gmqcc/ir.c

2921 lines
80 KiB
C

/*
* Copyright (C) 2012
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include "gmqcc.h"
#include "ir.h"
/***********************************************************************
* Type sizes used at multiple points in the IR codegen
*/
const char *type_name[TYPE_COUNT] = {
"void",
"string",
"float",
"vector",
"entity",
"field",
"function",
"pointer",
#if 0
"integer",
#endif
"variant"
};
size_t type_sizeof[TYPE_COUNT] = {
1, /* TYPE_VOID */
1, /* TYPE_STRING */
1, /* TYPE_FLOAT */
3, /* TYPE_VECTOR */
1, /* TYPE_ENTITY */
1, /* TYPE_FIELD */
1, /* TYPE_FUNCTION */
1, /* TYPE_POINTER */
#if 0
1, /* TYPE_INTEGER */
#endif
3, /* TYPE_VARIANT */
};
uint16_t type_store_instr[TYPE_COUNT] = {
INSTR_STORE_F, /* should use I when having integer support */
INSTR_STORE_S,
INSTR_STORE_F,
INSTR_STORE_V,
INSTR_STORE_ENT,
INSTR_STORE_FLD,
INSTR_STORE_FNC,
INSTR_STORE_ENT, /* should use I */
#if 0
INSTR_STORE_I, /* integer type */
#endif
INSTR_STORE_V, /* variant, should never be accessed */
};
uint16_t type_storep_instr[TYPE_COUNT] = {
INSTR_STOREP_F, /* should use I when having integer support */
INSTR_STOREP_S,
INSTR_STOREP_F,
INSTR_STOREP_V,
INSTR_STOREP_ENT,
INSTR_STOREP_FLD,
INSTR_STOREP_FNC,
INSTR_STOREP_ENT, /* should use I */
#if 0
INSTR_STOREP_ENT, /* integer type */
#endif
INSTR_STOREP_V, /* variant, should never be accessed */
};
MEM_VEC_FUNCTIONS(ir_value_vector, ir_value*, v)
/***********************************************************************
*IR Builder
*/
ir_builder* ir_builder_new(const char *modulename)
{
ir_builder* self;
self = (ir_builder*)mem_a(sizeof(*self));
if (!self)
return NULL;
MEM_VECTOR_INIT(self, functions);
MEM_VECTOR_INIT(self, globals);
MEM_VECTOR_INIT(self, fields);
self->name = NULL;
if (!ir_builder_set_name(self, modulename)) {
mem_d(self);
return NULL;
}
/* globals which always exist */
/* for now we give it a vector size */
ir_builder_create_global(self, "OFS_RETURN", TYPE_VARIANT);
return self;
}
MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals)
MEM_VEC_FUNCTIONS(ir_builder, ir_value*, fields)
MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions)
void ir_builder_delete(ir_builder* self)
{
size_t i;
mem_d((void*)self->name);
for (i = 0; i != self->functions_count; ++i) {
ir_function_delete(self->functions[i]);
}
MEM_VECTOR_CLEAR(self, functions);
for (i = 0; i != self->globals_count; ++i) {
ir_value_delete(self->globals[i]);
}
MEM_VECTOR_CLEAR(self, fields);
for (i = 0; i != self->fields_count; ++i) {
ir_value_delete(self->fields[i]);
}
MEM_VECTOR_CLEAR(self, fields);
mem_d(self);
}
bool ir_builder_set_name(ir_builder *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
return !!self->name;
}
ir_function* ir_builder_get_function(ir_builder *self, const char *name)
{
size_t i;
for (i = 0; i < self->functions_count; ++i) {
if (!strcmp(name, self->functions[i]->name))
return self->functions[i];
}
return NULL;
}
ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
{
ir_function *fn = ir_builder_get_function(self, name);
if (fn) {
return NULL;
}
fn = ir_function_new(self, outtype);
if (!ir_function_set_name(fn, name) ||
!ir_builder_functions_add(self, fn) )
{
ir_function_delete(fn);
return NULL;
}
fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
if (!fn->value) {
ir_function_delete(fn);
return NULL;
}
fn->value->isconst = true;
fn->value->outtype = outtype;
fn->value->constval.vfunc = fn;
fn->value->context = fn->context;
return fn;
}
ir_value* ir_builder_get_global(ir_builder *self, const char *name)
{
size_t i;
for (i = 0; i < self->globals_count; ++i) {
if (!strcmp(self->globals[i]->name, name))
return self->globals[i];
}
return NULL;
}
ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
{
ir_value *ve;
if (name && name[0] != '#')
{
ve = ir_builder_get_global(self, name);
if (ve) {
return NULL;
}
}
ve = ir_value_var(name, store_global, vtype);
if (!ir_builder_globals_add(self, ve)) {
ir_value_delete(ve);
return NULL;
}
return ve;
}
ir_value* ir_builder_get_field(ir_builder *self, const char *name)
{
size_t i;
for (i = 0; i < self->fields_count; ++i) {
if (!strcmp(self->fields[i]->name, name))
return self->fields[i];
}
return NULL;
}
ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
{
ir_value *ve = ir_builder_get_field(self, name);
if (ve) {
return NULL;
}
ve = ir_value_var(name, store_global, TYPE_FIELD);
ve->fieldtype = vtype;
if (!ir_builder_fields_add(self, ve)) {
ir_value_delete(ve);
return NULL;
}
return ve;
}
/***********************************************************************
*IR Function
*/
bool ir_function_naive_phi(ir_function*);
void ir_function_enumerate(ir_function*);
bool ir_function_calculate_liferanges(ir_function*);
bool ir_function_allocate_locals(ir_function*);
ir_function* ir_function_new(ir_builder* owner, int outtype)
{
ir_function *self;
self = (ir_function*)mem_a(sizeof(*self));
if (!self)
return NULL;
self->name = NULL;
if (!ir_function_set_name(self, "<@unnamed>")) {
mem_d(self);
return NULL;
}
self->owner = owner;
self->context.file = "<@no context>";
self->context.line = 0;
self->outtype = outtype;
self->value = NULL;
self->builtin = 0;
MEM_VECTOR_INIT(self, params);
MEM_VECTOR_INIT(self, blocks);
MEM_VECTOR_INIT(self, values);
MEM_VECTOR_INIT(self, locals);
self->run_id = 0;
return self;
}
MEM_VEC_FUNCTIONS(ir_function, ir_value*, values)
MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks)
MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals)
MEM_VEC_FUNCTIONS(ir_function, int, params)
bool ir_function_set_name(ir_function *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
return !!self->name;
}
void ir_function_delete(ir_function *self)
{
size_t i;
mem_d((void*)self->name);
for (i = 0; i != self->blocks_count; ++i)
ir_block_delete(self->blocks[i]);
MEM_VECTOR_CLEAR(self, blocks);
MEM_VECTOR_CLEAR(self, params);
for (i = 0; i != self->values_count; ++i)
ir_value_delete(self->values[i]);
MEM_VECTOR_CLEAR(self, values);
for (i = 0; i != self->locals_count; ++i)
ir_value_delete(self->locals[i]);
MEM_VECTOR_CLEAR(self, locals);
/* self->value is deleted by the builder */
mem_d(self);
}
bool GMQCC_WARN ir_function_collect_value(ir_function *self, ir_value *v)
{
return ir_function_values_add(self, v);
}
ir_block* ir_function_create_block(ir_function *self, const char *label)
{
ir_block* bn = ir_block_new(self, label);
memcpy(&bn->context, &self->context, sizeof(self->context));
if (!ir_function_blocks_add(self, bn)) {
ir_block_delete(bn);
return NULL;
}
return bn;
}
bool ir_function_finalize(ir_function *self)
{
if (self->builtin)
return true;
if (!ir_function_naive_phi(self))
return false;
ir_function_enumerate(self);
if (!ir_function_calculate_liferanges(self))
return false;
if (!ir_function_allocate_locals(self))
return false;
return true;
}
ir_value* ir_function_get_local(ir_function *self, const char *name)
{
size_t i;
for (i = 0; i < self->locals_count; ++i) {
if (!strcmp(self->locals[i]->name, name))
return self->locals[i];
}
return NULL;
}
ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
{
ir_value *ve = ir_function_get_local(self, name);
if (ve) {
return NULL;
}
if (param &&
self->locals_count &&
self->locals[self->locals_count-1]->store != store_param) {
printf("cannot add parameters after adding locals\n");
return NULL;
}
ve = ir_value_var(name, (param ? store_param : store_local), vtype);
if (!ir_function_locals_add(self, ve)) {
ir_value_delete(ve);
return NULL;
}
return ve;
}
/***********************************************************************
*IR Block
*/
ir_block* ir_block_new(ir_function* owner, const char *name)
{
ir_block *self;
self = (ir_block*)mem_a(sizeof(*self));
if (!self)
return NULL;
memset(self, 0, sizeof(*self));
self->label = NULL;
if (!ir_block_set_label(self, name)) {
mem_d(self);
return NULL;
}
self->owner = owner;
self->context.file = "<@no context>";
self->context.line = 0;
self->final = false;
MEM_VECTOR_INIT(self, instr);
MEM_VECTOR_INIT(self, entries);
MEM_VECTOR_INIT(self, exits);
self->eid = 0;
self->is_return = false;
self->run_id = 0;
MEM_VECTOR_INIT(self, living);
self->generated = false;
return self;
}
MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr)
MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries)
MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits)
MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living)
void ir_block_delete(ir_block* self)
{
size_t i;
mem_d(self->label);
for (i = 0; i != self->instr_count; ++i)
ir_instr_delete(self->instr[i]);
MEM_VECTOR_CLEAR(self, instr);
MEM_VECTOR_CLEAR(self, entries);
MEM_VECTOR_CLEAR(self, exits);
MEM_VECTOR_CLEAR(self, living);
mem_d(self);
}
bool ir_block_set_label(ir_block *self, const char *name)
{
if (self->label)
mem_d((void*)self->label);
self->label = util_strdup(name);
return !!self->label;
}
/***********************************************************************
*IR Instructions
*/
ir_instr* ir_instr_new(ir_block* owner, int op)
{
ir_instr *self;
self = (ir_instr*)mem_a(sizeof(*self));
if (!self)
return NULL;
self->owner = owner;
self->context.file = "<@no context>";
self->context.line = 0;
self->opcode = op;
self->_ops[0] = NULL;
self->_ops[1] = NULL;
self->_ops[2] = NULL;
self->bops[0] = NULL;
self->bops[1] = NULL;
MEM_VECTOR_INIT(self, phi);
MEM_VECTOR_INIT(self, params);
self->eid = 0;
return self;
}
MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi)
MEM_VEC_FUNCTIONS(ir_instr, ir_value*, params)
void ir_instr_delete(ir_instr *self)
{
size_t i;
/* The following calls can only delete from
* vectors, we still want to delete this instruction
* so ignore the return value. Since with the warn_unused_result attribute
* gcc doesn't care about an explicit: (void)foo(); to ignore the result,
* I have to improvise here and use if(foo());
*/
for (i = 0; i < self->phi_count; ++i) {
size_t idx;
if (ir_value_writes_find(self->phi[i].value, self, &idx))
if (ir_value_writes_remove(self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY;
if (ir_value_reads_find(self->phi[i].value, self, &idx))
if (ir_value_reads_remove (self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY;
}
MEM_VECTOR_CLEAR(self, phi);
for (i = 0; i < self->params_count; ++i) {
size_t idx;
if (ir_value_writes_find(self->params[i], self, &idx))
if (ir_value_writes_remove(self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY;
if (ir_value_reads_find(self->params[i], self, &idx))
if (ir_value_reads_remove (self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY;
}
MEM_VECTOR_CLEAR(self, params);
if (ir_instr_op(self, 0, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
if (ir_instr_op(self, 1, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
if (ir_instr_op(self, 2, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
mem_d(self);
}
bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
{
if (self->_ops[op]) {
size_t idx;
if (writing && ir_value_writes_find(self->_ops[op], self, &idx))
{
if (!ir_value_writes_remove(self->_ops[op], idx))
return false;
}
else if (ir_value_reads_find(self->_ops[op], self, &idx))
{
if (!ir_value_reads_remove(self->_ops[op], idx))
return false;
}
}
if (v) {
if (writing) {
if (!ir_value_writes_add(v, self))
return false;
} else {
if (!ir_value_reads_add(v, self))
return false;
}
}
self->_ops[op] = v;
return true;
}
/***********************************************************************
*IR Value
*/
void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
{
self->code.globaladdr = gaddr;
if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
}
int32_t ir_value_code_addr(const ir_value *self)
{
if (self->store == store_return)
return OFS_RETURN + self->code.addroffset;
return self->code.globaladdr + self->code.addroffset;
}
ir_value* ir_value_var(const char *name, int storetype, int vtype)
{
ir_value *self;
self = (ir_value*)mem_a(sizeof(*self));
self->vtype = vtype;
self->fieldtype = TYPE_VOID;
self->outtype = TYPE_VOID;
self->store = storetype;
MEM_VECTOR_INIT(self, reads);
MEM_VECTOR_INIT(self, writes);
self->isconst = false;
self->context.file = "<@no context>";
self->context.line = 0;
self->name = NULL;
ir_value_set_name(self, name);
memset(&self->constval, 0, sizeof(self->constval));
memset(&self->code, 0, sizeof(self->code));
MEM_VECTOR_INIT(self, life);
return self;
}
ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
{
ir_value *m;
if (member >= 3)
return NULL;
if (self->members[member])
return self->members[member];
if (self->vtype == TYPE_VECTOR)
{
m = ir_value_var(self->name, self->store, TYPE_FLOAT);
if (!m)
return NULL;
m->context = self->context;
self->members[member] = m;
m->code.addroffset = member;
}
else if (self->vtype == TYPE_FIELD)
{
if (self->fieldtype != TYPE_VECTOR)
return NULL;
m = ir_value_var(self->name, self->store, TYPE_FIELD);
if (!m)
return NULL;
m->fieldtype = TYPE_FLOAT;
m->context = self->context;
self->members[member] = m;
m->code.addroffset = member;
}
return m;
}
MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life)
MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, reads)
MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, writes)
ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
{
ir_value *v = ir_value_var(name, storetype, vtype);
if (!v)
return NULL;
if (!ir_function_collect_value(owner, v))
{
ir_value_delete(v);
return NULL;
}
return v;
}
void ir_value_delete(ir_value* self)
{
size_t i;
if (self->name)
mem_d((void*)self->name);
if (self->isconst)
{
if (self->vtype == TYPE_STRING)
mem_d((void*)self->constval.vstring);
}
for (i = 0; i < 3; ++i) {
if (self->members[i])
ir_value_delete(self->members[i]);
}
MEM_VECTOR_CLEAR(self, reads);
MEM_VECTOR_CLEAR(self, writes);
MEM_VECTOR_CLEAR(self, life);
mem_d(self);
}
void ir_value_set_name(ir_value *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
}
bool ir_value_set_float(ir_value *self, float f)
{
if (self->vtype != TYPE_FLOAT)
return false;
self->constval.vfloat = f;
self->isconst = true;
return true;
}
bool ir_value_set_func(ir_value *self, int f)
{
if (self->vtype != TYPE_FUNCTION)
return false;
self->constval.vint = f;
self->isconst = true;
return true;
}
bool ir_value_set_vector(ir_value *self, vector v)
{
if (self->vtype != TYPE_VECTOR)
return false;
self->constval.vvec = v;
self->isconst = true;
return true;
}
bool ir_value_set_field(ir_value *self, ir_value *fld)
{
if (self->vtype != TYPE_FIELD)
return false;
self->constval.vpointer = fld;
self->isconst = true;
return true;
}
bool ir_value_set_string(ir_value *self, const char *str)
{
if (self->vtype != TYPE_STRING)
return false;
self->constval.vstring = util_strdup(str);
self->isconst = true;
return true;
}
#if 0
bool ir_value_set_int(ir_value *self, int i)
{
if (self->vtype != TYPE_INTEGER)
return false;
self->constval.vint = i;
self->isconst = true;
return true;
}
#endif
bool ir_value_lives(ir_value *self, size_t at)
{
size_t i;
for (i = 0; i < self->life_count; ++i)
{
ir_life_entry_t *life = &self->life[i];
if (life->start <= at && at <= life->end)
return true;
if (life->start > at) /* since it's ordered */
return false;
}
return false;
}
bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
{
size_t k;
if (!ir_value_life_add(self, e)) /* naive... */
return false;
for (k = self->life_count-1; k > idx; --k)
self->life[k] = self->life[k-1];
self->life[idx] = e;
return true;
}
bool ir_value_life_merge(ir_value *self, size_t s)
{
size_t i;
ir_life_entry_t *life = NULL;
ir_life_entry_t *before = NULL;
ir_life_entry_t new_entry;
/* Find the first range >= s */
for (i = 0; i < self->life_count; ++i)
{
before = life;
life = &self->life[i];
if (life->start > s)
break;
}
/* nothing found? append */
if (i == self->life_count) {
ir_life_entry_t e;
if (life && life->end+1 == s)
{
/* previous life range can be merged in */
life->end++;
return true;
}
if (life && life->end >= s)
return false;
e.start = e.end = s;
if (!ir_value_life_add(self, e))
return false; /* failing */
return true;
}
/* found */
if (before)
{
if (before->end + 1 == s &&
life->start - 1 == s)
{
/* merge */
before->end = life->end;
if (!ir_value_life_remove(self, i))
return false; /* failing */
return true;
}
if (before->end + 1 == s)
{
/* extend before */
before->end++;
return true;
}
/* already contained */
if (before->end >= s)
return false;
}
/* extend */
if (life->start - 1 == s)
{
life->start--;
return true;
}
/* insert a new entry */
new_entry.start = new_entry.end = s;
return ir_value_life_insert(self, i, new_entry);
}
bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
{
size_t i, myi;
if (!other->life_count)
return true;
if (!self->life_count) {
for (i = 0; i < other->life_count; ++i) {
if (!ir_value_life_add(self, other->life[i]))
return false;
}
return true;
}
myi = 0;
for (i = 0; i < other->life_count; ++i)
{
const ir_life_entry_t *life = &other->life[i];
while (true)
{
ir_life_entry_t *entry = &self->life[myi];
if (life->end+1 < entry->start)
{
/* adding an interval before entry */
if (!ir_value_life_insert(self, myi, *life))
return false;
++myi;
break;
}
if (life->start < entry->start &&
life->end >= entry->start)
{
/* starts earlier and overlaps */
entry->start = life->start;
}
if (life->end > entry->end &&
life->start-1 <= entry->end)
{
/* ends later and overlaps */
entry->end = life->end;
}
/* see if our change combines it with the next ranges */
while (myi+1 < self->life_count &&
entry->end+1 >= self->life[1+myi].start)
{
/* overlaps with (myi+1) */
if (entry->end < self->life[1+myi].end)
entry->end = self->life[1+myi].end;
if (!ir_value_life_remove(self, myi+1))
return false;
entry = &self->life[myi];
}
/* see if we're after the entry */
if (life->start > entry->end)
{
++myi;
/* append if we're at the end */
if (myi >= self->life_count) {
if (!ir_value_life_add(self, *life))
return false;
break;
}
/* otherweise check the next range */
continue;
}
break;
}
}
return true;
}
bool ir_values_overlap(const ir_value *a, const ir_value *b)
{
/* For any life entry in A see if it overlaps with
* any life entry in B.
* Note that the life entries are orderes, so we can make a
* more efficient algorithm there than naively translating the
* statement above.
*/
ir_life_entry_t *la, *lb, *enda, *endb;
/* first of all, if either has no life range, they cannot clash */
if (!a->life_count || !b->life_count)
return false;
la = a->life;
lb = b->life;
enda = la + a->life_count;
endb = lb + b->life_count;
while (true)
{
/* check if the entries overlap, for that,
* both must start before the other one ends.
*/
#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
if (la->start <= lb->end &&
lb->start <= la->end)
#else
if (la->start < lb->end &&
lb->start < la->end)
#endif
{
return true;
}
/* entries are ordered
* one entry is earlier than the other
* that earlier entry will be moved forward
*/
if (la->start < lb->start)
{
/* order: A B, move A forward
* check if we hit the end with A
*/
if (++la == enda)
break;
}
else if (lb->start < la->start)
{
/* order: B A, move B forward
* check if we hit the end with B
*/
if (++lb == endb)
break;
}
}
return false;
}
/***********************************************************************
*IR main operations
*/
bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what)
{
ir_instr *in = ir_instr_new(self, op);
if (!in)
return false;
if (target->store == store_value &&
(op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
{
fprintf(stderr, "cannot store to an SSA value\n");
fprintf(stderr, "trying to store: %s <- %s\n", target->name, what->name);
fprintf(stderr, "instruction: %s\n", asm_instr[op].m);
return false;
}
if (!ir_instr_op(in, 0, target, true) ||
!ir_instr_op(in, 1, what, false) ||
!ir_block_instr_add(self, in) )
{
return false;
}
return true;
}
bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what)
{
int op = 0;
int vtype;
if (target->vtype == TYPE_VARIANT)
vtype = what->vtype;
else
vtype = target->vtype;
#if 0
if (vtype == TYPE_FLOAT && what->vtype == TYPE_INTEGER)
op = INSTR_CONV_ITOF;
else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
op = INSTR_CONV_FTOI;
#endif
op = type_store_instr[vtype];
if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
op = INSTR_STORE_V;
}
return ir_block_create_store_op(self, op, target, what);
}
bool ir_block_create_storep(ir_block *self, ir_value *target, ir_value *what)
{
int op = 0;
int vtype;
if (target->vtype != TYPE_POINTER)
return false;
/* storing using pointer - target is a pointer, type must be
* inferred from source
*/
vtype = what->vtype;
op = type_storep_instr[vtype];
if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
op = INSTR_STOREP_V;
}
return ir_block_create_store_op(self, op, target, what);
}
bool ir_block_create_return(ir_block *self, ir_value *v)
{
ir_instr *in;
if (self->final) {
fprintf(stderr, "block already ended (%s)\n", self->label);
return false;
}
self->final = true;
self->is_return = true;
in = ir_instr_new(self, INSTR_RETURN);
if (!in)
return false;
if (!ir_instr_op(in, 0, v, false) ||
!ir_block_instr_add(self, in) )
{
return false;
}
return true;
}
bool ir_block_create_if(ir_block *self, ir_value *v,
ir_block *ontrue, ir_block *onfalse)
{
ir_instr *in;
if (self->final) {
fprintf(stderr, "block already ended (%s)\n", self->label);
return false;
}
self->final = true;
/*in = ir_instr_new(self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
in = ir_instr_new(self, VINSTR_COND);
if (!in)
return false;
if (!ir_instr_op(in, 0, v, false)) {
ir_instr_delete(in);
return false;
}
in->bops[0] = ontrue;
in->bops[1] = onfalse;
if (!ir_block_instr_add(self, in))
return false;
if (!ir_block_exits_add(self, ontrue) ||
!ir_block_exits_add(self, onfalse) ||
!ir_block_entries_add(ontrue, self) ||
!ir_block_entries_add(onfalse, self) )
{
return false;
}
return true;
}
bool ir_block_create_jump(ir_block *self, ir_block *to)
{
ir_instr *in;
if (self->final) {
fprintf(stderr, "block already ended (%s)\n", self->label);
return false;
}
self->final = true;
in = ir_instr_new(self, VINSTR_JUMP);
if (!in)
return false;
in->bops[0] = to;
if (!ir_block_instr_add(self, in))
return false;
if (!ir_block_exits_add(self, to) ||
!ir_block_entries_add(to, self) )
{
return false;
}
return true;
}
bool ir_block_create_goto(ir_block *self, ir_block *to)
{
ir_instr *in;
if (self->final) {
fprintf(stderr, "block already ended (%s)\n", self->label);
return false;
}
self->final = true;
in = ir_instr_new(self, INSTR_GOTO);
if (!in)
return false;
in->bops[0] = to;
if (!ir_block_instr_add(self, in))
return false;
if (!ir_block_exits_add(self, to) ||
!ir_block_entries_add(to, self) )
{
return false;
}
return true;
}
ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot)
{
ir_value *out;
ir_instr *in;
in = ir_instr_new(self, VINSTR_PHI);
if (!in)
return NULL;
out = ir_value_out(self->owner, label, store_value, ot);
if (!out) {
ir_instr_delete(in);
return NULL;
}
if (!ir_instr_op(in, 0, out, true)) {
ir_instr_delete(in);
ir_value_delete(out);
return NULL;
}
if (!ir_block_instr_add(self, in)) {
ir_instr_delete(in);
ir_value_delete(out);
return NULL;
}
return in;
}
ir_value* ir_phi_value(ir_instr *self)
{
return self->_ops[0];
}
bool ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
{
ir_phi_entry_t pe;
if (!ir_block_entries_find(self->owner, b, NULL)) {
/* Must not be possible to cause this, otherwise the AST
* is doing something wrong.
*/
fprintf(stderr, "Invalid entry block for PHI\n");
abort();
}
pe.value = v;
pe.from = b;
if (!ir_value_reads_add(v, self))
return false;
return ir_instr_phi_add(self, pe);
}
/* call related code */
ir_instr* ir_block_create_call(ir_block *self, const char *label, ir_value *func)
{
ir_value *out;
ir_instr *in;
in = ir_instr_new(self, INSTR_CALL0);
if (!in)
return NULL;
out = ir_value_out(self->owner, label, store_return, func->outtype);
if (!out) {
ir_instr_delete(in);
return NULL;
}
if (!ir_instr_op(in, 0, out, true) ||
!ir_instr_op(in, 1, func, false) ||
!ir_block_instr_add(self, in))
{
ir_instr_delete(in);
ir_value_delete(out);
return NULL;
}
return in;
}
ir_value* ir_call_value(ir_instr *self)
{
return self->_ops[0];
}
bool ir_call_param(ir_instr* self, ir_value *v)
{
if (!ir_instr_params_add(self, v))
return false;
if (!ir_value_reads_add(v, self)) {
if (!ir_instr_params_remove(self, self->params_count-1))
GMQCC_SUPPRESS_EMPTY_BODY;
return false;
}
return true;
}
/* binary op related code */
ir_value* ir_block_create_binop(ir_block *self,
const char *label, int opcode,
ir_value *left, ir_value *right)
{
int ot = TYPE_VOID;
switch (opcode) {
case INSTR_ADD_F:
case INSTR_SUB_F:
case INSTR_DIV_F:
case INSTR_MUL_F:
case INSTR_MUL_V:
case INSTR_AND:
case INSTR_OR:
#if 0
case INSTR_AND_I:
case INSTR_AND_IF:
case INSTR_AND_FI:
case INSTR_OR_I:
case INSTR_OR_IF:
case INSTR_OR_FI:
#endif
case INSTR_BITAND:
case INSTR_BITOR:
#if 0
case INSTR_SUB_S: /* -- offset of string as float */
case INSTR_MUL_IF:
case INSTR_MUL_FI:
case INSTR_DIV_IF:
case INSTR_DIV_FI:
case INSTR_BITOR_IF:
case INSTR_BITOR_FI:
case INSTR_BITAND_FI:
case INSTR_BITAND_IF:
case INSTR_EQ_I:
case INSTR_NE_I:
#endif
ot = TYPE_FLOAT;
break;
#if 0
case INSTR_ADD_I:
case INSTR_ADD_IF:
case INSTR_ADD_FI:
case INSTR_SUB_I:
case INSTR_SUB_FI:
case INSTR_SUB_IF:
case INSTR_MUL_I:
case INSTR_DIV_I:
case INSTR_BITAND_I:
case INSTR_BITOR_I:
case INSTR_XOR_I:
case INSTR_RSHIFT_I:
case INSTR_LSHIFT_I:
ot = TYPE_INTEGER;
break;
#endif
case INSTR_ADD_V:
case INSTR_SUB_V:
case INSTR_MUL_VF:
case INSTR_MUL_FV:
#if 0
case INSTR_DIV_VF:
case INSTR_MUL_IV:
case INSTR_MUL_VI:
#endif
ot = TYPE_VECTOR;
break;
#if 0
case INSTR_ADD_SF:
ot = TYPE_POINTER;
break;
#endif
default:
/* ranges: */
/* boolean operations result in floats */
if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
ot = TYPE_FLOAT;
else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
ot = TYPE_FLOAT;
#if 0
else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
ot = TYPE_FLOAT;
#endif
break;
};
if (ot == TYPE_VOID) {
/* The AST or parser were supposed to check this! */
return NULL;
}
return ir_block_create_general_instr(self, label, opcode, left, right, ot);
}
ir_value* ir_block_create_unary(ir_block *self,
const char *label, int opcode,
ir_value *operand)
{
int ot = TYPE_FLOAT;
switch (opcode) {
case INSTR_NOT_F:
case INSTR_NOT_V:
case INSTR_NOT_S:
case INSTR_NOT_ENT:
case INSTR_NOT_FNC:
#if 0
case INSTR_NOT_I:
#endif
ot = TYPE_FLOAT;
break;
/* QC doesn't have other unary operations. We expect extensions to fill
* the above list, otherwise we assume out-type = in-type, eg for an
* unary minus
*/
default:
ot = operand->vtype;
break;
};
if (ot == TYPE_VOID) {
/* The AST or parser were supposed to check this! */
return NULL;
}
/* let's use the general instruction creator and pass NULL for OPB */
return ir_block_create_general_instr(self, label, opcode, operand, NULL, ot);
}
ir_value* ir_block_create_general_instr(ir_block *self, const char *label,
int op, ir_value *a, ir_value *b, int outype)
{
ir_instr *instr;
ir_value *out;
out = ir_value_out(self->owner, label, store_value, outype);
if (!out)
return NULL;
instr = ir_instr_new(self, op);
if (!instr) {
ir_value_delete(out);
return NULL;
}
if (!ir_instr_op(instr, 0, out, true) ||
!ir_instr_op(instr, 1, a, false) ||
!ir_instr_op(instr, 2, b, false) )
{
goto on_error;
}
if (!ir_block_instr_add(self, instr))
goto on_error;
return out;
on_error:
ir_instr_delete(instr);
ir_value_delete(out);
return NULL;
}
ir_value* ir_block_create_fieldaddress(ir_block *self, const char *label, ir_value *ent, ir_value *field)
{
ir_value *v;
/* Support for various pointer types todo if so desired */
if (ent->vtype != TYPE_ENTITY)
return NULL;
if (field->vtype != TYPE_FIELD)
return NULL;
v = ir_block_create_general_instr(self, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
v->fieldtype = field->fieldtype;
return v;
}
ir_value* ir_block_create_load_from_ent(ir_block *self, const char *label, ir_value *ent, ir_value *field, int outype)
{
int op;
if (ent->vtype != TYPE_ENTITY)
return NULL;
/* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
if (field->vtype != TYPE_FIELD)
return NULL;
switch (outype)
{
case TYPE_FLOAT: op = INSTR_LOAD_F; break;
case TYPE_VECTOR: op = INSTR_LOAD_V; break;
case TYPE_STRING: op = INSTR_LOAD_S; break;
case TYPE_FIELD: op = INSTR_LOAD_FLD; break;
case TYPE_ENTITY: op = INSTR_LOAD_ENT; break;
#if 0
case TYPE_POINTER: op = INSTR_LOAD_I; break;
case TYPE_INTEGER: op = INSTR_LOAD_I; break;
#endif
default:
return NULL;
}
return ir_block_create_general_instr(self, label, op, ent, field, outype);
}
ir_value* ir_block_create_add(ir_block *self,
const char *label,
ir_value *left, ir_value *right)
{
int op = 0;
int l = left->vtype;
int r = right->vtype;
if (l == r) {
switch (l) {
default:
return NULL;
case TYPE_FLOAT:
op = INSTR_ADD_F;
break;
#if 0
case TYPE_INTEGER:
op = INSTR_ADD_I;
break;
#endif
case TYPE_VECTOR:
op = INSTR_ADD_V;
break;
}
} else {
#if 0
if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
op = INSTR_ADD_FI;
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
op = INSTR_ADD_IF;
else
#endif
return NULL;
}
return ir_block_create_binop(self, label, op, left, right);
}
ir_value* ir_block_create_sub(ir_block *self,
const char *label,
ir_value *left, ir_value *right)
{
int op = 0;
int l = left->vtype;
int r = right->vtype;
if (l == r) {
switch (l) {
default:
return NULL;
case TYPE_FLOAT:
op = INSTR_SUB_F;
break;
#if 0
case TYPE_INTEGER:
op = INSTR_SUB_I;
break;
#endif
case TYPE_VECTOR:
op = INSTR_SUB_V;
break;
}
} else {
#if 0
if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
op = INSTR_SUB_FI;
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
op = INSTR_SUB_IF;
else
#endif
return NULL;
}
return ir_block_create_binop(self, label, op, left, right);
}
ir_value* ir_block_create_mul(ir_block *self,
const char *label,
ir_value *left, ir_value *right)
{
int op = 0;
int l = left->vtype;
int r = right->vtype;
if (l == r) {
switch (l) {
default:
return NULL;
case TYPE_FLOAT:
op = INSTR_MUL_F;
break;
#if 0
case TYPE_INTEGER:
op = INSTR_MUL_I;
break;
#endif
case TYPE_VECTOR:
op = INSTR_MUL_V;
break;
}
} else {
if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
op = INSTR_MUL_VF;
else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) )
op = INSTR_MUL_FV;
#if 0
else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) )
op = INSTR_MUL_VI;
else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) )
op = INSTR_MUL_IV;
else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
op = INSTR_MUL_FI;
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
op = INSTR_MUL_IF;
#endif
else
return NULL;
}
return ir_block_create_binop(self, label, op, left, right);
}
ir_value* ir_block_create_div(ir_block *self,
const char *label,
ir_value *left, ir_value *right)
{
int op = 0;
int l = left->vtype;
int r = right->vtype;
if (l == r) {
switch (l) {
default:
return NULL;
case TYPE_FLOAT:
op = INSTR_DIV_F;
break;
#if 0
case TYPE_INTEGER:
op = INSTR_DIV_I;
break;
#endif
}
} else {
#if 0
if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
op = INSTR_DIV_VF;
else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
op = INSTR_DIV_FI;
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
op = INSTR_DIV_IF;
else
#endif
return NULL;
}
return ir_block_create_binop(self, label, op, left, right);
}
/* PHI resolving breaks the SSA, and must thus be the last
* step before life-range calculation.
*/
static bool ir_block_naive_phi(ir_block *self);
bool ir_function_naive_phi(ir_function *self)
{
size_t i;
for (i = 0; i < self->blocks_count; ++i)
{
if (!ir_block_naive_phi(self->blocks[i]))
return false;
}
return true;
}
static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what)
{
ir_instr *instr;
size_t i;
/* create a store */
if (!ir_block_create_store(block, old, what))
return false;
/* we now move it up */
instr = block->instr[block->instr_count-1];
for (i = block->instr_count; i > iid; --i)
block->instr[i] = block->instr[i-1];
block->instr[i] = instr;
return true;
}
static bool ir_block_naive_phi(ir_block *self)
{
size_t i, p, w;
/* FIXME: optionally, create_phi can add the phis
* to a list so we don't need to loop through blocks
* - anyway: "don't optimize YET"
*/
for (i = 0; i < self->instr_count; ++i)
{
ir_instr *instr = self->instr[i];
if (instr->opcode != VINSTR_PHI)
continue;
if (!ir_block_instr_remove(self, i))
return false;
--i; /* NOTE: i+1 below */
for (p = 0; p < instr->phi_count; ++p)
{
ir_value *v = instr->phi[p].value;
for (w = 0; w < v->writes_count; ++w) {
ir_value *old;
if (!v->writes[w]->_ops[0])
continue;
/* When the write was to a global, we have to emit a mov */
old = v->writes[w]->_ops[0];
/* The original instruction now writes to the PHI target local */
if (v->writes[w]->_ops[0] == v)
v->writes[w]->_ops[0] = instr->_ops[0];
if (old->store != store_value && old->store != store_local && old->store != store_param)
{
/* If it originally wrote to a global we need to store the value
* there as welli
*/
if (!ir_naive_phi_emit_store(self, i+1, old, v))
return false;
if (i+1 < self->instr_count)
instr = self->instr[i+1];
else
instr = NULL;
/* In case I forget and access instr later, it'll be NULL
* when it's a problem, to make sure we crash, rather than accessing
* invalid data.
*/
}
else
{
/* If it didn't, we can replace all reads by the phi target now. */
size_t r;
for (r = 0; r < old->reads_count; ++r)
{
size_t op;
ir_instr *ri = old->reads[r];
for (op = 0; op < ri->phi_count; ++op) {
if (ri->phi[op].value == old)
ri->phi[op].value = v;
}
for (op = 0; op < 3; ++op) {
if (ri->_ops[op] == old)
ri->_ops[op] = v;
}
}
}
}
}
ir_instr_delete(instr);
}
return true;
}
/***********************************************************************
*IR Temp allocation code
* Propagating value life ranges by walking through the function backwards
* until no more changes are made.
* In theory this should happen once more than once for every nested loop
* level.
* Though this implementation might run an additional time for if nests.
*/
typedef struct
{
ir_value* *v;
size_t v_count;
size_t v_alloc;
} new_reads_t;
MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v)
/* Enumerate instructions used by value's life-ranges
*/
static void ir_block_enumerate(ir_block *self, size_t *_eid)
{
size_t i;
size_t eid = *_eid;
for (i = 0; i < self->instr_count; ++i)
{
self->instr[i]->eid = eid++;
}
*_eid = eid;
}
/* Enumerate blocks and instructions.
* The block-enumeration is unordered!
* We do not really use the block enumreation, however
* the instruction enumeration is important for life-ranges.
*/
void ir_function_enumerate(ir_function *self)
{
size_t i;
size_t instruction_id = 0;
for (i = 0; i < self->blocks_count; ++i)
{
self->blocks[i]->eid = i;
self->blocks[i]->run_id = 0;
ir_block_enumerate(self->blocks[i], &instruction_id);
}
}
static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
bool ir_function_calculate_liferanges(ir_function *self)
{
size_t i;
bool changed;
do {
self->run_id++;
changed = false;
for (i = 0; i != self->blocks_count; ++i)
{
if (self->blocks[i]->is_return)
{
if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
return false;
}
}
} while (changed);
return true;
}
/* Local-value allocator
* After finishing creating the liferange of all values used in a function
* we can allocate their global-positions.
* This is the counterpart to register-allocation in register machines.
*/
typedef struct {
MEM_VECTOR_MAKE(ir_value*, locals);
MEM_VECTOR_MAKE(size_t, sizes);
MEM_VECTOR_MAKE(size_t, positions);
} function_allocator;
MEM_VEC_FUNCTIONS(function_allocator, ir_value*, locals)
MEM_VEC_FUNCTIONS(function_allocator, size_t, sizes)
MEM_VEC_FUNCTIONS(function_allocator, size_t, positions)
static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var)
{
ir_value *slot;
size_t vsize = type_sizeof[var->vtype];
slot = ir_value_var("reg", store_global, var->vtype);
if (!slot)
return false;
if (!ir_value_life_merge_into(slot, var))
goto localerror;
if (!function_allocator_locals_add(alloc, slot))
goto localerror;
if (!function_allocator_sizes_add(alloc, vsize))
goto localerror;
return true;
localerror:
ir_value_delete(slot);
return false;
}
bool ir_function_allocate_locals(ir_function *self)
{
size_t i, a;
bool retval = true;
size_t pos;
ir_value *slot;
const ir_value *v;
function_allocator alloc;
if (!self->locals_count)
return true;
MEM_VECTOR_INIT(&alloc, locals);
MEM_VECTOR_INIT(&alloc, sizes);
MEM_VECTOR_INIT(&alloc, positions);
for (i = 0; i < self->locals_count; ++i)
{
if (!function_allocator_alloc(&alloc, self->locals[i]))
goto error;
}
/* Allocate a slot for any value that still exists */
for (i = 0; i < self->values_count; ++i)
{
v = self->values[i];
if (!v->life_count)
continue;
for (a = 0; a < alloc.locals_count; ++a)
{
slot = alloc.locals[a];
if (ir_values_overlap(v, slot))
continue;
if (!ir_value_life_merge_into(slot, v))
goto error;
/* adjust size for this slot */
if (alloc.sizes[a] < type_sizeof[v->vtype])
alloc.sizes[a] = type_sizeof[v->vtype];
self->values[i]->code.local = a;
break;
}
if (a >= alloc.locals_count) {
self->values[i]->code.local = alloc.locals_count;
if (!function_allocator_alloc(&alloc, v))
goto error;
}
}
/* Adjust slot positions based on sizes */
if (!function_allocator_positions_add(&alloc, 0))
goto error;
if (alloc.sizes_count)
pos = alloc.positions[0] + alloc.sizes[0];
else
pos = 0;
for (i = 1; i < alloc.sizes_count; ++i)
{
pos = alloc.positions[i-1] + alloc.sizes[i-1];
if (!function_allocator_positions_add(&alloc, pos))
goto error;
}
self->allocated_locals = pos + alloc.sizes[alloc.sizes_count-1];
/* Take over the actual slot positions */
for (i = 0; i < self->values_count; ++i)
self->values[i]->code.local = alloc.positions[self->values[i]->code.local];
goto cleanup;
error:
retval = false;
cleanup:
for (i = 0; i < alloc.locals_count; ++i)
ir_value_delete(alloc.locals[i]);
MEM_VECTOR_CLEAR(&alloc, locals);
MEM_VECTOR_CLEAR(&alloc, sizes);
MEM_VECTOR_CLEAR(&alloc, positions);
return retval;
}
/* Get information about which operand
* is read from, or written to.
*/
static void ir_op_read_write(int op, size_t *read, size_t *write)
{
switch (op)
{
case VINSTR_JUMP:
case INSTR_GOTO:
*write = 0;
*read = 0;
break;
case INSTR_IF:
case INSTR_IFNOT:
#if 0
case INSTR_IF_S:
case INSTR_IFNOT_S:
#endif
case INSTR_RETURN:
case VINSTR_COND:
*write = 0;
*read = 1;
break;
default:
*write = 1;
*read = 6;
break;
};
}
static bool ir_block_living_add_instr(ir_block *self, size_t eid)
{
size_t i;
bool changed = false;
bool tempbool;
for (i = 0; i != self->living_count; ++i)
{
tempbool = ir_value_life_merge(self->living[i], eid);
/* debug
if (tempbool)
fprintf(stderr, "block_living_add_instr() value instruction added %s: %i\n", self->living[i]->_name, (int)eid);
*/
changed = changed || tempbool;
}
return changed;
}
static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
{
size_t i;
/* values which have been read in a previous iteration are now
* in the "living" array even if the previous block doesn't use them.
* So we have to remove whatever does not exist in the previous block.
* They will be re-added on-read, but the liferange merge won't cause
* a change.
*/
for (i = 0; i < self->living_count; ++i)
{
if (!ir_block_living_find(prev, self->living[i], NULL)) {
if (!ir_block_living_remove(self, i))
return false;
--i;
}
}
/* Whatever the previous block still has in its living set
* must now be added to ours as well.
*/
for (i = 0; i < prev->living_count; ++i)
{
if (ir_block_living_find(self, prev->living[i], NULL))
continue;
if (!ir_block_living_add(self, prev->living[i]))
return false;
/*
printf("%s got from prev: %s\n", self->label, prev->living[i]->_name);
*/
}
return true;
}
static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
{
ir_instr *instr;
ir_value *value;
bool tempbool;
size_t i, o, p;
/* bitmasks which operands are read from or written to */
size_t read, write;
#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
size_t rd;
new_reads_t new_reads;
#endif
char dbg_ind[16] = { '#', '0' };
(void)dbg_ind;
#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
MEM_VECTOR_INIT(&new_reads, v);
#endif
if (prev)
{
if (!ir_block_life_prop_previous(self, prev, changed))
return false;
}
i = self->instr_count;
while (i)
{ --i;
instr = self->instr[i];
/* PHI operands are always read operands */
for (p = 0; p < instr->phi_count; ++p)
{
value = instr->phi[p].value;
#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ)
if (!ir_block_living_find(self, value, NULL) &&
!ir_block_living_add(self, value))
{
goto on_error;
}
#else
if (!new_reads_t_v_find(&new_reads, value, NULL))
{
if (!new_reads_t_v_add(&new_reads, value))
goto on_error;
}
#endif
}
/* See which operands are read and write operands */
ir_op_read_write(instr->opcode, &read, &write);
/* Go through the 3 main operands */
for (o = 0; o < 3; ++o)
{
if (!instr->_ops[o]) /* no such operand */
continue;
value = instr->_ops[o];
/* We only care about locals */
/* we also calculate parameter liferanges so that locals
* can take up parameter slots */
if (value->store != store_value &&
value->store != store_local &&
value->store != store_param)
continue;
/* read operands */
if (read & (1<<o))
{
#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ)
if (!ir_block_living_find(self, value, NULL) &&
!ir_block_living_add(self, value))
{
goto on_error;
}
#else
/* fprintf(stderr, "read: %s\n", value->_name); */
if (!new_reads_t_v_find(&new_reads, value, NULL))
{
if (!new_reads_t_v_add(&new_reads, value))
goto on_error;
}
#endif
}
/* write operands */
/* When we write to a local, we consider it "dead" for the
* remaining upper part of the function, since in SSA a value
* can only be written once (== created)
*/
if (write & (1<<o))
{
size_t idx;
bool in_living = ir_block_living_find(self, value, &idx);
#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
size_t readidx;
bool in_reads = new_reads_t_v_find(&new_reads, value, &readidx);
if (!in_living && !in_reads)
#else
if (!in_living)
#endif
{
/* If the value isn't alive it hasn't been read before... */
/* TODO: See if the warning can be emitted during parsing or AST processing
* otherwise have warning printed here.
* IF printing a warning here: include filecontext_t,
* and make sure it's only printed once
* since this function is run multiple times.
*/
/* For now: debug info: */
fprintf(stderr, "Value only written %s\n", value->name);
tempbool = ir_value_life_merge(value, instr->eid);
*changed = *changed || tempbool;
/*
ir_instr_dump(instr, dbg_ind, printf);
abort();
*/
} else {
/* since 'living' won't contain it
* anymore, merge the value, since
* (A) doesn't.
*/
tempbool = ir_value_life_merge(value, instr->eid);
/*
if (tempbool)
fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid);
*/
*changed = *changed || tempbool;
/* Then remove */
#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ)
if (!ir_block_living_remove(self, idx))
goto on_error;
#else
if (in_reads)
{
if (!new_reads_t_v_remove(&new_reads, readidx))
goto on_error;
}
#endif
}
}
}
/* (A) */
tempbool = ir_block_living_add_instr(self, instr->eid);
/*fprintf(stderr, "living added values\n");*/
*changed = *changed || tempbool;
#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
/* new reads: */
for (rd = 0; rd < new_reads.v_count; ++rd)
{
if (!ir_block_living_find(self, new_reads.v[rd], NULL)) {
if (!ir_block_living_add(self, new_reads.v[rd]))
goto on_error;
}
if (!i && !self->entries_count) {
/* fix the top */
*changed = *changed || ir_value_life_merge(new_reads.v[rd], instr->eid);
}
}
MEM_VECTOR_CLEAR(&new_reads, v);
#endif
}
if (self->run_id == self->owner->run_id)
return true;
self->run_id = self->owner->run_id;
for (i = 0; i < self->entries_count; ++i)
{
ir_block *entry = self->entries[i];
ir_block_life_propagate(entry, self, changed);
}
return true;
on_error:
#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
MEM_VECTOR_CLEAR(&new_reads, v);
#endif
return false;
}
/***********************************************************************
*IR Code-Generation
*
* Since the IR has the convention of putting 'write' operands
* at the beginning, we have to rotate the operands of instructions
* properly in order to generate valid QCVM code.
*
* Having destinations at a fixed position is more convenient. In QC
* this is *mostly* OPC, but FTE adds at least 2 instructions which
* read from from OPA, and store to OPB rather than OPC. Which is
* partially the reason why the implementation of these instructions
* in darkplaces has been delayed for so long.
*
* Breaking conventions is annoying...
*/
static bool ir_builder_gen_global(ir_builder *self, ir_value *global);
static bool gen_global_field(ir_value *global)
{
if (global->isconst)
{
ir_value *fld = global->constval.vpointer;
if (!fld) {
printf("Invalid field constant with no field: %s\n", global->name);
return false;
}
/* Now, in this case, a relocation would be impossible to code
* since it looks like this:
* .vector v = origin; <- parse error, wtf is 'origin'?
* .vector origin;
*
* But we will need a general relocation support later anyway
* for functions... might as well support that here.
*/
if (!fld->code.globaladdr) {
printf("FIXME: Relocation support\n");
return false;
}
/* copy the field's value */
ir_value_code_setaddr(global, code_globals_add(code_globals_data[fld->code.globaladdr]));
if (global->fieldtype == TYPE_VECTOR) {
code_globals_add(code_globals_data[fld->code.globaladdr]+1);
code_globals_add(code_globals_data[fld->code.globaladdr]+2);
}
}
else
{
ir_value_code_setaddr(global, code_globals_add(0));
if (global->fieldtype == TYPE_VECTOR) {
code_globals_add(0);
code_globals_add(0);
}
}
if (global->code.globaladdr < 0)
return false;
return true;
}
static bool gen_global_pointer(ir_value *global)
{
if (global->isconst)
{
ir_value *target = global->constval.vpointer;
if (!target) {
printf("Invalid pointer constant: %s\n", global->name);
/* NULL pointers are pointing to the NULL constant, which also
* sits at address 0, but still has an ir_value for itself.
*/
return false;
}
/* Here, relocations ARE possible - in fteqcc-enhanced-qc:
* void() foo; <- proto
* void() *fooptr = &foo;
* void() foo = { code }
*/
if (!target->code.globaladdr) {
/* FIXME: Check for the constant nullptr ir_value!
* because then code.globaladdr being 0 is valid.
*/
printf("FIXME: Relocation support\n");
return false;
}
ir_value_code_setaddr(global, code_globals_add(target->code.globaladdr));
}
else
{
ir_value_code_setaddr(global, code_globals_add(0));
}
if (global->code.globaladdr < 0)
return false;
return true;
}
static bool gen_blocks_recursive(ir_function *func, ir_block *block)
{
prog_section_statement stmt;
ir_instr *instr;
ir_block *target;
ir_block *ontrue;
ir_block *onfalse;
size_t stidx;
size_t i;
tailcall:
block->generated = true;
block->code_start = code_statements_elements;
for (i = 0; i < block->instr_count; ++i)
{
instr = block->instr[i];
if (instr->opcode == VINSTR_PHI) {
printf("cannot generate virtual instruction (phi)\n");
return false;
}
if (instr->opcode == VINSTR_JUMP) {
target = instr->bops[0];
/* for uncoditional jumps, if the target hasn't been generated
* yet, we generate them right here.
*/
if (!target->generated) {
block = target;
goto tailcall;
}
/* otherwise we generate a jump instruction */
stmt.opcode = INSTR_GOTO;
stmt.o1.s1 = (target->code_start) - code_statements_elements;
stmt.o2.s1 = 0;
stmt.o3.s1 = 0;
if (code_statements_add(stmt) < 0)
return false;
/* no further instructions can be in this block */
return true;
}
if (instr->opcode == VINSTR_COND) {
ontrue = instr->bops[0];
onfalse = instr->bops[1];
/* TODO: have the AST signal which block should
* come first: eg. optimize IFs without ELSE...
*/
stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
stmt.o2.u1 = 0;
stmt.o3.s1 = 0;
if (ontrue->generated) {
stmt.opcode = INSTR_IF;
stmt.o2.s1 = (ontrue->code_start-1) - code_statements_elements;
if (code_statements_add(stmt) < 0)
return false;
}
if (onfalse->generated) {
stmt.opcode = INSTR_IFNOT;
stmt.o2.s1 = (onfalse->code_start-1) - code_statements_elements;
if (code_statements_add(stmt) < 0)
return false;
}
if (!ontrue->generated) {
if (onfalse->generated) {
block = ontrue;
goto tailcall;
}
}
if (!onfalse->generated) {
if (ontrue->generated) {
block = onfalse;
goto tailcall;
}
}
/* neither ontrue nor onfalse exist */
stmt.opcode = INSTR_IFNOT;
stidx = code_statements_elements;
if (code_statements_add(stmt) < 0)
return false;
/* on false we jump, so add ontrue-path */
if (!gen_blocks_recursive(func, ontrue))
return false;
/* fixup the jump address */
code_statements_data[stidx].o2.s1 = code_statements_elements - stidx;
/* generate onfalse path */
if (onfalse->generated) {
/* fixup the jump address */
code_statements_data[stidx].o2.s1 = (onfalse->code_start) - (stidx);
/* may have been generated in the previous recursive call */
stmt.opcode = INSTR_GOTO;
stmt.o1.s1 = (onfalse->code_start) - code_statements_elements;
stmt.o2.s1 = 0;
stmt.o3.s1 = 0;
return (code_statements_add(stmt) >= 0);
}
/* if not, generate now */
block = onfalse;
goto tailcall;
}
if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
/* Trivial call translation:
* copy all params to OFS_PARM*
* if the output's storetype is not store_return,
* add append a STORE instruction!
*
* NOTES on how to do it better without much trouble:
* -) The liferanges!
* Simply check the liferange of all parameters for
* other CALLs. For each param with no CALL in its
* liferange, we can store it in an OFS_PARM at
* generation already. This would even include later
* reuse.... probably... :)
*/
size_t p;
ir_value *retvalue;
for (p = 0; p < instr->params_count; ++p)
{
ir_value *param = instr->params[p];
stmt.opcode = INSTR_STORE_F;
stmt.o3.u1 = 0;
stmt.opcode = type_store_instr[param->vtype];
stmt.o1.u1 = ir_value_code_addr(param);
stmt.o2.u1 = OFS_PARM0 + 3 * p;
if (code_statements_add(stmt) < 0)
return false;
}
stmt.opcode = INSTR_CALL0 + instr->params_count;
if (stmt.opcode > INSTR_CALL8)
stmt.opcode = INSTR_CALL8;
stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
stmt.o2.u1 = 0;
stmt.o3.u1 = 0;
if (code_statements_add(stmt) < 0)
return false;
retvalue = instr->_ops[0];
if (retvalue && retvalue->store != store_return && retvalue->life_count)
{
/* not to be kept in OFS_RETURN */
stmt.opcode = type_store_instr[retvalue->vtype];
stmt.o1.u1 = OFS_RETURN;
stmt.o2.u1 = ir_value_code_addr(retvalue);
stmt.o3.u1 = 0;
if (code_statements_add(stmt) < 0)
return false;
}
continue;
}
if (instr->opcode == INSTR_STATE) {
printf("TODO: state instruction\n");
return false;
}
stmt.opcode = instr->opcode;
stmt.o1.u1 = 0;
stmt.o2.u1 = 0;
stmt.o3.u1 = 0;
/* This is the general order of operands */
if (instr->_ops[0])
stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
if (instr->_ops[1])
stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
if (instr->_ops[2])
stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
{
stmt.o1.u1 = stmt.o3.u1;
stmt.o3.u1 = 0;
}
else if ((stmt.opcode >= INSTR_STORE_F &&
stmt.opcode <= INSTR_STORE_FNC) ||
(stmt.opcode >= INSTR_STOREP_F &&
stmt.opcode <= INSTR_STOREP_FNC))
{
/* 2-operand instructions with A -> B */
stmt.o2.u1 = stmt.o3.u1;
stmt.o3.u1 = 0;
}
if (code_statements_add(stmt) < 0)
return false;
}
return true;
}
static bool gen_function_code(ir_function *self)
{
ir_block *block;
prog_section_statement stmt;
/* Starting from entry point, we generate blocks "as they come"
* for now. Dead blocks will not be translated obviously.
*/
if (!self->blocks_count) {
printf("Function '%s' declared without body.\n", self->name);
return false;
}
block = self->blocks[0];
if (block->generated)
return true;
if (!gen_blocks_recursive(self, block)) {
printf("failed to generate blocks for '%s'\n", self->name);
return false;
}
/* otherwise code_write crashes since it debug-prints functions until AINSTR_END */
stmt.opcode = AINSTR_END;
stmt.o1.u1 = 0;
stmt.o2.u1 = 0;
stmt.o3.u1 = 0;
if (code_statements_add(stmt) < 0)
return false;
return true;
}
static bool gen_global_function(ir_builder *ir, ir_value *global)
{
prog_section_function fun;
ir_function *irfun;
size_t i;
size_t local_var_end;
if (!global->isconst || (!global->constval.vfunc))
{
printf("Invalid state of function-global: not constant: %s\n", global->name);
return false;
}
irfun = global->constval.vfunc;
fun.name = global->code.name;
fun.file = code_cachedstring(global->context.file);
fun.profile = 0; /* always 0 */
fun.nargs = irfun->params_count;
for (i = 0;i < 8; ++i) {
if (i >= fun.nargs)
fun.argsize[i] = 0;
else
fun.argsize[i] = type_sizeof[irfun->params[i]];
}
fun.firstlocal = code_globals_elements;
fun.locals = irfun->allocated_locals + irfun->locals_count;
local_var_end = 0;
for (i = 0; i < irfun->locals_count; ++i) {
if (!ir_builder_gen_global(ir, irfun->locals[i])) {
printf("Failed to generate global %s\n", irfun->locals[i]->name);
return false;
}
}
if (irfun->locals_count) {
ir_value *last = irfun->locals[irfun->locals_count-1];
local_var_end = last->code.globaladdr;
local_var_end += type_sizeof[last->vtype];
}
for (i = 0; i < irfun->values_count; ++i)
{
/* generate code.globaladdr for ssa values */
ir_value *v = irfun->values[i];
ir_value_code_setaddr(v, local_var_end + v->code.local);
}
for (i = 0; i < irfun->locals_count; ++i) {
/* fill the locals with zeros */
code_globals_add(0);
}
if (irfun->builtin)
fun.entry = irfun->builtin;
else {
fun.entry = code_statements_elements;
if (!gen_function_code(irfun)) {
printf("Failed to generate code for function %s\n", irfun->name);
return false;
}
}
return (code_functions_add(fun) >= 0);
}
static bool ir_builder_gen_global(ir_builder *self, ir_value *global)
{
size_t i;
int32_t *iptr;
prog_section_def def;
def.type = global->vtype;
def.offset = code_globals_elements;
def.name = global->code.name = code_genstring(global->name);
switch (global->vtype)
{
case TYPE_POINTER:
if (code_defs_add(def) < 0)
return false;
return gen_global_pointer(global);
case TYPE_FIELD:
if (code_defs_add(def) < 0)
return false;
return gen_global_field(global);
case TYPE_ENTITY:
/* fall through */
case TYPE_FLOAT:
{
if (code_defs_add(def) < 0)
return false;
if (global->isconst) {
iptr = (int32_t*)&global->constval.vfloat;
ir_value_code_setaddr(global, code_globals_add(*iptr));
} else
ir_value_code_setaddr(global, code_globals_add(0));
return global->code.globaladdr >= 0;
}
case TYPE_STRING:
{
if (code_defs_add(def) < 0)
return false;
if (global->isconst)
ir_value_code_setaddr(global, code_globals_add(code_cachedstring(global->constval.vstring)));
else
ir_value_code_setaddr(global, code_globals_add(0));
return global->code.globaladdr >= 0;
}
case TYPE_VECTOR:
{
size_t d;
if (code_defs_add(def) < 0)
return false;
if (global->isconst) {
iptr = (int32_t*)&global->constval.vvec;
ir_value_code_setaddr(global, code_globals_add(iptr[0]));
if (global->code.globaladdr < 0)
return false;
for (d = 1; d < type_sizeof[global->vtype]; ++d)
{
if (code_globals_add(iptr[d]) < 0)
return false;
}
} else {
ir_value_code_setaddr(global, code_globals_add(0));
if (global->code.globaladdr < 0)
return false;
for (d = 1; d < type_sizeof[global->vtype]; ++d)
{
if (code_globals_add(0) < 0)
return false;
}
}
return global->code.globaladdr >= 0;
}
case TYPE_FUNCTION:
if (code_defs_add(def) < 0)
return false;
ir_value_code_setaddr(global, code_globals_elements);
code_globals_add(code_functions_elements);
return gen_global_function(self, global);
case TYPE_VARIANT:
/* assume biggest type */
ir_value_code_setaddr(global, code_globals_add(0));
for (i = 1; i < type_sizeof[TYPE_VARIANT]; ++i)
code_globals_add(0);
return true;
default:
/* refuse to create 'void' type or any other fancy business. */
printf("Invalid type for global variable %s\n", global->name);
return false;
}
}
static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
{
prog_section_def def;
prog_section_field fld;
def.type = field->vtype;
def.offset = code_globals_elements;
/* create a global named the same as the field */
if (opts_standard == COMPILER_GMQCC) {
/* in our standard, the global gets a dot prefix */
size_t len = strlen(field->name);
char name[1024];
/* we really don't want to have to allocate this, and 1024
* bytes is more than enough for a variable/field name
*/
if (len+2 >= sizeof(name)) {
printf("invalid field name size: %u\n", (unsigned int)len);
return false;
}
name[0] = '.';
strcpy(name+1, field->name); /* no strncpy - we used strlen above */
name[len+1] = 0;
def.name = code_genstring(name);
fld.name = def.name + 1; /* we reuse that string table entry */
} else {
/* in plain QC, there cannot be a global with the same name,
* and so we also name the global the same.
* FIXME: fteqcc should create a global as well
* check if it actually uses the same name. Probably does
*/
def.name = code_genstring(field->name);
fld.name = def.name;
}
field->code.name = def.name;
if (code_defs_add(def) < 0)
return false;
fld.type = field->fieldtype;
if (fld.type == TYPE_VOID) {
printf("field is missing a type: %s - don't know its size\n", field->name);
return false;
}
fld.offset = code_alloc_field(type_sizeof[field->fieldtype]);
if (code_fields_add(fld) < 0)
return false;
ir_value_code_setaddr(field, code_globals_elements);
if (!code_globals_add(fld.offset))
return false;
if (fld.type == TYPE_VECTOR) {
if (!code_globals_add(fld.offset+1))
return false;
if (!code_globals_add(fld.offset+2))
return false;
}
return field->code.globaladdr >= 0;
}
bool ir_builder_generate(ir_builder *self, const char *filename)
{
size_t i;
code_init();
for (i = 0; i < self->fields_count; ++i)
{
if (!ir_builder_gen_field(self, self->fields[i])) {
return false;
}
}
for (i = 0; i < self->globals_count; ++i)
{
if (!ir_builder_gen_global(self, self->globals[i])) {
return false;
}
}
printf("writing '%s'...\n", filename);
return code_write(filename);
}
/***********************************************************************
*IR DEBUG Dump functions...
*/
#define IND_BUFSZ 1024
const char *qc_opname(int op)
{
if (op < 0) return "<INVALID>";
if (op < ( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
return asm_instr[op].m;
switch (op) {
case VINSTR_PHI: return "PHI";
case VINSTR_JUMP: return "JUMP";
case VINSTR_COND: return "COND";
default: return "<UNK>";
}
}
void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
{
size_t i;
char indent[IND_BUFSZ];
indent[0] = '\t';
indent[1] = 0;
oprintf("module %s\n", b->name);
for (i = 0; i < b->globals_count; ++i)
{
oprintf("global ");
if (b->globals[i]->isconst)
oprintf("%s = ", b->globals[i]->name);
ir_value_dump(b->globals[i], oprintf);
oprintf("\n");
}
for (i = 0; i < b->functions_count; ++i)
ir_function_dump(b->functions[i], indent, oprintf);
oprintf("endmodule %s\n", b->name);
}
void ir_function_dump(ir_function *f, char *ind,
int (*oprintf)(const char*, ...))
{
size_t i;
if (f->builtin != 0) {
oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
return;
}
oprintf("%sfunction %s\n", ind, f->name);
strncat(ind, "\t", IND_BUFSZ);
if (f->locals_count)
{
oprintf("%s%i locals:\n", ind, (int)f->locals_count);
for (i = 0; i < f->locals_count; ++i) {
oprintf("%s\t", ind);
ir_value_dump(f->locals[i], oprintf);
oprintf("\n");
}
}
if (f->blocks_count)
{
oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
for (i = 0; i < f->blocks_count; ++i) {
if (f->blocks[i]->run_id != f->run_id) {
oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
}
ir_block_dump(f->blocks[i], ind, oprintf);
}
}
ind[strlen(ind)-1] = 0;
oprintf("%sendfunction %s\n", ind, f->name);
}
void ir_block_dump(ir_block* b, char *ind,
int (*oprintf)(const char*, ...))
{
size_t i;
oprintf("%s:%s\n", ind, b->label);
strncat(ind, "\t", IND_BUFSZ);
for (i = 0; i < b->instr_count; ++i)
ir_instr_dump(b->instr[i], ind, oprintf);
ind[strlen(ind)-1] = 0;
}
void dump_phi(ir_instr *in, char *ind,
int (*oprintf)(const char*, ...))
{
size_t i;
oprintf("%s <- phi ", in->_ops[0]->name);
for (i = 0; i < in->phi_count; ++i)
{
oprintf("([%s] : %s) ", in->phi[i].from->label,
in->phi[i].value->name);
}
oprintf("\n");
}
void ir_instr_dump(ir_instr *in, char *ind,
int (*oprintf)(const char*, ...))
{
size_t i;
const char *comma = NULL;
oprintf("%s (%i) ", ind, (int)in->eid);
if (in->opcode == VINSTR_PHI) {
dump_phi(in, ind, oprintf);
return;
}
strncat(ind, "\t", IND_BUFSZ);
if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
ir_value_dump(in->_ops[0], oprintf);
if (in->_ops[1] || in->_ops[2])
oprintf(" <- ");
}
if (in->opcode == INSTR_CALL0) {
oprintf("CALL%i\t", in->params_count);
} else
oprintf("%s\t", qc_opname(in->opcode));
if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
ir_value_dump(in->_ops[0], oprintf);
comma = ",\t";
}
else
{
for (i = 1; i != 3; ++i) {
if (in->_ops[i]) {
if (comma)
oprintf(comma);
ir_value_dump(in->_ops[i], oprintf);
comma = ",\t";
}
}
}
if (in->bops[0]) {
if (comma)
oprintf(comma);
oprintf("[%s]", in->bops[0]->label);
comma = ",\t";
}
if (in->bops[1])
oprintf("%s[%s]", comma, in->bops[1]->label);
oprintf("\n");
ind[strlen(ind)-1] = 0;
}
void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
{
if (v->isconst) {
switch (v->vtype) {
default:
case TYPE_VOID:
oprintf("(void)");
break;
case TYPE_FUNCTION:
oprintf("(function)");
break;
case TYPE_FLOAT:
oprintf("%g", v->constval.vfloat);
break;
case TYPE_VECTOR:
oprintf("'%g %g %g'",
v->constval.vvec.x,
v->constval.vvec.y,
v->constval.vvec.z);
break;
case TYPE_ENTITY:
oprintf("(entity)");
break;
case TYPE_STRING:
oprintf("\"%s\"", v->constval.vstring);
break;
#if 0
case TYPE_INTEGER:
oprintf("%i", v->constval.vint);
break;
#endif
case TYPE_POINTER:
oprintf("&%s",
v->constval.vpointer->name);
break;
}
} else {
oprintf("%s", v->name);
}
}
void ir_value_dump_life(ir_value *self, int (*oprintf)(const char*,...))
{
size_t i;
oprintf("Life of %s:\n", self->name);
for (i = 0; i < self->life_count; ++i)
{
oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
}
}