mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-24 04:41:25 +00:00
834 lines
24 KiB
C
834 lines
24 KiB
C
/*
|
|
* Copyright (C) 2012, 2013
|
|
* Dale Weiler
|
|
* Wolfgang Bumiller
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished to do
|
|
* so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "gmqcc.h"
|
|
|
|
/*
|
|
* For the valgrind integration of our allocator. This allows us to have
|
|
* more `accurate` valgrind output for our allocator, and also secures the
|
|
* possible underflows (where one could obtain access to the redzone that
|
|
* represents info about that allocation).
|
|
*/
|
|
#ifndef NVALGRIND
|
|
# include <valgrind/valgrind.h>
|
|
# include <valgrind/memcheck.h>
|
|
#else
|
|
# define VALGRIND_MALLOCLIKE_BLOCK(PTR, ALLOC_SIZE, REDZONE_SIZE, ZEROED)
|
|
# define VALGRIND_FREELIKE_BLOCK(PTR, REDZONE_SIZE)
|
|
# define VALGRIND_MAKE_MEM_DEFINED(PTR, REDZONE_SIZE)
|
|
# define VALGRIND_MAKE_MEM_NOACCESS(PTR, REDZONE_SIZE)
|
|
#endif
|
|
|
|
/*
|
|
* GMQCC performs tons of allocations, constructions, and crazyness
|
|
* all around. When trying to optimizes systems, or just get fancy
|
|
* statistics out of the compiler, it's often printf mess. This file
|
|
* implements the statistics system of the compiler. I.E the allocator
|
|
* we use to track allocations, and other systems of interest.
|
|
*/
|
|
#define ST_SIZE 1024
|
|
|
|
typedef struct stat_mem_block_s {
|
|
const char *file;
|
|
size_t line;
|
|
size_t size;
|
|
const char *expr;
|
|
struct stat_mem_block_s *next;
|
|
struct stat_mem_block_s *prev;
|
|
} stat_mem_block_t;
|
|
|
|
typedef struct {
|
|
size_t key;
|
|
size_t value;
|
|
} stat_size_entry_t, **stat_size_table_t;
|
|
|
|
static uint64_t stat_mem_allocated = 0;
|
|
static uint64_t stat_mem_deallocated = 0;
|
|
static uint64_t stat_mem_allocated_total = 0;
|
|
static uint64_t stat_mem_deallocated_total = 0;
|
|
static uint64_t stat_mem_high = 0;
|
|
static uint64_t stat_mem_peak = 0;
|
|
static uint64_t stat_mem_strdups = 0;
|
|
static uint64_t stat_used_strdups = 0;
|
|
static uint64_t stat_used_vectors = 0;
|
|
static uint64_t stat_used_hashtables = 0;
|
|
static uint64_t stat_type_vectors = 0;
|
|
static uint64_t stat_type_hashtables = 0;
|
|
static stat_size_table_t stat_size_vectors = NULL;
|
|
static stat_size_table_t stat_size_hashtables = NULL;
|
|
static stat_mem_block_t *stat_mem_block_root = NULL;
|
|
|
|
/*
|
|
* A tiny size_t key-value hashtbale for tracking vector and hashtable
|
|
* sizes. We can use it for other things too, if we need to. This is
|
|
* very TIGHT, and efficent in terms of space though.
|
|
*/
|
|
static stat_size_table_t stat_size_new(void) {
|
|
return (stat_size_table_t)memset(
|
|
mem_a(sizeof(stat_size_entry_t*) * ST_SIZE),
|
|
0, ST_SIZE * sizeof(stat_size_entry_t*)
|
|
);
|
|
}
|
|
|
|
static void stat_size_del(stat_size_table_t table) {
|
|
size_t i = 0;
|
|
for (; i < ST_SIZE; i++) if(table[i]) mem_d(table[i]);
|
|
mem_d(table);
|
|
}
|
|
|
|
static stat_size_entry_t *stat_size_get(stat_size_table_t table, size_t key) {
|
|
size_t hash = (key % ST_SIZE);
|
|
while (table[hash] && table[hash]->key != key)
|
|
hash = (hash + 1) % ST_SIZE;
|
|
return table[hash];
|
|
}
|
|
static void stat_size_put(stat_size_table_t table, size_t key, size_t value) {
|
|
size_t hash = (key % ST_SIZE);
|
|
while (table[hash] && table[hash]->key != key)
|
|
hash = (hash + 1) % ST_SIZE;
|
|
table[hash] = (stat_size_entry_t*)mem_a(sizeof(stat_size_entry_t));
|
|
table[hash]->key = key;
|
|
table[hash]->value = value;
|
|
}
|
|
|
|
/*
|
|
* A basic header of information wrapper allocator. Simply stores
|
|
* information as a header, returns the memory + 1 past it, can be
|
|
* retrieved again with - 1. Where type is stat_mem_block_t*.
|
|
*/
|
|
void *stat_mem_allocate(size_t size, size_t line, const char *file, const char *expr) {
|
|
stat_mem_block_t *info = (stat_mem_block_t*)malloc(sizeof(stat_mem_block_t) + size);
|
|
void *data = (void*)(info + 1);
|
|
|
|
if(GMQCC_UNLIKELY(!info))
|
|
return NULL;
|
|
|
|
info->line = line;
|
|
info->size = size;
|
|
info->file = file;
|
|
info->expr = expr;
|
|
info->prev = NULL;
|
|
info->next = stat_mem_block_root;
|
|
|
|
/* likely since it only happens once */
|
|
if (GMQCC_LIKELY(stat_mem_block_root != NULL)) {
|
|
VALGRIND_MAKE_MEM_DEFINED(stat_mem_block_root, sizeof(stat_mem_block_t));
|
|
stat_mem_block_root->prev = info;
|
|
VALGRIND_MAKE_MEM_NOACCESS(stat_mem_block_root, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
stat_mem_block_root = info;
|
|
stat_mem_allocated += size;
|
|
stat_mem_high += size;
|
|
stat_mem_allocated_total ++;
|
|
|
|
if (stat_mem_high > stat_mem_peak)
|
|
stat_mem_peak = stat_mem_high;
|
|
|
|
VALGRIND_MALLOCLIKE_BLOCK(data, size, sizeof(stat_mem_block_t), 0);
|
|
return data;
|
|
}
|
|
|
|
void stat_mem_deallocate(void *ptr) {
|
|
stat_mem_block_t *info = NULL;
|
|
|
|
if (GMQCC_UNLIKELY(!ptr))
|
|
return;
|
|
|
|
info = ((stat_mem_block_t*)ptr - 1);
|
|
|
|
/*
|
|
* we need access to the redzone that represents the info block
|
|
* so lets do that.
|
|
*/
|
|
VALGRIND_MAKE_MEM_DEFINED(info, sizeof(stat_mem_block_t));
|
|
|
|
stat_mem_deallocated += info->size;
|
|
stat_mem_high -= info->size;
|
|
stat_mem_deallocated_total ++;
|
|
|
|
if (info->prev) {
|
|
/* just need access for a short period */
|
|
VALGRIND_MAKE_MEM_DEFINED(info->prev, sizeof(stat_mem_block_t));
|
|
info->prev->next = info->next;
|
|
/* don't need access anymore */
|
|
VALGRIND_MAKE_MEM_NOACCESS(info->prev, sizeof(stat_mem_block_t));
|
|
}
|
|
if (info->next) {
|
|
/* just need access for a short period */
|
|
VALGRIND_MAKE_MEM_DEFINED(info->next, sizeof(stat_mem_block_t));
|
|
info->next->prev = info->prev;
|
|
/* don't need access anymore */
|
|
VALGRIND_MAKE_MEM_NOACCESS(info->next, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
/* move ahead */
|
|
if (info == stat_mem_block_root)
|
|
stat_mem_block_root = info->next;
|
|
|
|
free(info);
|
|
VALGRIND_MAKE_MEM_NOACCESS(info, sizeof(stat_mem_block_t));
|
|
VALGRIND_FREELIKE_BLOCK(ptr, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
void *stat_mem_reallocate(void *ptr, size_t size, size_t line, const char *file, const char *expr) {
|
|
stat_mem_block_t *oldinfo = NULL;
|
|
stat_mem_block_t *newinfo;
|
|
|
|
if (GMQCC_UNLIKELY(!ptr))
|
|
return stat_mem_allocate(size, line, file, expr);
|
|
|
|
/* stay consistent with glibc */
|
|
if (GMQCC_UNLIKELY(!size)) {
|
|
stat_mem_deallocate(ptr);
|
|
return NULL;
|
|
}
|
|
|
|
oldinfo = ((stat_mem_block_t*)ptr - 1);
|
|
newinfo = ((stat_mem_block_t*)malloc(sizeof(stat_mem_block_t) + size));
|
|
|
|
if (GMQCC_UNLIKELY(!newinfo)) {
|
|
stat_mem_deallocate(ptr);
|
|
return NULL;
|
|
}
|
|
|
|
VALGRIND_MALLOCLIKE_BLOCK(newinfo + 1, size, sizeof(stat_mem_block_t), 0);
|
|
|
|
/* we need access to the old info redzone */
|
|
VALGRIND_MAKE_MEM_DEFINED(oldinfo, sizeof(stat_mem_block_t));
|
|
|
|
memcpy(newinfo+1, oldinfo+1, oldinfo->size);
|
|
|
|
if (oldinfo->prev) {
|
|
/* just need access for a short period */
|
|
VALGRIND_MAKE_MEM_DEFINED(oldinfo->prev, sizeof(stat_mem_block_t));
|
|
oldinfo->prev->next = oldinfo->next;
|
|
/* don't need access anymore */
|
|
VALGRIND_MAKE_MEM_NOACCESS(oldinfo->prev, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
if (oldinfo->next) {
|
|
/* just need access for a short period */
|
|
VALGRIND_MAKE_MEM_DEFINED(oldinfo->next, sizeof(stat_mem_block_t));
|
|
oldinfo->next->prev = oldinfo->prev;
|
|
/* don't need access anymore */
|
|
VALGRIND_MAKE_MEM_NOACCESS(oldinfo->next, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
/* move ahead */
|
|
if (oldinfo == stat_mem_block_root)
|
|
stat_mem_block_root = oldinfo->next;
|
|
|
|
/* we need access to the redzone for the newinfo block */
|
|
VALGRIND_MAKE_MEM_DEFINED(newinfo, sizeof(stat_mem_block_t));
|
|
|
|
newinfo->line = line;
|
|
newinfo->size = size;
|
|
newinfo->file = file;
|
|
newinfo->expr = expr;
|
|
newinfo->prev = NULL;
|
|
newinfo->next = stat_mem_block_root;
|
|
|
|
/*
|
|
* likely since the only time there is no root is when it's
|
|
* being initialized first.
|
|
*/
|
|
if (GMQCC_LIKELY(stat_mem_block_root != NULL)) {
|
|
/* we need access to the root */
|
|
VALGRIND_MAKE_MEM_DEFINED(stat_mem_block_root, sizeof(stat_mem_block_t));
|
|
stat_mem_block_root->prev = newinfo;
|
|
/* kill access */
|
|
VALGRIND_MAKE_MEM_NOACCESS(stat_mem_block_root, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
stat_mem_block_root = newinfo;
|
|
stat_mem_allocated -= oldinfo->size;
|
|
stat_mem_high -= oldinfo->size;
|
|
stat_mem_allocated += newinfo->size;
|
|
stat_mem_high += newinfo->size;
|
|
|
|
/*
|
|
* we're finished with the redzones, lets kill the access
|
|
* to them.
|
|
*/
|
|
VALGRIND_MAKE_MEM_NOACCESS(newinfo, sizeof(stat_mem_block_t));
|
|
VALGRIND_MAKE_MEM_NOACCESS(oldinfo, sizeof(stat_mem_block_t));
|
|
|
|
if (stat_mem_high > stat_mem_peak)
|
|
stat_mem_peak = stat_mem_high;
|
|
|
|
free(oldinfo);
|
|
VALGRIND_FREELIKE_BLOCK(ptr, sizeof(stat_mem_block_t));
|
|
return newinfo + 1;
|
|
}
|
|
|
|
/*
|
|
* strdup does it's own malloc, we need to track malloc. We don't want
|
|
* to overwrite malloc though, infact, we can't really hook it at all
|
|
* without library specific assumptions. So we re implement strdup.
|
|
*/
|
|
char *stat_mem_strdup(const char *src, size_t line, const char *file, bool empty) {
|
|
size_t len = 0;
|
|
char *ptr = NULL;
|
|
|
|
if (!src)
|
|
return NULL;
|
|
|
|
len = strlen(src);
|
|
if (((!empty) ? len : true) && (ptr = (char*)stat_mem_allocate(len + 1, line, file, "strdup"))) {
|
|
memcpy(ptr, src, len);
|
|
ptr[len] = '\0';
|
|
}
|
|
|
|
stat_used_strdups ++;
|
|
stat_mem_strdups += len;
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* The reallocate function for resizing vectors.
|
|
*/
|
|
void _util_vec_grow(void **a, size_t i, size_t s) {
|
|
vector_t *d = vec_meta(*a);
|
|
size_t m = 0;
|
|
stat_size_entry_t *e = NULL;
|
|
void *p = NULL;
|
|
|
|
if (*a) {
|
|
m = 2 * d->allocated + i;
|
|
p = mem_r(d, s * m + sizeof(vector_t));
|
|
} else {
|
|
m = i + 1;
|
|
p = mem_a(s * m + sizeof(vector_t));
|
|
((vector_t*)p)->used = 0;
|
|
stat_used_vectors++;
|
|
}
|
|
|
|
if (!stat_size_vectors)
|
|
stat_size_vectors = stat_size_new();
|
|
|
|
if ((e = stat_size_get(stat_size_vectors, s))) {
|
|
e->value ++;
|
|
} else {
|
|
stat_size_put(stat_size_vectors, s, 1); /* start off with 1 */
|
|
stat_type_vectors++;
|
|
}
|
|
|
|
*a = (vector_t*)p + 1;
|
|
vec_meta(*a)->allocated = m;
|
|
}
|
|
|
|
/*
|
|
* Hash table for generic data, based on dynamic memory allocations
|
|
* all around. This is the internal interface, please look for
|
|
* EXPOSED INTERFACE comment below
|
|
*/
|
|
typedef struct hash_node_t {
|
|
char *key; /* the key for this node in table */
|
|
void *value; /* pointer to the data as void* */
|
|
struct hash_node_t *next; /* next node (linked list) */
|
|
} hash_node_t;
|
|
|
|
/*
|
|
* This is a patched version of the Murmur2 hashing function to use
|
|
* a proper pre-mix and post-mix setup. Infact this is Murmur3 for
|
|
* the most part just reinvented.
|
|
*
|
|
* Murmur 2 contains an inner loop such as:
|
|
* while (l >= 4) {
|
|
* u32 k = *(u32*)d;
|
|
* k *= m;
|
|
* k ^= k >> r;
|
|
* k *= m;
|
|
*
|
|
* h *= m;
|
|
* h ^= k;
|
|
* d += 4;
|
|
* l -= 4;
|
|
* }
|
|
*
|
|
* The two u32s that form the key are the same value x (pulled from data)
|
|
* this premix stage will perform the same results for both values. Unrolled
|
|
* this produces just:
|
|
* x *= m;
|
|
* x ^= x >> r;
|
|
* x *= m;
|
|
*
|
|
* h *= m;
|
|
* h ^= x;
|
|
* h *= m;
|
|
* h ^= x;
|
|
*
|
|
* This appears to be fine, except what happens when m == 1? well x
|
|
* cancels out entierly, leaving just:
|
|
* x ^= x >> r;
|
|
* h ^= x;
|
|
* h ^= x;
|
|
*
|
|
* So all keys hash to the same value, but how often does m == 1?
|
|
* well, it turns out testing x for all possible values yeilds only
|
|
* 172,013,942 unique results instead of 2^32. So nearly ~4.6 bits
|
|
* are cancelled out on average!
|
|
*
|
|
* This means we have a 14.5% (rounded) chance of colliding more, which
|
|
* results in another bucket/chain for the hashtable.
|
|
*
|
|
* We fix it buy upgrading the pre and post mix ssystems to align with murmur
|
|
* hash 3.
|
|
*/
|
|
#if 1
|
|
#define GMQCC_ROTL32(X, R) (((X) << (R)) | ((X) >> (32 - (R))))
|
|
GMQCC_INLINE size_t util_hthash(hash_table_t *ht, const char *key) {
|
|
const unsigned char *data = (const unsigned char *)key;
|
|
const size_t len = strlen(key);
|
|
const size_t block = len / 4;
|
|
const uint32_t mask1 = 0xCC9E2D51;
|
|
const uint32_t mask2 = 0x1B873593;
|
|
const uint32_t *blocks = (const uint32_t*)(data + block * 4);
|
|
const unsigned char *tail = (const unsigned char *)(data + block * 4);
|
|
|
|
size_t i;
|
|
uint32_t k;
|
|
uint32_t h = 0x1EF0 ^ len;
|
|
|
|
for (i = -((int)block); i; i++) {
|
|
k = blocks[i];
|
|
k *= mask1;
|
|
k = GMQCC_ROTL32(k, 15);
|
|
k *= mask2;
|
|
h ^= k;
|
|
h = GMQCC_ROTL32(h, 13);
|
|
h = h * 5 + 0xE6546B64;
|
|
}
|
|
|
|
k = 0;
|
|
switch (len & 3) {
|
|
case 3:
|
|
k ^= tail[2] << 16;
|
|
case 2:
|
|
k ^= tail[1] << 8;
|
|
case 1:
|
|
k ^= tail[0];
|
|
k *= mask1;
|
|
k = GMQCC_ROTL32(k, 15);
|
|
k *= mask2;
|
|
h ^= k;
|
|
}
|
|
|
|
h ^= len;
|
|
h ^= h >> 16;
|
|
h *= 0x85EBCA6B;
|
|
h ^= h >> 13;
|
|
h *= 0xC2B2AE35;
|
|
h ^= h >> 16;
|
|
|
|
return (size_t) (h % ht->size);
|
|
}
|
|
#undef GMQCC_ROTL32
|
|
#else
|
|
/* We keep the old for reference */
|
|
GMQCC_INLINE size_t util_hthash(hash_table_t *ht, const char *key) {
|
|
const uint32_t mix = 0x5BD1E995;
|
|
const uint32_t rot = 24;
|
|
size_t size = strlen(key);
|
|
uint32_t hash = 0x1EF0 /* LICRC TAB */ ^ size;
|
|
uint32_t alias = 0;
|
|
const unsigned char *data = (const unsigned char*)key;
|
|
|
|
while (size >= 4) {
|
|
alias = (data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24));
|
|
alias *= mix;
|
|
alias ^= alias >> rot;
|
|
alias *= mix;
|
|
|
|
hash *= mix;
|
|
hash ^= alias;
|
|
|
|
data += 4;
|
|
size -= 4;
|
|
}
|
|
|
|
switch (size) {
|
|
case 3: hash ^= data[2] << 16;
|
|
case 2: hash ^= data[1] << 8;
|
|
case 1: hash ^= data[0];
|
|
hash *= mix;
|
|
}
|
|
|
|
hash ^= hash >> 13;
|
|
hash *= mix;
|
|
hash ^= hash >> 15;
|
|
|
|
return (size_t) (hash % ht->size);
|
|
}
|
|
#endif
|
|
|
|
static hash_node_t *_util_htnewpair(const char *key, void *value) {
|
|
hash_node_t *node;
|
|
if (!(node = (hash_node_t*)mem_a(sizeof(hash_node_t))))
|
|
return NULL;
|
|
|
|
if (!(node->key = util_strdupe(key))) {
|
|
mem_d(node);
|
|
return NULL;
|
|
}
|
|
|
|
node->value = value;
|
|
node->next = NULL;
|
|
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* EXPOSED INTERFACE for the hashtable implementation
|
|
* util_htnew(size) -- to make a new hashtable
|
|
* util_htset(table, key, value, sizeof(value)) -- to set something in the table
|
|
* util_htget(table, key) -- to get something from the table
|
|
* util_htdel(table) -- to delete the table
|
|
*/
|
|
hash_table_t *util_htnew(size_t size) {
|
|
hash_table_t *hashtable = NULL;
|
|
stat_size_entry_t *find = NULL;
|
|
|
|
if (size < 1)
|
|
return NULL;
|
|
|
|
if (!stat_size_hashtables)
|
|
stat_size_hashtables = stat_size_new();
|
|
|
|
if (!(hashtable = (hash_table_t*)mem_a(sizeof(hash_table_t))))
|
|
return NULL;
|
|
|
|
if (!(hashtable->table = (hash_node_t**)mem_a(sizeof(hash_node_t*) * size))) {
|
|
mem_d(hashtable);
|
|
return NULL;
|
|
}
|
|
|
|
if ((find = stat_size_get(stat_size_hashtables, size)))
|
|
find->value++;
|
|
else {
|
|
stat_type_hashtables++;
|
|
stat_size_put(stat_size_hashtables, size, 1);
|
|
}
|
|
|
|
hashtable->size = size;
|
|
memset(hashtable->table, 0, sizeof(hash_node_t*) * size);
|
|
|
|
stat_used_hashtables++;
|
|
return hashtable;
|
|
}
|
|
|
|
void util_htseth(hash_table_t *ht, const char *key, size_t bin, void *value) {
|
|
hash_node_t *newnode = NULL;
|
|
hash_node_t *next = NULL;
|
|
hash_node_t *last = NULL;
|
|
|
|
next = ht->table[bin];
|
|
|
|
while (next && next->key && strcmp(key, next->key) > 0)
|
|
last = next, next = next->next;
|
|
|
|
/* already in table, do a replace */
|
|
if (next && next->key && strcmp(key, next->key) == 0) {
|
|
next->value = value;
|
|
} else {
|
|
/* not found, grow a pair man :P */
|
|
newnode = _util_htnewpair(key, value);
|
|
if (next == ht->table[bin]) {
|
|
newnode->next = next;
|
|
ht->table[bin] = newnode;
|
|
} else if (!next) {
|
|
last->next = newnode;
|
|
} else {
|
|
newnode->next = next;
|
|
last->next = newnode;
|
|
}
|
|
}
|
|
}
|
|
|
|
void util_htset(hash_table_t *ht, const char *key, void *value) {
|
|
util_htseth(ht, key, util_hthash(ht, key), value);
|
|
}
|
|
|
|
void *util_htgeth(hash_table_t *ht, const char *key, size_t bin) {
|
|
hash_node_t *pair = ht->table[bin];
|
|
|
|
while (pair && pair->key && strcmp(key, pair->key) > 0)
|
|
pair = pair->next;
|
|
|
|
if (!pair || !pair->key || strcmp(key, pair->key) != 0)
|
|
return NULL;
|
|
|
|
return pair->value;
|
|
}
|
|
|
|
void *util_htget(hash_table_t *ht, const char *key) {
|
|
return util_htgeth(ht, key, util_hthash(ht, key));
|
|
}
|
|
|
|
void *code_util_str_htgeth(hash_table_t *ht, const char *key, size_t bin);
|
|
void *code_util_str_htgeth(hash_table_t *ht, const char *key, size_t bin) {
|
|
hash_node_t *pair;
|
|
size_t len, keylen;
|
|
int cmp;
|
|
|
|
keylen = strlen(key);
|
|
|
|
pair = ht->table[bin];
|
|
while (pair && pair->key) {
|
|
len = strlen(pair->key);
|
|
if (len < keylen) {
|
|
pair = pair->next;
|
|
continue;
|
|
}
|
|
if (keylen == len) {
|
|
cmp = strcmp(key, pair->key);
|
|
if (cmp == 0)
|
|
return pair->value;
|
|
if (cmp < 0)
|
|
return NULL;
|
|
pair = pair->next;
|
|
continue;
|
|
}
|
|
cmp = strcmp(key, pair->key + len - keylen);
|
|
if (cmp == 0) {
|
|
uintptr_t up = (uintptr_t)pair->value;
|
|
up += len - keylen;
|
|
return (void*)up;
|
|
}
|
|
pair = pair->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Free all allocated data in a hashtable, this is quite the amount
|
|
* of work.
|
|
*/
|
|
void util_htrem(hash_table_t *ht, void (*callback)(void *data)) {
|
|
size_t i = 0;
|
|
|
|
for (; i < ht->size; ++i) {
|
|
hash_node_t *n = ht->table[i];
|
|
hash_node_t *p;
|
|
|
|
/* free in list */
|
|
while (n) {
|
|
if (n->key)
|
|
mem_d(n->key);
|
|
if (callback)
|
|
callback(n->value);
|
|
p = n;
|
|
n = p->next;
|
|
mem_d(p);
|
|
}
|
|
|
|
}
|
|
/* free table */
|
|
mem_d(ht->table);
|
|
mem_d(ht);
|
|
}
|
|
|
|
void util_htrmh(hash_table_t *ht, const char *key, size_t bin, void (*cb)(void*)) {
|
|
hash_node_t **pair = &ht->table[bin];
|
|
hash_node_t *tmp;
|
|
|
|
while (*pair && (*pair)->key && strcmp(key, (*pair)->key) > 0)
|
|
pair = &(*pair)->next;
|
|
|
|
tmp = *pair;
|
|
if (!tmp || !tmp->key || strcmp(key, tmp->key) != 0)
|
|
return;
|
|
|
|
if (cb)
|
|
(*cb)(tmp->value);
|
|
|
|
*pair = tmp->next;
|
|
mem_d(tmp->key);
|
|
mem_d(tmp);
|
|
}
|
|
|
|
void util_htrm(hash_table_t *ht, const char *key, void (*cb)(void*)) {
|
|
util_htrmh(ht, key, util_hthash(ht, key), cb);
|
|
}
|
|
|
|
void util_htdel(hash_table_t *ht) {
|
|
util_htrem(ht, NULL);
|
|
}
|
|
|
|
/*
|
|
* The following functions below implement printing / dumping of statistical
|
|
* information.
|
|
*/
|
|
static void stat_dump_mem_contents(stat_mem_block_t *block, uint16_t cols) {
|
|
unsigned char *buffer = mem_a(cols);
|
|
unsigned char *memory = (unsigned char *)(block + 1);
|
|
size_t i;
|
|
|
|
for (i = 0; i < block->size; i++) {
|
|
if (!(i % 16)) {
|
|
if (i != 0)
|
|
con_out(" %s\n", buffer);
|
|
con_out(" 0x%08X: ", i);
|
|
}
|
|
|
|
con_out(" %02X", memory[i]);
|
|
|
|
buffer[i % cols] = ((memory[i] < 0x20) || (memory[i] > 0x7E))
|
|
? '.'
|
|
: memory[i];
|
|
|
|
buffer[(i % cols) + 1] = '\0';
|
|
}
|
|
|
|
while ((i % cols) != 0) {
|
|
con_out(" ");
|
|
i++;
|
|
}
|
|
|
|
con_out(" %s\n", buffer);
|
|
mem_d(buffer);
|
|
}
|
|
|
|
static void stat_dump_mem_leaks(void) {
|
|
stat_mem_block_t *info;
|
|
/* we need access to the root for this */
|
|
VALGRIND_MAKE_MEM_DEFINED(stat_mem_block_root, sizeof(stat_mem_block_t));
|
|
for (info = stat_mem_block_root; info; info = info->next) {
|
|
/* we need access to the block */
|
|
VALGRIND_MAKE_MEM_DEFINED(info, sizeof(stat_mem_block_t));
|
|
con_out("lost: %u (bytes) at %s:%u from expression `%s`\n",
|
|
info->size,
|
|
info->file,
|
|
info->line,
|
|
info->expr
|
|
);
|
|
|
|
stat_dump_mem_contents(info, OPTS_OPTION_U16(OPTION_MEMDUMPCOLS));
|
|
|
|
/*
|
|
* we're finished with the access, the redzone should be marked
|
|
* inaccesible so that invalid read/writes that could 'step-into'
|
|
* those redzones will show up as invalid read/writes in valgrind.
|
|
*/
|
|
VALGRIND_MAKE_MEM_NOACCESS(info, sizeof(stat_mem_block_t));
|
|
}
|
|
VALGRIND_MAKE_MEM_NOACCESS(stat_mem_block_root, sizeof(stat_mem_block_t));
|
|
}
|
|
|
|
static void stat_dump_mem_info(void) {
|
|
con_out("Memory Information:\n\
|
|
Total allocations: %llu\n\
|
|
Total deallocations: %llu\n\
|
|
Total allocated: %f (MB)\n\
|
|
Total deallocated: %f (MB)\n\
|
|
Total peak memory: %f (MB)\n\
|
|
Total leaked memory: %f (MB) in %llu allocations\n",
|
|
stat_mem_allocated_total,
|
|
stat_mem_deallocated_total,
|
|
(float)(stat_mem_allocated) / 1048576.0f,
|
|
(float)(stat_mem_deallocated) / 1048576.0f,
|
|
(float)(stat_mem_peak) / 1048576.0f,
|
|
(float)(stat_mem_allocated - stat_mem_deallocated) / 1048576.0f,
|
|
stat_mem_allocated_total - stat_mem_deallocated_total
|
|
);
|
|
}
|
|
|
|
static void stat_dump_stats_table(stat_size_table_t table, const char *string, uint64_t *size) {
|
|
size_t i,j;
|
|
|
|
if (!table)
|
|
return;
|
|
|
|
for (i = 0, j = 1; i < ST_SIZE; i++) {
|
|
stat_size_entry_t *entry;
|
|
|
|
if (!(entry = table[i]))
|
|
continue;
|
|
|
|
con_out(string, (unsigned)j, (unsigned)entry->key, (unsigned)entry->value);
|
|
j++;
|
|
|
|
if (size)
|
|
*size += entry->key * entry->value;
|
|
}
|
|
}
|
|
|
|
void stat_info() {
|
|
if (OPTS_OPTION_BOOL(OPTION_MEMCHK) ||
|
|
OPTS_OPTION_BOOL(OPTION_STATISTICS)) {
|
|
uint64_t mem = 0;
|
|
|
|
con_out("Memory Statistics:\n\
|
|
Total vectors allocated: %llu\n\
|
|
Total string duplicates: %llu\n\
|
|
Total string duplicate memory: %f (MB)\n\
|
|
Total hashtables allocated: %llu\n\
|
|
Total unique vector sizes: %llu\n",
|
|
stat_used_vectors,
|
|
stat_used_strdups,
|
|
(float)(stat_mem_strdups) / 1048576.0f,
|
|
stat_used_hashtables,
|
|
stat_type_vectors
|
|
);
|
|
|
|
stat_dump_stats_table (
|
|
stat_size_vectors,
|
|
" %2u| # of %5u byte vectors: %u\n",
|
|
&mem
|
|
);
|
|
|
|
con_out (
|
|
" Total unique hashtable sizes: %llu\n",
|
|
stat_type_hashtables
|
|
);
|
|
|
|
stat_dump_stats_table (
|
|
stat_size_hashtables,
|
|
" %2u| # of %5u element hashtables: %u\n",
|
|
NULL
|
|
);
|
|
|
|
con_out (
|
|
" Total vector memory: %f (MB)\n\n",
|
|
(float)(mem) / 1048576.0f
|
|
);
|
|
}
|
|
|
|
if (stat_size_vectors)
|
|
stat_size_del(stat_size_vectors);
|
|
if (stat_size_hashtables)
|
|
stat_size_del(stat_size_hashtables);
|
|
|
|
if (OPTS_OPTION_BOOL(OPTION_DEBUG) ||
|
|
OPTS_OPTION_BOOL(OPTION_MEMCHK))
|
|
stat_dump_mem_info();
|
|
|
|
if (OPTS_OPTION_BOOL(OPTION_DEBUG))
|
|
stat_dump_mem_leaks();
|
|
}
|
|
#undef ST_SIZE
|