gmqcc/intrin.cpp
2018-11-14 08:43:22 -05:00

2048 lines
51 KiB
C++

#include <string.h>
#include "ast.h"
#include "fold.h"
#include "parser.h"
lex_ctx_t intrin::ctx() const {
return parser_ctx(m_parser);
}
ast_function *intrin::value(ast_value **out, const char *name, qc_type vtype) {
ast_value *value = nullptr;
ast_function *func = nullptr;
char buffer[1024];
char stype [1024];
util_snprintf(buffer, sizeof(buffer), "__builtin_%s", name);
util_snprintf(stype, sizeof(stype), "<%s>", type_name[vtype]);
value = new ast_value(ctx(), buffer, TYPE_FUNCTION);
value->m_intrinsic = true;
value->m_next = new ast_value(ctx(), stype, vtype);
func = ast_function::make(ctx(), buffer, value);
value->m_flags |= AST_FLAG_ERASEABLE;
*out = value;
return func;
}
void intrin::reg(ast_value *const value, ast_function *const func) {
m_parser->functions.push_back(func);
m_parser->globals.push_back(value);
}
ast_expression *intrin::nullfunc() {
ast_value *val = nullptr;
ast_function *func = value(&val, nullptr, TYPE_VOID);
reg(val, func);
return val;
}
ast_expression *intrin::isfinite_() {
/*
* float isfinite(float x) {
* return !(isnan(x) || isinf(x));
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_function *func = value(&val, "isfinite", TYPE_FLOAT);
ast_call *callisnan = ast_call::make(ctx(), func_self("isnan", "isfinite"));
ast_call *callisinf = ast_call::make(ctx(), func_self("isinf", "isfinite"));
ast_block *block = new ast_block(ctx());
/* float x; */
val->m_type_params.emplace_back(x);
/* <callisnan> = isnan(x); */
callisnan->m_params.push_back(x);
/* <callisinf> = isinf(x); */
callisinf->m_params.push_back(x);
/* return (!<callisnan> || <callisinf>); */
block->m_exprs.push_back(
new ast_return(
ctx(),
ast_unary::make(
ctx(),
INSTR_NOT_F,
new ast_binary(
ctx(),
INSTR_OR,
callisnan,
callisinf
)
)
)
);
func->m_blocks.emplace_back(block);
reg(val, func);
return val;;
}
ast_expression *intrin::isinf_() {
/*
* float isinf(float x) {
* return (x != 0.0) && (x + x == x);
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "isinf", TYPE_FLOAT);
body->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_AND,
new ast_binary(
ctx(),
INSTR_NE_F,
x,
m_fold->m_imm_float[0]
),
new ast_binary(
ctx(),
INSTR_EQ_F,
new ast_binary(
ctx(),
INSTR_ADD_F,
x,
x
),
x
)
)
)
);
val->m_type_params.emplace_back(x);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::isnan_() {
/*
* float isnan(float x) {
* float local;
* local = x;
*
* return (x != local);
* }
*/
ast_value *val = nullptr;
ast_value *arg1 = new ast_value(ctx(), "x",TYPE_FLOAT);
ast_value *local = new ast_value(ctx(), "local", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "isnan", TYPE_FLOAT);
body->m_locals.push_back(local);
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
local,
arg1
)
);
body->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_NE_F,
arg1,
local
)
)
);
val->m_type_params.emplace_back(arg1);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::isnormal_() {
/*
* float isnormal(float x) {
* return isfinite(x);
* }
*/
ast_value *val = nullptr;
ast_call *callisfinite = ast_call::make(ctx(), func_self("isfinite", "isnormal"));
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "isnormal", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
callisfinite->m_params.push_back(x);
/* return <callisfinite> */
body->m_exprs.push_back(
new ast_return(
ctx(),
callisfinite
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::signbit_() {
/*
* float signbit(float x) {
* return (x < 0);
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "signbit", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
/* return (x < 0); */
body->m_exprs.push_back(
new ast_return(
ctx(),
new ast_ternary(
ctx(),
new ast_binary(
ctx(),
INSTR_LT,
x,
m_fold->m_imm_float[0]
),
m_fold->m_imm_float[1],
m_fold->m_imm_float[0]
)
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::acosh_() {
/*
* float acosh(float x) {
* return log(x + sqrt((x * x) - 1));
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_call *calllog = ast_call::make(ctx(), func_self("log", "acosh"));
ast_call *callsqrt = ast_call::make(ctx(), func_self("sqrt", "acosh"));
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "acosh", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
/* <callsqrt> = sqrt((x * x) - 1); */
callsqrt->m_params.push_back(
new ast_binary(
ctx(),
INSTR_SUB_F,
new ast_binary(
ctx(),
INSTR_MUL_F,
x,
x
),
m_fold->m_imm_float[1]
)
);
/* <calllog> = log(x + <callsqrt>); */
calllog->m_params.push_back(
new ast_binary(
ctx(),
INSTR_ADD_F,
x,
callsqrt
)
);
/* return <calllog>; */
body->m_exprs.push_back(
new ast_return(
ctx(),
calllog
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::asinh_() {
/*
* float asinh(float x) {
* return log(x + sqrt((x * x) + 1));
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_call *calllog = ast_call::make(ctx(), func_self("log", "asinh"));
ast_call *callsqrt = ast_call::make(ctx(), func_self("sqrt", "asinh"));
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "asinh", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
/* <callsqrt> = sqrt((x * x) + 1); */
callsqrt->m_params.push_back(
new ast_binary(
ctx(),
INSTR_ADD_F,
new ast_binary(
ctx(),
INSTR_MUL_F,
x,
x
),
m_fold->m_imm_float[1]
)
);
/* <calllog> = log(x + <callsqrt>); */
calllog->m_params.push_back(
new ast_binary(
ctx(),
INSTR_ADD_F,
x,
callsqrt
)
);
/* return <calllog>; */
body->m_exprs.push_back(
new ast_return(
ctx(),
calllog
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::atanh_() {
/*
* float atanh(float x) {
* return 0.5 * log((1 + x) / (1 - x))
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_call *calllog = ast_call::make(ctx(), func_self("log", "atanh"));
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "atanh", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
/* <callog> = log((1 + x) / (1 - x)); */
calllog->m_params.push_back(
new ast_binary(
ctx(),
INSTR_DIV_F,
new ast_binary(
ctx(),
INSTR_ADD_F,
m_fold->m_imm_float[1],
x
),
new ast_binary(
ctx(),
INSTR_SUB_F,
m_fold->m_imm_float[1],
x
)
)
);
/* return 0.5 * <calllog>; */
body->m_exprs.push_back(
new ast_binary(
ctx(),
INSTR_MUL_F,
m_fold->constgen_float(0.5, false),
calllog
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::exp_() {
/*
* float exp(float x) {
* float sum = 1.0;
* float acc = 1.0;
* float i;
* for (i = 1; i < 200; ++i)
* sum += (acc *= x / i);
*
* return sum;
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_value *sum = new ast_value(ctx(), "sum", TYPE_FLOAT);
ast_value *acc = new ast_value(ctx(), "acc", TYPE_FLOAT);
ast_value *i = new ast_value(ctx(), "i", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "exp", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
body->m_locals.push_back(sum);
body->m_locals.push_back(acc);
body->m_locals.push_back(i);
/* sum = 1.0; */
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
sum,
m_fold->m_imm_float[1]
)
);
/* acc = 1.0; */
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
acc,
m_fold->m_imm_float[1]
)
);
/*
* for (i = 1; i < 200; ++i)
* sum += (acc *= x / i);
*/
body->m_exprs.push_back(
new ast_loop(
ctx(),
/* i = 1; */
new ast_store(
ctx(),
INSTR_STORE_F,
i,
m_fold->m_imm_float[1]
),
/* i < 200; */
new ast_binary(
ctx(),
INSTR_LT,
i,
m_fold->constgen_float(200.0f, false)
),
false,
nullptr,
false,
/* ++i; */
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_ADD_F,
i,
m_fold->m_imm_float[1]
),
/* sum += (acc *= (x / i)) */
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_ADD_F,
sum,
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_MUL_F,
acc,
new ast_binary(
ctx(),
INSTR_DIV_F,
x,
i
)
)
)
)
);
/* return sum; */
body->m_exprs.push_back(
new ast_return(
ctx(),
sum
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::exp2_() {
/*
* float exp2(float x) {
* return pow(2, x);
* }
*/
ast_value *val = nullptr;
ast_call *callpow = ast_call::make(ctx(), func_self("pow", "exp2"));
ast_value *arg1 = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "exp2", TYPE_FLOAT);
val->m_type_params.emplace_back(arg1);
callpow->m_params.push_back(m_fold->m_imm_float[3]);
callpow->m_params.push_back(arg1);
/* return <callpow> */
body->m_exprs.push_back(
new ast_return(
ctx(),
callpow
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::expm1_() {
/*
* float expm1(float x) {
* return exp(x) - 1;
* }
*/
ast_value *val = nullptr;
ast_call *callexp = ast_call::make(ctx(), func_self("exp", "expm1"));
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "expm1", TYPE_FLOAT);
val->m_type_params.emplace_back(x);
/* <callexp> = exp(x); */
callexp->m_params.push_back(x);
/* return <callexp> - 1; */
body->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_SUB_F,
callexp,
m_fold->m_imm_float[1]
)
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::pow_() {
#define QC_POW_EPSILON 0.00001f
/*
*
* float pow(float base, float exp) {
* float result;
* float low;
* float high;
* float mid;
* float square;
* float accumulate;
*
* if (exp == 0.0)
* return 1;
* if (exp == 1.0)
* return base;
* if (exp < 0)
* return 1.0 / pow(base, -exp);
* if (exp >= 1) {
* result = pow(base, exp / 2);
* return result * result;
* }
*
* low = 0.0f;
* high = 1.0f;
* square = sqrt(base);
* accumulate = square;
* mid = high / 2.0f
*
* while (fabs(mid - exp) > QC_POW_EPSILON) {
* square = sqrt(square);
* if (mid < exp) {
* low = mid;
* accumulate *= square;
* } else {
* high = mid;
* accumulate *= (1.0f / square);
* }
* mid = (low + high) / 2;
* }
* return accumulate;
* }
*/
ast_value *val = nullptr;
ast_function *func = value(&val, "pow", TYPE_FLOAT);
/* prepare some calls for later */
ast_call *callpow1 = ast_call::make(ctx(), val); /* for pow(base, -exp) */
ast_call *callpow2 = ast_call::make(ctx(), val); /* for pow(vase, exp / 2) */
ast_call *callsqrt1 = ast_call::make(ctx(), func_self("sqrt", "pow")); /* for sqrt(base) */
ast_call *callsqrt2 = ast_call::make(ctx(), func_self("sqrt", "pow")); /* for sqrt(square) */
ast_call *callfabs = ast_call::make(ctx(), func_self("fabs", "pow")); /* for fabs(mid - exp) */
/* prepare some blocks for later */
ast_block *expgt1 = new ast_block(ctx());
ast_block *midltexp = new ast_block(ctx());
ast_block *midltexpelse = new ast_block(ctx());
ast_block *whileblock = new ast_block(ctx());
/* float pow(float base, float exp) */
ast_value *base = new ast_value(ctx(), "base", TYPE_FLOAT);
ast_value *exp = new ast_value(ctx(), "exp", TYPE_FLOAT);
/* { */
ast_block *body = new ast_block(ctx());
/*
* float result;
* float low;
* float high;
* float square;
* float accumulate;
* float mid;
*/
ast_value *result = new ast_value(ctx(), "result", TYPE_FLOAT);
ast_value *low = new ast_value(ctx(), "low", TYPE_FLOAT);
ast_value *high = new ast_value(ctx(), "high", TYPE_FLOAT);
ast_value *square = new ast_value(ctx(), "square", TYPE_FLOAT);
ast_value *accumulate = new ast_value(ctx(), "accumulate", TYPE_FLOAT);
ast_value *mid = new ast_value(ctx(), "mid", TYPE_FLOAT);
body->m_locals.push_back(result);
body->m_locals.push_back(low);
body->m_locals.push_back(high);
body->m_locals.push_back(square);
body->m_locals.push_back(accumulate);
body->m_locals.push_back(mid);
val->m_type_params.emplace_back(base);
val->m_type_params.emplace_back(exp);
/*
* if (exp == 0.0)
* return 1;
*/
body->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_EQ_F,
exp,
m_fold->m_imm_float[0]
),
new ast_return(
ctx(),
m_fold->m_imm_float[1]
),
nullptr
)
);
/*
* if (exp == 1.0)
* return base;
*/
body->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_EQ_F,
exp,
m_fold->m_imm_float[1]
),
new ast_return(
ctx(),
base
),
nullptr
)
);
/* <callpow1> = pow(base, -exp) */
callpow1->m_params.push_back(base);
callpow1->m_params.push_back(
ast_unary::make(
ctx(),
VINSTR_NEG_F,
exp
)
);
/*
* if (exp < 0)
* return 1.0 / <callpow1>;
*/
body->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_LT,
exp,
m_fold->m_imm_float[0]
),
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_DIV_F,
m_fold->m_imm_float[1],
callpow1
)
),
nullptr
)
);
/* <callpow2> = pow(base, exp / 2) */
callpow2->m_params.push_back(base);
callpow2->m_params.push_back(
new ast_binary(
ctx(),
INSTR_DIV_F,
exp,
m_fold->m_imm_float[3] /* 2.0f */
)
);
/*
* <expgt1> = {
* result = <callpow2>;
* return result * result;
* }
*/
expgt1->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
result,
callpow2
)
);
expgt1->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_MUL_F,
result,
result
)
)
);
/*
* if (exp >= 1) {
* <expgt1>
* }
*/
body->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_GE,
exp,
m_fold->m_imm_float[1]
),
expgt1,
nullptr
)
);
/*
* <callsqrt1> = sqrt(base)
*/
callsqrt1->m_params.push_back(base);
/*
* low = 0.0f;
* high = 1.0f;
* square = sqrt(base);
* accumulate = square;
* mid = high / 2.0f;
*/
body->m_exprs.push_back(
new ast_store(ctx(),
INSTR_STORE_F,
low,
m_fold->m_imm_float[0]
)
);
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
high,
m_fold->m_imm_float[1]
)
);
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
square,
callsqrt1
)
);
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
accumulate,
square
)
);
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
mid,
new ast_binary(
ctx(),
INSTR_DIV_F,
high,
m_fold->m_imm_float[3] /* 2.0f */
)
)
);
/*
* <midltexp> = {
* low = mid;
* accumulate *= square;
* }
*/
midltexp->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
low,
mid
)
);
midltexp->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_MUL_F,
accumulate,
square
)
);
/*
* <midltexpelse> = {
* high = mid;
* accumulate *= (1.0 / square);
* }
*/
midltexpelse->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
high,
mid
)
);
midltexpelse->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_MUL_F,
accumulate,
new ast_binary(
ctx(),
INSTR_DIV_F,
m_fold->m_imm_float[1],
square
)
)
);
/*
* <callsqrt2> = sqrt(square)
*/
callsqrt2->m_params.push_back(square);
/*
* <whileblock> = {
* square = <callsqrt2>;
* if (mid < exp)
* <midltexp>;
* else
* <midltexpelse>;
*
* mid = (low + high) / 2;
* }
*/
whileblock->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
square,
callsqrt2
)
);
whileblock->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_LT,
mid,
exp
),
midltexp,
midltexpelse
)
);
whileblock->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
mid,
new ast_binary(
ctx(),
INSTR_DIV_F,
new ast_binary(
ctx(),
INSTR_ADD_F,
low,
high
),
m_fold->m_imm_float[3] /* 2.0f */
)
)
);
/*
* <callabs> = fabs(mid - exp)
*/
callfabs->m_params.push_back(
new ast_binary(
ctx(),
INSTR_SUB_F,
mid,
exp
)
);
/*
* while (<callfabs> > epsilon)
* <whileblock>
*/
body->m_exprs.push_back(
new ast_loop(
ctx(),
/* init */
nullptr,
/* pre condition */
new ast_binary(
ctx(),
INSTR_GT,
callfabs,
m_fold->constgen_float(QC_POW_EPSILON, false)
),
/* pre not */
false,
/* post condition */
nullptr,
/* post not */
false,
/* increment expression */
nullptr,
/* code block */
whileblock
)
);
/* return accumulate */
body->m_exprs.push_back(
new ast_return(
ctx(),
accumulate
)
);
/* } */
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::mod_() {
/*
* float mod(float a, float b) {
* float div = a / b;
* float sign = (div < 0.0f) ? -1 : 1;
* return a - b * sign * floor(sign * div);
* }
*/
ast_value *val = nullptr;
ast_call *call = ast_call::make(ctx(), func_self("floor", "mod"));
ast_value *a = new ast_value(ctx(), "a", TYPE_FLOAT);
ast_value *b = new ast_value(ctx(), "b", TYPE_FLOAT);
ast_value *div = new ast_value(ctx(), "div", TYPE_FLOAT);
ast_value *sign = new ast_value(ctx(), "sign", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "mod", TYPE_FLOAT);
val->m_type_params.emplace_back(a);
val->m_type_params.emplace_back(b);
body->m_locals.push_back(div);
body->m_locals.push_back(sign);
/* div = a / b; */
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
div,
new ast_binary(
ctx(),
INSTR_DIV_F,
a,
b
)
)
);
/* sign = (div < 0.0f) ? -1 : 1; */
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
sign,
new ast_ternary(
ctx(),
new ast_binary(
ctx(),
INSTR_LT,
div,
m_fold->m_imm_float[0]
),
m_fold->m_imm_float[2],
m_fold->m_imm_float[1]
)
)
);
/* floor(sign * div) */
call->m_params.push_back(
new ast_binary(
ctx(),
INSTR_MUL_F,
sign,
div
)
);
/* return a - b * sign * <call> */
body->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_SUB_F,
a,
new ast_binary(
ctx(),
INSTR_MUL_F,
b,
new ast_binary(
ctx(),
INSTR_MUL_F,
sign,
call
)
)
)
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::fabs_() {
/*
* float fabs(float x) {
* return x < 0 ? -x : x;
* }
*/
ast_value *val = nullptr;
ast_value *arg1 = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "fabs", TYPE_FLOAT);
body->m_exprs.push_back(
new ast_return(
ctx(),
new ast_ternary(
ctx(),
new ast_binary(
ctx(),
INSTR_LE,
arg1,
m_fold->m_imm_float[0]
),
ast_unary::make(
ctx(),
VINSTR_NEG_F,
arg1
),
arg1
)
)
);
val->m_type_params.emplace_back(arg1);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::epsilon_() {
/*
* float epsilon(void) {
* float eps = 1.0f;
* do { eps /= 2.0f; } while ((1.0f + (eps / 2.0f)) != 1.0f);
* return eps;
* }
*/
ast_value *val = nullptr;
ast_value *eps = new ast_value(ctx(), "eps", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, "epsilon", TYPE_FLOAT);
body->m_locals.push_back(eps);
/* eps = 1.0f; */
body->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
eps,
m_fold->m_imm_float[0]
)
);
body->m_exprs.push_back(
new ast_loop(
ctx(),
nullptr,
nullptr,
false,
new ast_binary(
ctx(),
INSTR_NE_F,
new ast_binary(
ctx(),
INSTR_ADD_F,
m_fold->m_imm_float[1],
new ast_binary(
ctx(),
INSTR_MUL_F,
eps,
m_fold->m_imm_float[3] /* 2.0f */
)
),
m_fold->m_imm_float[1]
),
false,
nullptr,
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_DIV_F,
eps,
m_fold->m_imm_float[3] /* 2.0f */
)
)
);
/* return eps; */
body->m_exprs.push_back(
new ast_return(
ctx(),
eps
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::nan_() {
/*
* float nan(void) {
* float x = 0.0f;
* return x / x;
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_function *func = value(&val, "nan", TYPE_FLOAT);
ast_block *block = new ast_block(ctx());
block->m_locals.push_back(x);
block->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
x,
m_fold->m_imm_float[0]
)
);
block->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_DIV_F,
x,
x
)
)
);
func->m_blocks.emplace_back(block);
reg(val, func);
return val;
}
ast_expression *intrin::inf_() {
/*
* float inf(void) {
* float x = 1.0f;
* float y = 0.0f;
* return x / y;
* }
*/
ast_value *val = nullptr;
ast_value *x = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_value *y = new ast_value(ctx(), "y", TYPE_FLOAT);
ast_function *func = value(&val, "inf", TYPE_FLOAT);
ast_block *block = new ast_block(ctx());
size_t i;
block->m_locals.push_back(x);
block->m_locals.push_back(y);
/* to keep code size down */
for (i = 0; i <= 1; i++) {
block->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((i == 0) ? x : y),
m_fold->m_imm_float[i]
)
);
}
block->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_DIV_F,
x,
y
)
)
);
func->m_blocks.emplace_back(block);
reg(val, func);
return val;
}
ast_expression *intrin::ln_() {
/*
* float log(float power, float base) {
* float whole;
* float nth
* float sign = 1.0f;
* float eps = epsilon();
*
* if (power <= 1.0f || bbase <= 1.0) {
* if (power <= 0.0f || base <= 0.0f)
* return nan();
*
* if (power < 1.0f) {
* power = 1.0f / power;
* sign *= -1.0f;
* }
*
* if (base < 1.0f) {
* sign *= -1.0f;
* base = 1.0f / base;
* }
* }
*
* float A_i = 1;
* float B_i = 0;
* float A_iminus1 = 0;
* float B_iminus1 = 1;
*
* for (;;) {
* whole = power;
* nth = 0.0f;
*
* while (whole >= base) {
* float base2 = base;
* float n2 = 1.0f;
* float newbase2 = base2 * base2;
*
* while (whole >= newbase2) {
* base2 = newbase2;
* n2 *= 2;
* newbase2 *= newbase2;
* }
*
* whole /= base2;
* nth += n2;
* }
*
* float b_iplus1 = n;
* float A_iplus1 = b_iplus1 * A_i + A_iminus1;
* float B_iplus1 = b_iplus1 * B_i + B_iminus1;
*
* A_iminus1 = A_i;
* B_iminus1 = B_i;
* A_i = A_iplus1;
* B_i = B_iplus1;
*
* if (whole <= 1.0f + eps)
* break;
*
* power = base;
* bower = whole;
* }
* return sign * A_i / B_i;
* }
*/
ast_value *val = nullptr;
ast_value *power = new ast_value(ctx(), "power", TYPE_FLOAT);
ast_value *base = new ast_value(ctx(), "base",TYPE_FLOAT);
ast_value *whole= new ast_value(ctx(), "whole", TYPE_FLOAT);
ast_value *nth = new ast_value(ctx(), "nth", TYPE_FLOAT);
ast_value *sign = new ast_value(ctx(), "sign", TYPE_FLOAT);
ast_value *A_i = new ast_value(ctx(), "A_i", TYPE_FLOAT);
ast_value *B_i = new ast_value(ctx(), "B_i", TYPE_FLOAT);
ast_value *A_iminus1 = new ast_value(ctx(), "A_iminus1", TYPE_FLOAT);
ast_value *B_iminus1 = new ast_value(ctx(), "B_iminus1", TYPE_FLOAT);
ast_value *b_iplus1 = new ast_value(ctx(), "b_iplus1", TYPE_FLOAT);
ast_value *A_iplus1 = new ast_value(ctx(), "A_iplus1", TYPE_FLOAT);
ast_value *B_iplus1 = new ast_value(ctx(), "B_iplus1", TYPE_FLOAT);
ast_value *eps = new ast_value(ctx(), "eps", TYPE_FLOAT);
ast_value *base2 = new ast_value(ctx(), "base2", TYPE_FLOAT);
ast_value *n2 = new ast_value(ctx(), "n2",TYPE_FLOAT);
ast_value *newbase2 = new ast_value(ctx(), "newbase2", TYPE_FLOAT);
ast_block *block = new ast_block(ctx());
ast_block *plt1orblt1 = new ast_block(ctx()); // (power <= 1.0f || base <= 1.0f)
ast_block *plt1 = new ast_block(ctx()); // (power < 1.0f)
ast_block *blt1 = new ast_block(ctx()); // (base< 1.0f)
ast_block *forloop = new ast_block(ctx()); // for(;;)
ast_block *whileloop = new ast_block(ctx()); // while (whole >= base)
ast_block *nestwhile= new ast_block(ctx()); // while (whole >= newbase2)
ast_function *func = value(&val, "ln", TYPE_FLOAT);
size_t i;
val->m_type_params.emplace_back(power);
val->m_type_params.emplace_back(base);
block->m_locals.push_back(whole);
block->m_locals.push_back(nth);
block->m_locals.push_back(sign);
block->m_locals.push_back(eps);
block->m_locals.push_back(A_i);
block->m_locals.push_back(B_i);
block->m_locals.push_back(A_iminus1);
block->m_locals.push_back(B_iminus1);
/* sign = 1.0f; */
block->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
sign,
m_fold->m_imm_float[1]
)
);
/* eps = __builtin_epsilon(); */
block->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
eps,
ast_call::make(
ctx(),
func_self("__builtin_epsilon", "ln")
)
)
);
/*
* A_i = 1;
* B_i = 0;
* A_iminus1 = 0;
* B_iminus1 = 1;
*/
for (i = 0; i <= 1; i++) {
int j;
for (j = 1; j >= 0; j--) {
block->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((j) ? ((i) ? B_iminus1 : A_i)
: ((i) ? A_iminus1 : B_i)),
m_fold->m_imm_float[j]
)
);
}
}
/*
* <plt1> = {
* power = 1.0f / power;
* sign *= -1.0f;
* }
* <blt1> = {
* base = 1.0f / base;
* sign *= -1.0f;
* }
*/
for (i = 0; i <= 1; i++) {
((i) ? blt1 : plt1)->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((i) ? base : power),
new ast_binary(
ctx(),
INSTR_DIV_F,
m_fold->m_imm_float[1],
((i) ? base : power)
)
)
);
plt1->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_MUL_F,
sign,
m_fold->m_imm_float[2]
)
);
}
/*
* <plt1orblt1> = {
* if (power <= 0.0 || base <= 0.0f)
* return __builtin_nan();
* if (power < 1.0f)
* <plt1>
* if (base < 1.0f)
* <blt1>
* }
*/
plt1orblt1->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_OR,
new ast_binary(
ctx(),
INSTR_LE,
power,
m_fold->m_imm_float[0]
),
new ast_binary(
ctx(),
INSTR_LE,
base,
m_fold->m_imm_float[0]
)
),
new ast_return(
ctx(),
ast_call::make(
ctx(),
func_self("__builtin_nan", "ln")
)
),
nullptr
)
);
for (i = 0; i <= 1; i++) {
plt1orblt1->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_LT,
((i) ? base : power),
m_fold->m_imm_float[1]
),
((i) ? blt1 : plt1),
nullptr
)
);
}
block->m_exprs.push_back(plt1orblt1);
/* whole = power; */
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
whole,
power
)
);
/* nth = 0.0f; */
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
nth,
m_fold->m_imm_float[0]
)
);
/* base2 = base; */
whileloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
base2,
base
)
);
/* n2 = 1.0f; */
whileloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
n2,
m_fold->m_imm_float[1]
)
);
/* newbase2 = base2 * base2; */
whileloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
newbase2,
new ast_binary(
ctx(),
INSTR_MUL_F,
base2,
base2
)
)
);
/* while loop locals */
whileloop->m_locals.push_back(base2);
whileloop->m_locals.push_back(n2);
whileloop->m_locals.push_back(newbase2);
/* base2 = newbase2; */
nestwhile->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
base2,
newbase2
)
);
/* n2 *= 2; */
nestwhile->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_MUL_F,
n2,
m_fold->m_imm_float[3] /* 2.0f */
)
);
/* newbase2 *= newbase2; */
nestwhile->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_MUL_F,
newbase2,
newbase2
)
);
/* while (whole >= newbase2) */
whileloop->m_exprs.push_back(
new ast_loop(
ctx(),
nullptr,
new ast_binary(
ctx(),
INSTR_GE,
whole,
newbase2
),
false,
nullptr,
false,
nullptr,
nestwhile
)
);
/* whole /= base2; */
whileloop->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_DIV_F,
whole,
base2
)
);
/* nth += n2; */
whileloop->m_exprs.push_back(
new ast_binstore(
ctx(),
INSTR_STORE_F,
INSTR_ADD_F,
nth,
n2
)
);
/* while (whole >= base) */
forloop->m_exprs.push_back(
new ast_loop(
ctx(),
nullptr,
new ast_binary(
ctx(),
INSTR_GE,
whole,
base
),
false,
nullptr,
false,
nullptr,
whileloop
)
);
forloop->m_locals.push_back(b_iplus1);
forloop->m_locals.push_back(A_iplus1);
forloop->m_locals.push_back(B_iplus1);
/* b_iplus1 = nth; */
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
b_iplus1,
nth
)
);
/*
* A_iplus1 = b_iplus1 * A_i + A_iminus1;
* B_iplus1 = b_iplus1 * B_i + B_iminus1;
*/
for (i = 0; i <= 1; i++) {
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((i) ? B_iplus1 : A_iplus1),
new ast_binary(
ctx(),
INSTR_ADD_F,
new ast_binary(
ctx(),
INSTR_MUL_F,
b_iplus1,
((i) ? B_i : A_i)
),
((i) ? B_iminus1 : A_iminus1)
)
)
);
}
/*
* A_iminus1 = A_i;
* B_iminus1 = B_i;
*/
for (i = 0; i <= 1; i++) {
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((i) ? B_iminus1 : A_iminus1),
((i) ? B_i : A_i)
)
);
}
/*
* A_i = A_iplus1;
* B_i = B_iplus1;
*/
for (i = 0; i <= 1; i++) {
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((i) ? B_i : A_i),
((i) ? B_iplus1 : A_iplus1)
)
);
}
/*
* if (whole <= 1.0f + eps)
* break;
*/
forloop->m_exprs.push_back(
new ast_ifthen(
ctx(),
new ast_binary(
ctx(),
INSTR_LE,
whole,
new ast_binary(
ctx(),
INSTR_ADD_F,
m_fold->m_imm_float[1],
eps
)
),
new ast_breakcont(
ctx(),
false,
0
),
nullptr
)
);
/*
* power = base;
* base = whole;
*/
for (i = 0; i <= 1; i++) {
forloop->m_exprs.push_back(
new ast_store(
ctx(),
INSTR_STORE_F,
((i) ? base : power),
((i) ? whole : base)
)
);
}
/* add the for loop block */
block->m_exprs.push_back(
new ast_loop(
ctx(),
nullptr,
/* for(; 1; ) ?? (can this be nullptr too?) */
m_fold->m_imm_float[1],
false,
nullptr,
false,
nullptr,
forloop
)
);
/* return sign * A_i / B_il */
block->m_exprs.push_back(
new ast_return(
ctx(),
new ast_binary(
ctx(),
INSTR_MUL_F,
sign,
new ast_binary(
ctx(),
INSTR_DIV_F,
A_i,
B_i
)
)
)
);
func->m_blocks.emplace_back(block);
reg(val, func);
return val;
}
ast_expression *intrin::log_variant(const char *name, float base) {
ast_value *val = nullptr;
ast_call *callln = ast_call::make(ctx(), func_self("__builtin_ln", name));
ast_value *arg1 = new ast_value(ctx(), "x", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, name, TYPE_FLOAT);
val->m_type_params.emplace_back(arg1);
callln->m_params.push_back(arg1);
callln->m_params.push_back(m_fold->constgen_float(base, false));
body->m_exprs.push_back(
new ast_return(
ctx(),
callln
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::log_() {
return log_variant("log", 2.7182818284590452354);
}
ast_expression *intrin::log10_() {
return log_variant("log10", 10);
}
ast_expression *intrin::log2_() {
return log_variant("log2", 2);
}
ast_expression *intrin::logb_() {
/* FLT_RADIX == 2 for now */
return log_variant("log2", 2);
}
ast_expression *intrin::shift_variant(const char *name, size_t instr) {
/*
* float [shift] (float a, float b) {
* return floor(a [instr] pow(2, b));
*/
ast_value *val = nullptr;
ast_call *callpow = ast_call::make(ctx(), func_self("pow", name));
ast_call *callfloor = ast_call::make(ctx(), func_self("floor", name));
ast_value *a = new ast_value(ctx(), "a", TYPE_FLOAT);
ast_value *b = new ast_value(ctx(), "b", TYPE_FLOAT);
ast_block *body = new ast_block(ctx());
ast_function *func = value(&val, name, TYPE_FLOAT);
val->m_type_params.emplace_back(a);
val->m_type_params.emplace_back(b);
/* <callpow> = pow(2, b) */
callpow->m_params.push_back(m_fold->m_imm_float[3]);
callpow->m_params.push_back(b);
/* <callfloor> = floor(a [instr] <callpow>) */
callfloor->m_params.push_back(
new ast_binary(
ctx(),
instr,
a,
callpow
)
);
/* return <callfloor> */
body->m_exprs.push_back(
new ast_return(
ctx(),
callfloor
)
);
func->m_blocks.emplace_back(body);
reg(val, func);
return val;
}
ast_expression *intrin::lshift() {
return shift_variant("lshift", INSTR_MUL_F);
}
ast_expression *intrin::rshift() {
return shift_variant("rshift", INSTR_DIV_F);
}
void intrin::error(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vcompile_error(ctx(), fmt, ap);
va_end(ap);
}
/* exposed */
ast_expression *intrin::debug_typestring() {
return (ast_expression*)0x1;
}
intrin::intrin(parser_t *parser)
: m_parser(parser)
, m_fold(&parser->m_fold)
{
static const intrin_func_t intrinsics[] = {
{&intrin::isfinite_, "__builtin_isfinite", "isfinite", 1},
{&intrin::isinf_, "__builtin_isinf", "isinf", 1},
{&intrin::isnan_, "__builtin_isnan", "isnan", 1},
{&intrin::isnormal_, "__builtin_isnormal", "isnormal", 1},
{&intrin::signbit_, "__builtin_signbit", "signbit", 1},
{&intrin::acosh_, "__builtin_acosh", "acosh", 1},
{&intrin::asinh_, "__builtin_asinh", "asinh", 1},
{&intrin::atanh_, "__builtin_atanh", "atanh", 1},
{&intrin::exp_, "__builtin_exp", "exp", 1},
{&intrin::exp2_, "__builtin_exp2", "exp2", 1},
{&intrin::expm1_, "__builtin_expm1", "expm1", 1},
{&intrin::mod_, "__builtin_mod", "mod", 2},
{&intrin::pow_, "__builtin_pow", "pow", 2},
{&intrin::fabs_, "__builtin_fabs", "fabs", 1},
{&intrin::log_, "__builtin_log", "log", 1},
{&intrin::log10_, "__builtin_log10", "log10", 1},
{&intrin::log2_, "__builtin_log2", "log2", 1},
{&intrin::logb_, "__builtin_logb", "logb", 1},
{&intrin::lshift, "__builtin_lshift", "", 2},
{&intrin::rshift, "__builtin_rshift", "", 2},
{&intrin::epsilon_, "__builtin_epsilon", "", 0},
{&intrin::nan_, "__builtin_nan", "", 0},
{&intrin::inf_, "__builtin_inf", "", 0},
{&intrin::ln_, "__builtin_ln", "", 2},
{&intrin::debug_typestring, "__builtin_debug_typestring", "", 0},
{&intrin::nullfunc, "#nullfunc", "", 0}
};
for (auto &it : intrinsics) {
m_intrinsics.push_back(it);
m_generated.push_back(nullptr);
}
}
ast_expression *intrin::do_fold(ast_value *val, ast_expression **exprs) {
if (!val || !val->m_name.length())
return nullptr;
static constexpr size_t kPrefixLength = 10; // "__builtin_"
for (auto &it : m_intrinsics) {
if (val->m_name == it.name)
return (vec_size(exprs) != it.args)
? nullptr
: m_fold->intrinsic(val->m_name.c_str() + kPrefixLength, it.args, exprs);
}
return nullptr;
}
ast_expression *intrin::func_try(size_t offset, const char *compare) {
for (auto &it : m_intrinsics) {
const size_t index = &it - &m_intrinsics[0];
if (strcmp(*(char **)((char *)&it + offset), compare))
continue;
if (m_generated[index])
return m_generated[index];
return m_generated[index] = (this->*it.intrin_func_t::function)();
}
return nullptr;
}
ast_expression *intrin::func_self(const char *name, const char *from) {
ast_expression *find;
/* try current first */
if ((find = parser_find_global(m_parser, name)) && ((ast_value*)find)->m_vtype == TYPE_FUNCTION)
for (auto &it : m_parser->functions)
if (reinterpret_cast<ast_value*>(find)->m_name.length() && it->m_name == reinterpret_cast<ast_value*>(find)->m_name && it->m_builtin < 0)
return find;
/* try name second */
if ((find = func_try(offsetof(intrin_func_t, name), name)))
return find;
/* try alias third */
if ((find = func_try(offsetof(intrin_func_t, alias), name)))
return find;
if (from) {
error("need function `%s', compiler depends on it for `__builtin_%s'", name, from);
return func_self("#nullfunc", nullptr);
}
return nullptr;
}
ast_expression *intrin::func(const char *name) {
return func_self(name, nullptr);
}