gmqcc/ir.h
2016-12-03 21:30:33 +01:00

334 lines
10 KiB
C++

#ifndef GMQCC_IR_HDR
#define GMQCC_IR_HDR
#include "gmqcc.h"
/*
* Type large enough to hold all the possible IR flags. This should be
* changed if the static assertion at the end of this file fails.
*/
typedef uint8_t ir_flag_t;
struct ir_value;
struct ir_instr;
struct ir_block;
struct ir_function;
struct ir_builder;
struct ir_life_entry_t {
/* both inclusive */
size_t start;
size_t end;
};
enum {
IR_FLAG_HAS_ARRAYS = 1 << 0,
IR_FLAG_HAS_UNINITIALIZED = 1 << 1,
IR_FLAG_HAS_GOTO = 1 << 2,
IR_FLAG_INCLUDE_DEF = 1 << 3,
IR_FLAG_ERASABLE = 1 << 4,
IR_FLAG_BLOCK_COVERAGE = 1 << 5,
IR_FLAG_NOREF = 1 << 6,
IR_FLAG_SPLIT_VECTOR = 1 << 7,
IR_FLAG_LAST,
IR_FLAG_MASK_NO_OVERLAP = (IR_FLAG_HAS_ARRAYS | IR_FLAG_HAS_UNINITIALIZED),
IR_FLAG_MASK_NO_LOCAL_TEMPS = (IR_FLAG_HAS_ARRAYS | IR_FLAG_HAS_UNINITIALIZED)
};
struct ir_value {
ir_value(std::string&& name, store_type storetype, qc_type vtype);
ir_value(ir_function *owner, std::string&& name, store_type storetype, qc_type vtype);
~ir_value();
ir_value *vectorMember(unsigned int member);
bool GMQCC_WARN setFloat(float);
bool GMQCC_WARN setFunc(int);
bool GMQCC_WARN setString(const char*);
bool GMQCC_WARN setVector(vec3_t);
bool GMQCC_WARN setField(ir_value*);
#if 0
bool GMQCC_WARN setInt(int);
#endif
bool lives(size_t at);
void dumpLife(int (*oprintf)(const char*, ...)) const;
void setCodeAddress(int32_t gaddr);
int32_t codeAddress() const;
bool insertLife(size_t idx, ir_life_entry_t);
bool setAlive(size_t position);
bool mergeLife(const ir_value *other);
std::string m_name;
qc_type m_vtype;
store_type m_store;
lex_ctx_t m_context;
qc_type m_fieldtype; // even the IR knows the subtype of a field
qc_type m_outtype; // and the output type of a function
int m_cvq; // 'const' vs 'var' qualifier
ir_flag_t m_flags;
std::vector<ir_instr *> m_reads;
std::vector<ir_instr *> m_writes;
// constant values
bool m_hasvalue;
union {
qcfloat_t vfloat;
int vint;
vec3_t vvec;
int32_t ivec[3];
char *vstring;
ir_value *vpointer;
ir_function *vfunc;
} m_constval;
struct {
int32_t globaladdr;
int32_t name;
int32_t local; // filled by the local-allocator
int32_t addroffset; // added for members
int32_t fieldaddr; // to generate field-addresses early
} m_code;
// for accessing vectors
ir_value *m_members[3];
ir_value *m_memberof;
bool m_unique_life; // arrays will never overlap with temps
bool m_locked; // temps living during a CALL must be locked
bool m_callparam;
std::vector<ir_life_entry_t> m_life; // For the temp allocator
size_t size() const;
void dump(int (*oprintf)(const char*, ...)) const;
};
/* PHI data */
struct ir_phi_entry_t {
ir_value *value;
ir_block *from;
};
/* instruction */
struct ir_instr {
ir_instr(lex_ctx_t, ir_block *owner, int opcode);
~ir_instr();
int m_opcode;
lex_ctx_t m_context;
ir_value *(_m_ops[3]) = { nullptr, nullptr, nullptr };
ir_block *(m_bops[2]) = { nullptr, nullptr };
std::vector<ir_phi_entry_t> m_phi;
std::vector<ir_value *> m_params;
// For the temp-allocation
size_t m_eid = 0;
// For IFs
bool m_likely = true;
ir_block *m_owner;
};
/* block */
struct ir_block {
ir_block(ir_function *owner, const std::string& name);
~ir_block();
ir_function *m_owner;
std::string m_label;
lex_ctx_t m_context;
bool m_final = false; /* once a jump is added we're done */
std::vector<ir_instr *> m_instr;
std::vector<ir_block *> m_entries;
std::vector<ir_block *> m_exits;
std::vector<ir_value *> m_living;
/* For the temp-allocation */
size_t m_entry_id = 0;
size_t m_eid = 0;
bool m_is_return = false;
bool m_generated = false;
size_t m_code_start = 0;
};
ir_value* ir_block_create_binop(ir_block*, lex_ctx_t, const char *label, int op, ir_value *left, ir_value *right);
ir_value* ir_block_create_unary(ir_block*, lex_ctx_t, const char *label, int op, ir_value *operand);
bool GMQCC_WARN ir_block_create_store_op(ir_block*, lex_ctx_t, int op, ir_value *target, ir_value *what);
bool GMQCC_WARN ir_block_create_storep(ir_block*, lex_ctx_t, ir_value *target, ir_value *what);
ir_value* ir_block_create_load_from_ent(ir_block*, lex_ctx_t, const char *label, ir_value *ent, ir_value *field, qc_type outype);
ir_value* ir_block_create_fieldaddress(ir_block*, lex_ctx_t, const char *label, ir_value *entity, ir_value *field);
bool GMQCC_WARN ir_block_create_state_op(ir_block*, lex_ctx_t, ir_value *frame, ir_value *think);
/* This is to create an instruction of the form
* <outtype>%label := opcode a, b
*/
ir_instr* ir_block_create_phi(ir_block*, lex_ctx_t, const char *label, qc_type vtype);
ir_value* ir_phi_value(ir_instr*);
void ir_phi_add(ir_instr*, ir_block *b, ir_value *v);
ir_instr* ir_block_create_call(ir_block*, lex_ctx_t, const char *label, ir_value *func, bool noreturn);
ir_value* ir_call_value(ir_instr*);
void ir_call_param(ir_instr*, ir_value*);
bool GMQCC_WARN ir_block_create_return(ir_block*, lex_ctx_t, ir_value *opt_value);
bool GMQCC_WARN ir_block_create_if(ir_block*, lex_ctx_t, ir_value *cond,
ir_block *ontrue, ir_block *onfalse);
/*
* A 'goto' is an actual 'goto' coded in QC, whereas
* a 'jump' is a virtual construct which simply names the
* next block to go to.
* A goto usually becomes an OP_GOTO in the resulting code,
* whereas a 'jump' usually doesn't add any actual instruction.
*/
bool GMQCC_WARN ir_block_create_jump(ir_block*, lex_ctx_t, ir_block *to);
bool GMQCC_WARN ir_block_create_goto(ir_block*, lex_ctx_t, ir_block *to);
/* function */
struct ir_function {
ir_function(ir_builder *owner, qc_type returntype);
~ir_function();
ir_builder *m_owner;
std::string m_name;
qc_type m_outtype;
int *m_params = nullptr;
ir_flag_t m_flags = 0;
int m_builtin = 0;
std::vector<std::unique_ptr<ir_block>> m_blocks;
/*
* values generated from operations
* which might get optimized away, so anything
* in there needs to be deleted in the dtor.
*/
std::vector<std::unique_ptr<ir_value>> m_values;
std::vector<std::unique_ptr<ir_value>> m_locals; /* locally defined variables */
ir_value *m_value = nullptr;
size_t m_allocated_locals = 0;
size_t m_globaltemps = 0;
ir_block* m_first = nullptr;
ir_block* m_last = nullptr;
lex_ctx_t m_context;
/*
* for prototypes - first we generate all the
* globals, and we remember teh function-defs
* so we can later fill in the entry pos
*
* remember the ID:
*/
qcint_t m_code_function_def = -1;
/* for temp allocation */
size_t m_run_id = 0;
/* vararg support: */
size_t m_max_varargs = 0;
};
ir_value* ir_function_create_local(ir_function *self, const std::string& name, qc_type vtype, bool param);
bool GMQCC_WARN ir_function_finalize(ir_function*);
ir_block* ir_function_create_block(lex_ctx_t ctx, ir_function*, const char *label);
/* builder */
#define IR_HT_SIZE 1024
#define IR_MAX_VINSTR_TEMPS 1
struct ir_builder {
ir_builder(const std::string& modulename);
~ir_builder();
ir_function *createFunction(const std::string &name, qc_type outtype);
ir_value *createGlobal(const std::string &name, qc_type vtype);
ir_value *createField(const std::string &name, qc_type vtype);
ir_value *get_va_count();
bool generate(const char *filename);
void dump(int (*oprintf)(const char*, ...)) const;
ir_value *generateExtparamProto();
void generateExtparam();
ir_value *literalFloat(float value, bool add_to_list);
std::string m_name;
std::vector<std::unique_ptr<ir_function>> m_functions;
std::vector<std::unique_ptr<ir_value>> m_globals;
std::vector<std::unique_ptr<ir_value>> m_fields;
// for reusing them in vector-splits, TODO: sort this or use a radix-tree
std::vector<ir_value*> m_const_floats;
ht m_htfunctions;
ht m_htglobals;
ht m_htfields;
// extparams' ir_values reference the ones from extparam_protos
std::vector<std::unique_ptr<ir_value>> m_extparam_protos;
std::vector<ir_value*> m_extparams;
// the highest func->allocated_locals
size_t m_max_locals = 0;
size_t m_max_globaltemps = 0;
uint32_t m_first_common_local = 0;
uint32_t m_first_common_globaltemp = 0;
std::vector<const char*> m_filenames;
std::vector<qcint_t> m_filestrings;
// we cache the #IMMEDIATE string here
qcint_t m_str_immediate = 0;
// there should just be this one nil
ir_value *m_nil;
ir_value *m_reserved_va_count = nullptr;
ir_value *m_coverage_func = nullptr;
/* some virtual instructions require temps, and their code is isolated
* so that we don't need to keep track of their liveness.
*/
ir_value *m_vinstr_temp[IR_MAX_VINSTR_TEMPS];
/* code generator */
std::unique_ptr<code_t> m_code;
private:
qcint_t filestring(const char *filename);
bool generateGlobal(ir_value*, bool is_local);
bool generateGlobalFunction(ir_value*);
bool generateGlobalFunctionCode(ir_value*);
bool generateFunctionLocals(ir_value*);
};
/*
* This code assumes 32 bit floats while generating binary
* Blub: don't use extern here, it's annoying and shows up in nm
* for some reason :P
*/
typedef int static_assert_is_32bit_float [(sizeof(int32_t) == 4) ? 1 : -1];
typedef int static_assert_is_32bit_integer[(sizeof(qcfloat_t) == 4) ? 1 : -1];
/*
* If the condition creates a situation where this becomes -1 size it means there are
* more IR_FLAGs than the type ir_flag_t is capable of holding. So either eliminate
* the IR flag count or change the ir_flag_t typedef to a type large enough to accomodate
* all the flags.
*/
typedef int static_assert_is_ir_flag_safe [((IR_FLAG_LAST) <= (ir_flag_t)(-1)) ? 1 : -1];
#endif