
if (lvalue) {
compile_error(m_context, "return-expression is not an l-value");
return false;
}
if (m_outr) {
compile_error(m_context, "internal error: ast_return cannot be reused, it bears no result!");
return false;
}
m_outr = (ir_value*)1;
if (m_operand) {
/* lvalue! */
if (!m_operand->codegen(func, false, &operand))
return false;
if (!ir_block_create_return(func->m_curblock, m_context, operand))
return false;
} else {
if (!ir_block_create_return(func->m_curblock, m_context, nullptr))
return false;
}
return true;
}
bool ast_entfield::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *ent, *field;
// This function needs to take the 'lvalue' flag into account!
// As lvalue we provide a field-pointer, as rvalue we provide the
// value in a temp.
if (lvalue && m_outl) {
*out = m_outl;
return true;
}
if (!lvalue && m_outr) {
*out = m_outr;
return true;
}
if (!m_entity->codegen(func, false, &ent))
return false;
if (!m_field->codegen(func, false, &field))
return false;
if (lvalue) {
/* address! */
*out = ir_block_create_fieldaddress(func->m_curblock, m_context, func->makeLabel("efa"),
ent, field);
} else {
*out = ir_block_create_load_from_ent(func->m_curblock, m_context, func->makeLabel("efv"),
ent, field, m_vtype);
/* Done AFTER error checking:
codegen_output_type(this, *out);
*/
}
if (!*out) {
compile_error(m_context, "failed to create %s instruction (output type %s)",
(lvalue ? "ADDRESS" : "FIELD"),
type_name[m_vtype]);
return false;
}
if (!lvalue)
codegen_output_type(this, *out);
if (lvalue)
m_outl = *out;
else
m_outr = *out;
// Hm that should be it...
return true;
}
bool ast_member::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *vec;
/* in QC this is always an lvalue */
if (lvalue && m_rvalue) {
compile_error(m_context, "not an l-value (member access)");
return false;
}
if (lvalue && m_outl) {
*out = m_outl;
return true;
}
if (!lvalue && m_outr) {
*out = m_outr;
return true;
}
if (ast_istype(m_owner, ast_entfield)) {
ir_value *ent, *field;
auto entfield = reinterpret_cast<ast_entfield*>(m_owner);
if (!entfield->m_entity->codegen(func, false, &ent))
return false;
if (!entfield->m_field->codegen(func, false, &vec))
return false;
field = vec->vectorMember(m_field);
if (lvalue) {
*out = ir_block_create_fieldaddress(func->m_curblock, m_context, func->makeLabel("mefa"),
ent, field);
} else {
*out = ir_block_create_load_from_ent(func->m_curblock, m_context, func->makeLabel("mefv"),
ent, field, m_vtype);
}
if (!*out) {
compile_error(m_context, "failed to create %s instruction (output type %s)",
(lvalue ? "ADDRESS" : "FIELD"),
type_name[m_vtype]);
return false;
}
if (lvalue)
m_outl = *out;
else
m_outr = *out;
return (*out != nullptr);
}
// Vector member access
if (!m_owner->codegen(func, lvalue, &vec))
return false;
if (vec->m_vtype != TYPE_VECTOR &&
!(vec->m_vtype == TYPE_FIELD && m_owner->m_next->m_vtype == TYPE_VECTOR))
{
compile_error(m_context, "vector member produced neither vector nor field");
return false;
}
*out = vec->vectorMember(m_field);
if (!*out) {
compile_error(m_context, "internal error: failed to create vector member access");
return false;
}
if (lvalue)
m_outl = *out;
else
m_outr = *out;
return (*out != nullptr);
}
bool ast_array_index::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ast_value *arr;
ast_value *idx;
if (!lvalue && m_outr) {
*out = m_outr;
return true;
}
if (lvalue && m_outl) {
*out = m_outl;
return true;
}
if (!ast_istype(m_array, ast_value)) {
compile_error(m_context, "array indexing this way is not supported");
/* note this would actually be pointer indexing because the left side is
* not an actual array but (hopefully) an indexable expression.
* Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
* support this path will be filled.
*/
return false;
}
arr = reinterpret_cast<ast_value*>(m_array);
idx = reinterpret_cast<ast_value*>(m_index);
if (!ast_istype(m_index, ast_value) || !idx->m_hasvalue || idx->m_cvq != CV_CONST) {
/* Time to use accessor functions */
ir_value *iridx, *funval;
ir_instr *call;
if (lvalue) {
compile_error(m_context, "(.2) array indexing here needs a compile-time constant");
return false;
}
if (!arr->m_getter) {
compile_error(m_context, "value has no getter, don't know how to index it");
return false;
}
if (!m_index->codegen(func, false, &iridx))
return false;
if (!arr->m_getter->codegen(func, true, &funval))
return false;
call = ir_block_create_call(func->m_curblock, m_context, func->makeLabel("fetch"), funval, false);
if (!call)
return false;
ir_call_param(call, iridx);
*out = ir_call_value(call);
m_outr = *out;
(*out)->m_vtype = m_vtype;
codegen_output_type(this, *out);
return true;
}
if (idx->m_vtype == TYPE_FLOAT) {
unsigned int arridx = idx->m_constval.vfloat;
if (arridx >= m_array->m_count)
{
compile_error(m_context, "array index out of bounds: %i", arridx);
return false;
}
*out = arr->m_ir_values[arridx];
}
else if (idx->m_vtype == TYPE_INTEGER) {
unsigned int arridx = idx->m_constval.vint;
if (arridx >= m_array->m_count)
{
compile_error(m_context, "array index out of bounds: %i", arridx);
return false;
}
*out = arr->m_ir_values[arridx];
}
else {
compile_error(m_context, "array indexing here needs an integer constant");
return false;
}
(*out)->m_vtype = m_vtype;
codegen_output_type(this, *out);
return true;
}
bool ast_argpipe::codegen(ast_function *func, bool lvalue, ir_value **out)
{
*out = nullptr;
if (lvalue) {
compile_error(m_context, "argpipe node: not an lvalue");
return false;
}
(void)func;
(void)out;
compile_error(m_context, "TODO: argpipe codegen not implemented");
return false;
}
bool ast_ifthen::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *condval;
ir_value *dummy;
ir_block *cond;
ir_block *ontrue;
ir_block *onfalse;
ir_block *ontrue_endblock = nullptr;
ir_block *onfalse_endblock = nullptr;
ir_block *merge = nullptr;
int folded = 0;
/* We don't output any value, thus also don't care about r/lvalue */
(void)out;
(void)lvalue;
if (m_outr) {
compile_error(m_context, "internal error: ast_ifthen cannot be reused, it bears no result!");
return false;
}
m_outr = (ir_value*)1;
/* generate the condition */
if (!m_cond->codegen(func, false, &condval))
return false;
/* update the block which will get the jump - because short-logic or ternaries may have changed this */
cond = func->m_curblock;
/* try constant folding away the condition */
if ((folded = fold::cond_ifthen(condval, func, this)) != -1)
return folded;
if (m_on_true) {
/* create on-true block */
ontrue = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("ontrue"));
if (!ontrue)
return false;
/* enter the block */
func->m_curblock = ontrue;
/* generate */
if (!m_on_true->codegen(func, false, &dummy))
return false;
/* we now need to work from the current endpoint */
ontrue_endblock = func->m_curblock;
} else
ontrue = nullptr;
/* on-false path */
if (m_on_false) {
/* create on-false block */
onfalse = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("onfalse"));
if (!onfalse)
return false;
/* enter the block */
func->m_curblock = onfalse;
/* generate */
if (!m_on_false->codegen(func, false, &dummy))
return false;
/* we now need to work from the current endpoint */
onfalse_endblock = func->m_curblock;
} else
onfalse = nullptr;
/* Merge block were they all merge in to */
if (!ontrue || !onfalse || !ontrue_endblock->m_final || !onfalse_endblock->m_final)
{
merge = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("endif"));
if (!merge)
return false;
/* add jumps ot the merge block */
if (ontrue && !ontrue_endblock->m_final && !ir_block_create_jump(ontrue_endblock, m_context, merge))
return false;
if (onfalse && !onfalse_endblock->m_final && !ir_block_create_jump(onfalse_endblock, m_context, merge))
return false;
/* Now enter the merge block */
func->m_curblock = merge;
}
/* we create the if here, that way all blocks are ordered :)
*/
if (!ir_block_create_if(cond, m_context, condval,
(ontrue ? ontrue : merge),
(onfalse ? onfalse : merge)))
{
return false;
}
return true;
}
bool ast_ternary::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *condval;
ir_value *trueval, *falseval;
ir_instr *phi;
ir_block *cond = func->m_curblock;
ir_block *cond_out = nullptr;
ir_block *ontrue, *ontrue_out = nullptr;
ir_block *onfalse, *onfalse_out = nullptr;
ir_block *merge;
int folded = 0;
/* Ternary can never create an lvalue... */
if (lvalue)
return false;
/* In theory it shouldn't be possible to pass through a node twice, but
* in case we add any kind of optimization pass for the AST itself, it
* may still happen, thus we remember a created ir_value and simply return one
* if it already exists.
*/
if (m_outr) {
*out = m_outr;
return true;
}
/* In the following, contraty to ast_ifthen, we assume both paths exist. */
/* generate the condition */
func->m_curblock = cond;
if (!m_cond->codegen(func, false, &condval))
return false;
cond_out = func->m_curblock;
/* try constant folding away the condition */
if ((folded = fold::cond_ternary(condval, func, this)) != -1)
return folded;
/* create on-true block */
ontrue = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("tern_T"));
if (!ontrue)
return false;
else
{
/* enter the block */
func->m_curblock = ontrue;
/* generate */
if (!m_on_true->codegen(func, false, &trueval))
return false;
ontrue_out = func->m_curblock;
}
/* create on-false block */
onfalse = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("tern_F"));
if (!onfalse)
return false;
else
{
/* enter the block */
func->m_curblock = onfalse;
/* generate */
if (!m_on_false->codegen(func, false, &falseval))
return false;
onfalse_out = func->m_curblock;
}
/* create merge block */
merge = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("tern_out"));
if (!merge)
return false;
/* jump to merge block */
if (!ir_block_create_jump(ontrue_out, m_context, merge))
return false;
if (!ir_block_create_jump(onfalse_out, m_context, merge))
return false;
/* create if instruction */
if (!ir_block_create_if(cond_out, m_context, condval, ontrue, onfalse))
return false;
/* Now enter the merge block */
func->m_curblock = merge;
/* Here, now, we need a PHI node
* but first some sanity checking...
*/
if (trueval->m_vtype != falseval->m_vtype && trueval->m_vtype != TYPE_NIL && falseval->m_vtype != TYPE_NIL) {
/* error("ternary with different types on the two sides"); */
compile_error(m_context, "internal error: ternary operand types invalid");
return false;
}
/* create PHI */
phi = ir_block_create_phi(merge, m_context, func->makeLabel("phi"), m_vtype);
if (!phi) {
compile_error(m_context, "internal error: failed to generate phi node");
return false;
}
ir_phi_add(phi, ontrue_out, trueval);
ir_phi_add(phi, onfalse_out, falseval);
m_outr = ir_phi_value(phi);
*out = m_outr;
codegen_output_type(this, *out);
return true;
}
bool ast_loop::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *dummy = nullptr;
ir_value *precond = nullptr;
ir_value *postcond = nullptr;
/* Since we insert some jumps "late" so we have blocks
* ordered "nicely", we need to keep track of the actual end-blocks
* of expressions to add the jumps to.
*/
ir_block *bbody = nullptr, *end_bbody = nullptr;
ir_block *bprecond = nullptr, *end_bprecond = nullptr;
ir_block *bpostcond = nullptr, *end_bpostcond = nullptr;
ir_block *bincrement = nullptr, *end_bincrement = nullptr;
ir_block *bout = nullptr, *bin = nullptr;
/* let's at least move the outgoing block to the end */
size_t bout_id;
/* 'break' and 'continue' need to be able to find the right blocks */
ir_block *bcontinue = nullptr;
ir_block *bbreak = nullptr;
ir_block *tmpblock = nullptr;
(void)lvalue;
(void)out;
if (m_outr) {
compile_error(m_context, "internal error: ast_loop cannot be reused, it bears no result!");
return false;
}
m_outr = (ir_value*)1;
/* NOTE:
* Should we ever need some kind of block ordering, better make this function
* move blocks around than write a block ordering algorithm later... after all
* the ast and ir should work together, not against each other.
*/
/* initexpr doesn't get its own block, it's pointless, it could create more blocks
* anyway if for example it contains a ternary.
*/
if (m_initexpr)
{
if (!m_initexpr->codegen(func, false, &dummy))
return false;
}
/* Store the block from which we enter this chaos */
bin = func->m_curblock;
/* The pre-loop condition needs its own block since we
* need to be able to jump to the start of that expression.
*/
if (m_precond)
{
bprecond = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("pre_loop_cond"));
if (!bprecond)
return false;
/* the pre-loop-condition the least important place to 'continue' at */
bcontinue = bprecond;
/* enter */
func->m_curblock = bprecond;
/* generate */
if (!m_precond->codegen(func, false, &precond))
return false;
end_bprecond = func->m_curblock;
} else {
bprecond = end_bprecond = nullptr;
}
/* Now the next blocks won't be ordered nicely, but we need to
* generate them this early for 'break' and 'continue'.
*/
if (m_increment) {
bincrement = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("loop_increment"));
if (!bincrement)
return false;
bcontinue = bincrement; /* increment comes before the pre-loop-condition */
} else {
bincrement = end_bincrement = nullptr;
}
if (m_postcond) {
bpostcond = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("post_loop_cond"));
if (!bpostcond)
return false;
bcontinue = bpostcond; /* postcond comes before the increment */
} else {
bpostcond = end_bpostcond = nullptr;
}
bout_id = func->m_ir_func->m_blocks.size();
bout = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("after_loop"));
if (!bout)
return false;
bbreak = bout;
/* The loop body... */
/* if (m_body) */
{
bbody = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("loop_body"));
if (!bbody)
return false;
/* enter */
func->m_curblock = bbody;
func->m_breakblocks.push_back(bbreak);
if (bcontinue)
func->m_continueblocks.push_back(bcontinue);
else
func->m_continueblocks.push_back(bbody);
/* generate */
if (m_body) {
if (!m_body->codegen(func, false, &dummy))
return false;
}
end_bbody = func->m_curblock;
func->m_breakblocks.pop_back();
func->m_continueblocks.pop_back();
}
/* post-loop-condition */
if (m_postcond)
{
/* enter */
func->m_curblock = bpostcond;
/* generate */
if (!m_postcond->codegen(func, false, &postcond))
return false;
end_bpostcond = func->m_curblock;
}
/* The incrementor */
if (m_increment)
{
/* enter */
func->m_curblock = bincrement;
/* generate */
if (!m_increment->codegen(func, false, &dummy))
return false;
end_bincrement = func->m_curblock;
}
/* In any case now, we continue from the outgoing block */
func->m_curblock = bout;
/* Now all blocks are in place */
/* From 'bin' we jump to whatever comes first */
if (bprecond) tmpblock = bprecond;
else tmpblock = bbody; /* can never be null */
/* DEAD CODE
else if (bpostcond) tmpblock = bpostcond;
else tmpblock = bout;
*/
if (!ir_block_create_jump(bin, m_context, tmpblock))
return false;
/* From precond */
if (bprecond)
{
ir_block *ontrue, *onfalse;
ontrue = bbody; /* can never be null */
/* all of this is dead code
else if (bincrement) ontrue = bincrement;
else ontrue = bpostcond;
*/
onfalse = bout;
if (m_pre_not) {
tmpblock = ontrue;
ontrue = onfalse;
onfalse = tmpblock;
}
if (!ir_block_create_if(end_bprecond, m_context, precond, ontrue, onfalse))
return false;
}
/* from body */
if (bbody)
{
if (bincrement) tmpblock = bincrement;
else if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else tmpblock = bbody;
if (!end_bbody->m_final && !ir_block_create_jump(end_bbody, m_context, tmpblock))
return false;
}
/* from increment */
if (bincrement)
{
if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else tmpblock = bout;
if (!ir_block_create_jump(end_bincrement, m_context, tmpblock))
return false;
}
/* from postcond */
if (bpostcond)
{
ir_block *ontrue, *onfalse;
if (bprecond) ontrue = bprecond;
else ontrue = bbody; /* can never be null */
/* all of this is dead code
else if (bincrement) ontrue = bincrement;
else ontrue = bpostcond;
*/
onfalse = bout;
if (m_post_not) {
tmpblock = ontrue;
ontrue = onfalse;
onfalse = tmpblock;
}
if (!ir_block_create_if(end_bpostcond, m_context, postcond, ontrue, onfalse))
return false;
}
/* Move 'bout' to the end */
algo::shiftback(func->m_ir_func->m_blocks.begin() + bout_id,
func->m_ir_func->m_blocks.end());
// FIXME::DELME::
//func->m_ir_func->m_blocks[bout_id].release(); // it's a vector<std::unique_ptr<>>
//func->m_ir_func->m_blocks.erase(func->m_ir_func->m_blocks.begin() + bout_id);
//func->m_ir_func->m_blocks.emplace_back(bout);
return true;
}
bool ast_breakcont::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_block *target;
*out = nullptr;
if (lvalue) {
compile_error(m_context, "break/continue expression is not an l-value");
return false;
}
if (m_outr) {
compile_error(m_context, "internal error: ast_breakcont cannot be reused!");
return false;
}
m_outr = (ir_value*)1;
if (m_is_continue)
target = func->m_continueblocks[func->m_continueblocks.size()-1-m_levels];
else
target = func->m_breakblocks[func->m_breakblocks.size()-1-m_levels];
if (!target) {
compile_error(m_context, "%s is lacking a target block", (m_is_continue ? "continue" : "break"));
return false;
}
if (!ir_block_create_jump(func->m_curblock, m_context, target))
return false;
return true;
}
bool ast_switch::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ast_switch_case *def_case = nullptr;
ir_block *def_bfall = nullptr;
ir_block *def_bfall_to = nullptr;
bool set_def_bfall_to = false;
ir_value *dummy = nullptr;
ir_value *irop = nullptr;
ir_block *bout = nullptr;
ir_block *bfall = nullptr;
size_t bout_id;
char typestr[1024];
uint16_t cmpinstr;
if (lvalue) {
compile_error(m_context, "switch expression is not an l-value");
return false;
}
if (m_outr) {
compile_error(m_context, "internal error: ast_switch cannot be reused!");
return false;
}
m_outr = (ir_value*)1;
(void)lvalue;
(void)out;
if (!m_operand->codegen(func, false, &irop))
return false;
if (m_cases.empty())
return true;
cmpinstr = type_eq_instr[irop->m_vtype];
if (cmpinstr >= VINSTR_END) {
ast_type_to_string(m_operand, typestr, sizeof(typestr));
compile_error(m_context, "invalid type to perform a switch on: %s", typestr);
return false;
}
bout_id = func->m_ir_func->m_blocks.size();
bout = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("after_switch"));
if (!bout)
return false;
/* setup the break block */
func->m_breakblocks.push_back(bout);
/* Now create all cases */
for (auto &it : m_cases) {
ir_value *cond, *val;
ir_block *bcase, *bnot;
size_t bnot_id;
ast_switch_case *swcase = &it;
if (swcase->m_value) {
/* A regular case */
/* generate the condition operand */
if (!swcase->m_value->codegen(func, false, &val))
return false;
/* generate the condition */
cond = ir_block_create_binop(func->m_curblock, m_context, func->makeLabel("switch_eq"), cmpinstr, irop, val);
if (!cond)
return false;
bcase = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("case"));
bnot_id = func->m_ir_func->m_blocks.size();
bnot = ir_function_create_block(m_context, func->m_ir_func, func->makeLabel("not_case"));
if (!bcase || !bnot)
return false;
if (set_def_bfall_to) {
set_def_bfall_to = false;
def_bfall_to = bcase;
}
if (!ir_block_create_if(func->m_curblock, m_context, cond, bcase, bnot))
return false;
/* Make the previous case-end fall through */
if (bfall && !bfall->m_final) {
if (!ir_block_create_jump(bfall, m_context, bcase))
return false;
}
/* enter the case */
func->m_curblock = bcase;
if (!swcase->m_code->codegen(func, false, &dummy))
return false;
/* remember this block to fall through from */
bfall = func->m_curblock;
/* enter the else and move it down */
func->m_curblock = bnot;
algo::shiftback(func->m_ir_func->m_blocks.begin() + bnot_id,
func->m_ir_func->m_blocks.end());
// FIXME::DELME::
//func->m_ir_func->m_blocks[bnot_id].release();
//func->m_ir_func->m_blocks.erase(func->m_ir_func->m_blocks.begin() + bnot_id);
//func->m_ir_func->m_blocks.emplace_back(bnot);
} else {
/* The default case */
/* Remember where to fall through from: */
def_bfall = bfall;
bfall = nullptr;
/* remember which case it was */
def_case = swcase;
/* And the next case will be remembered */
set_def_bfall_to = true;
}
}
/* Jump from the last bnot to bout */
if (bfall && !bfall->m_final && !ir_block_create_jump(bfall, m_context, bout)) {
/*
astwarning(bfall->m_context, WARN_???, "missing break after last case");
*/
return false;
}
/* If there was a default case, put it down here */
if (def_case) {
ir_block *bcase;
/* No need to create an extra block */
bcase = func->m_curblock;
/* Insert the fallthrough jump */
if (def_bfall && !def_bfall->m_final) {
if (!ir_block_create_jump(def_bfall, m_context, bcase))
return false;
}
/* Now generate the default code */
if (!def_case->m_code->codegen(func, false, &dummy))
return false;
/* see if we need to fall through */
if (def_bfall_to && !func->m_curblock->m_final)
{
if (!ir_block_create_jump(func->m_curblock, m_context, def_bfall_to))
return false;
}
}
/* Jump from the last bnot to bout */
if (!func->m_curblock->m_final && !ir_block_create_jump(func->m_curblock, m_context, bout))
return false;
/* enter the outgoing block */
func->m_curblock = bout;
/* restore the break block */
func->m_breakblocks.pop_back();
/* Move 'bout' to the end, it's nicer */
algo::shiftback(func->m_ir_func->m_blocks.begin() + bout_id,
func->m_ir_func->m_blocks.end());
// FIXME::DELME::
//func->m_ir_func->m_blocks[bout_id].release();
//func->m_ir_func->m_blocks.erase(func->m_ir_func->m_blocks.begin() + bout_id);
//func->m_ir_func->m_blocks.emplace_back(bout);
return true;
}
bool ast_label::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *dummy;
if (m_undefined) {
compile_error(m_context, "internal error: ast_label never defined");
return false;
}
*out = nullptr;
if (lvalue) {
compile_error(m_context, "internal error: ast_label cannot be an lvalue");
return false;
}
/* simply create a new block and jump to it */
m_irblock = ir_function_create_block(m_context, func->m_ir_func, m_name.c_str());
if (!m_irblock) {
compile_error(m_context, "failed to allocate label block `%s`", m_name);
return false;
}
if (!func->m_curblock->m_final) {
if (!ir_block_create_jump(func->m_curblock, m_context, m_irblock))
return false;
}
/* enter the new block */
func->m_curblock = m_irblock;
/* Generate all the leftover gotos */
for (auto &it : m_gotos) {
if (!it->codegen(func, false, &dummy))
return false;
}
return true;
}
bool ast_goto::codegen(ast_function *func, bool lvalue, ir_value **out)
{
*out = nullptr;
if (lvalue) {
compile_error(m_context, "internal error: ast_goto cannot be an lvalue");
return false;
}
if (m_target->m_irblock) {
if (m_irblock_from) {
/* we already tried once, this is the callback */
m_irblock_from->m_final = false;
if (!ir_block_create_goto(m_irblock_from, m_context, m_target->m_irblock)) {
compile_error(m_context, "failed to generate goto to `%s`", m_name);
return false;
}
}
else
{
if (!ir_block_create_goto(func->m_curblock, m_context, m_target->m_irblock)) {
compile_error(m_context, "failed to generate goto to `%s`", m_name);
return false;
}
}
}
else
{
/* the target has not yet been created...
* close this block in a sneaky way:
*/
func->m_curblock->m_final = true;
m_irblock_from = func->m_curblock;
m_target->registerGoto(this);
}
return true;
}
bool ast_state::codegen(ast_function *func, bool lvalue, ir_value **out)
{
ir_value *frameval, *thinkval;
if (lvalue) {
compile_error(m_context, "not an l-value (state operation)");
return false;
}
if (m_outr) {
compile_error(m_context, "internal error: ast_state cannot be reused!");
return false;
}
*out = nullptr;
if (!m_framenum->codegen(func, false, &frameval))
return false;
if (!frameval)
return false;
if (!m_nextthink->codegen(func, false, &thinkval))
return false;
if (!frameval)
return false;
if (!ir_block_create_state_op(func->m_curblock, m_context, frameval, thinkval)) {
compile_error(m_context, "failed to create STATE instruction");
return false;
}
m_outr = (ir_value*)1;
return true;
}
bool ast_call::codegen(ast_function *func, bool lvalue, ir_value **out)
{
std::vector<ir_value*> params;
ir_instr *callinstr;
ir_value *funval = nullptr;
/* return values are never lvalues */
if (lvalue) {
compile_error(m_context, "not an l-value (function call)");
return false;
}
if (m_outr) {
*out = m_outr;
return true;
}
if (!m_func->codegen(func, false, &funval))
return false;
if (!funval)
return false;
/* parameters */
for (auto &it : m_params) {
ir_value *param;
if (!it->codegen(func, false, &param))
return false;
if (!param)
return false;
params.push_back(param);
}
/* varargs counter */
if (m_va_count) {
ir_value *va_count;
ir_builder *builder = func->m_curblock->m_owner->m_owner;
if (!m_va_count->codegen(func, false, &va_count))
return false;
if (!ir_block_create_store_op(func->m_curblock, m_context, INSTR_STORE_F,
builder->get_va_count(), va_count))
{
return false;
}
}
callinstr = ir_block_create_call(func->m_curblock, m_context,
func->makeLabel("call"),
funval, !!(m_func->m_flags & AST_FLAG_NORETURN));
if (!callinstr)
return false;
for (auto &it : params)
ir_call_param(callinstr, it);
*out = ir_call_value(callinstr);
m_outr = *out;
codegen_output_type(this, *out);
return true;
}