gmqcc/ast.c
2012-12-29 21:15:59 +01:00

2982 lines
91 KiB
C

/*
* Copyright (C) 2012
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gmqcc.h"
#include "ast.h"
#define ast_instantiate(T, ctx, destroyfn) \
T* self = (T*)mem_a(sizeof(T)); \
if (!self) { \
return NULL; \
} \
ast_node_init((ast_node*)self, ctx, TYPE_##T); \
( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
/* It must not be possible to get here. */
static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
{
(void)self;
con_err("ast node missing destroy()\n");
abort();
}
/* Initialize main ast node aprts */
static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
{
self->node.context = ctx;
self->node.destroy = &_ast_node_destroy;
self->node.keep = false;
self->node.nodetype = nodetype;
self->node.side_effects = false;
}
/* weight and side effects */
static void _ast_propagate_effects(ast_node *self, ast_node *other)
{
if (ast_side_effects(other))
ast_side_effects(self) = true;
}
#define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
/* General expression initialization */
static void ast_expression_init(ast_expression *self,
ast_expression_codegen *codegen)
{
self->expression.codegen = codegen;
self->expression.vtype = TYPE_VOID;
self->expression.next = NULL;
self->expression.outl = NULL;
self->expression.outr = NULL;
self->expression.params = NULL;
self->expression.count = 0;
self->expression.flags = 0;
}
static void ast_expression_delete(ast_expression *self)
{
size_t i;
if (self->expression.next)
ast_delete(self->expression.next);
for (i = 0; i < vec_size(self->expression.params); ++i) {
ast_delete(self->expression.params[i]);
}
vec_free(self->expression.params);
}
static void ast_expression_delete_full(ast_expression *self)
{
ast_expression_delete(self);
mem_d(self);
}
ast_value* ast_value_copy(const ast_value *self)
{
size_t i;
const ast_expression_common *fromex;
ast_expression_common *selfex;
ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
if (self->expression.next) {
cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
if (!cp->expression.next) {
ast_value_delete(cp);
return NULL;
}
}
fromex = &self->expression;
selfex = &cp->expression;
selfex->count = fromex->count;
selfex->flags = fromex->flags;
for (i = 0; i < vec_size(fromex->params); ++i) {
ast_value *v = ast_value_copy(fromex->params[i]);
if (!v) {
ast_value_delete(cp);
return NULL;
}
vec_push(selfex->params, v);
}
return cp;
}
bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
{
size_t i;
const ast_expression_common *fromex;
ast_expression_common *selfex;
self->expression.vtype = other->expression.vtype;
if (other->expression.next) {
self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
if (!self->expression.next)
return false;
}
fromex = &other->expression;
selfex = &self->expression;
selfex->count = fromex->count;
selfex->flags = fromex->flags;
for (i = 0; i < vec_size(fromex->params); ++i) {
ast_value *v = ast_value_copy(fromex->params[i]);
if (!v)
return false;
vec_push(selfex->params, v);
}
return true;
}
static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
{
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
ast_expression_init(self, NULL);
self->expression.codegen = NULL;
self->expression.next = NULL;
self->expression.vtype = vtype;
return self;
}
ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
{
size_t i;
const ast_expression_common *fromex;
ast_expression_common *selfex;
if (!ex)
return NULL;
else
{
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
ast_expression_init(self, NULL);
fromex = &ex->expression;
selfex = &self->expression;
/* This may never be codegen()d */
selfex->codegen = NULL;
selfex->vtype = fromex->vtype;
if (fromex->next)
{
selfex->next = ast_type_copy(ctx, fromex->next);
if (!selfex->next) {
ast_expression_delete_full(self);
return NULL;
}
}
else
selfex->next = NULL;
selfex->count = fromex->count;
selfex->flags = fromex->flags;
for (i = 0; i < vec_size(fromex->params); ++i) {
ast_value *v = ast_value_copy(fromex->params[i]);
if (!v) {
ast_expression_delete_full(self);
return NULL;
}
vec_push(selfex->params, v);
}
return self;
}
}
bool ast_compare_type(ast_expression *a, ast_expression *b)
{
if (a->expression.vtype != b->expression.vtype)
return false;
if (!a->expression.next != !b->expression.next)
return false;
if (vec_size(a->expression.params) != vec_size(b->expression.params))
return false;
if ((a->expression.flags & AST_FLAG_TYPE_MASK) !=
(b->expression.flags & AST_FLAG_TYPE_MASK) )
{
return false;
}
if (vec_size(a->expression.params)) {
size_t i;
for (i = 0; i < vec_size(a->expression.params); ++i) {
if (!ast_compare_type((ast_expression*)a->expression.params[i],
(ast_expression*)b->expression.params[i]))
return false;
}
}
if (a->expression.next)
return ast_compare_type(a->expression.next, b->expression.next);
return true;
}
static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
{
const char *typestr;
size_t typelen;
size_t i;
if (!e) {
if (pos + 6 >= bufsize)
goto full;
strcpy(buf + pos, "(null)");
return pos + 6;
}
if (pos + 1 >= bufsize)
goto full;
switch (e->expression.vtype) {
case TYPE_VARIANT:
strcpy(buf + pos, "(variant)");
return pos + 9;
case TYPE_FIELD:
buf[pos++] = '.';
return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
case TYPE_POINTER:
if (pos + 3 >= bufsize)
goto full;
buf[pos++] = '*';
buf[pos++] = '(';
pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = ')';
return pos;
case TYPE_FUNCTION:
pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
if (pos + 2 >= bufsize)
goto full;
if (!vec_size(e->expression.params)) {
buf[pos++] = '(';
buf[pos++] = ')';
return pos;
}
buf[pos++] = '(';
pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
for (i = 1; i < vec_size(e->expression.params); ++i) {
if (pos + 2 >= bufsize)
goto full;
buf[pos++] = ',';
buf[pos++] = ' ';
pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
}
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = ')';
return pos;
case TYPE_ARRAY:
pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = '[';
pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
if (pos + 1 >= bufsize)
goto full;
buf[pos++] = ']';
return pos;
default:
typestr = type_name[e->expression.vtype];
typelen = strlen(typestr);
if (pos + typelen >= bufsize)
goto full;
strcpy(buf + pos, typestr);
return pos + typelen;
}
full:
buf[bufsize-3] = '.';
buf[bufsize-2] = '.';
buf[bufsize-1] = '.';
return bufsize;
}
void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
{
size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
buf[pos] = 0;
}
ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
{
ast_instantiate(ast_value, ctx, ast_value_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_value_codegen);
self->expression.node.keep = true; /* keep */
self->name = name ? util_strdup(name) : NULL;
self->expression.vtype = t;
self->expression.next = NULL;
self->isfield = false;
self->cvq = CV_NONE;
self->hasvalue = false;
self->uses = 0;
memset(&self->constval, 0, sizeof(self->constval));
self->ir_v = NULL;
self->ir_values = NULL;
self->ir_value_count = 0;
self->setter = NULL;
self->getter = NULL;
return self;
}
void ast_value_delete(ast_value* self)
{
if (self->name)
mem_d((void*)self->name);
if (self->hasvalue) {
switch (self->expression.vtype)
{
case TYPE_STRING:
mem_d((void*)self->constval.vstring);
break;
case TYPE_FUNCTION:
/* unlink us from the function node */
self->constval.vfunc->vtype = NULL;
break;
/* NOTE: delete function? currently collected in
* the parser structure
*/
default:
break;
}
}
if (self->ir_values)
mem_d(self->ir_values);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
void ast_value_params_add(ast_value *self, ast_value *p)
{
vec_push(self->expression.params, p);
}
bool ast_value_set_name(ast_value *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
return !!self->name;
}
ast_binary* ast_binary_new(lex_ctx ctx, int op,
ast_expression* left, ast_expression* right)
{
ast_instantiate(ast_binary, ctx, ast_binary_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
self->op = op;
self->left = left;
self->right = right;
ast_propagate_effects(self, left);
ast_propagate_effects(self, right);
if (op >= INSTR_EQ_F && op <= INSTR_GT)
self->expression.vtype = TYPE_FLOAT;
else if (op == INSTR_AND || op == INSTR_OR) {
if (OPTS_FLAG(PERL_LOGIC))
ast_type_adopt(self, right);
else
self->expression.vtype = TYPE_FLOAT;
}
else if (op == INSTR_BITAND || op == INSTR_BITOR)
self->expression.vtype = TYPE_FLOAT;
else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
self->expression.vtype = TYPE_VECTOR;
else if (op == INSTR_MUL_V)
self->expression.vtype = TYPE_FLOAT;
else
self->expression.vtype = left->expression.vtype;
return self;
}
void ast_binary_delete(ast_binary *self)
{
ast_unref(self->left);
ast_unref(self->right);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
ast_expression* left, ast_expression* right)
{
ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
ast_side_effects(self) = true;
self->opstore = storop;
self->opbin = op;
self->dest = left;
self->source = right;
self->keep_dest = false;
if (!ast_type_adopt(self, left)) {
ast_delete(self);
return NULL;
}
return self;
}
void ast_binstore_delete(ast_binstore *self)
{
if (!self->keep_dest)
ast_unref(self->dest);
ast_unref(self->source);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_unary* ast_unary_new(lex_ctx ctx, int op,
ast_expression *expr)
{
ast_instantiate(ast_unary, ctx, ast_unary_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
self->op = op;
self->operand = expr;
ast_propagate_effects(self, expr);
if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
self->expression.vtype = TYPE_FLOAT;
} else
compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
return self;
}
void ast_unary_delete(ast_unary *self)
{
if (self->operand) ast_unref(self->operand);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
{
ast_instantiate(ast_return, ctx, ast_return_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
self->operand = expr;
if (expr)
ast_propagate_effects(self, expr);
return self;
}
void ast_return_delete(ast_return *self)
{
if (self->operand)
ast_unref(self->operand);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
{
if (field->expression.vtype != TYPE_FIELD) {
compile_error(ctx, "ast_entfield_new with expression not of type field");
return NULL;
}
return ast_entfield_new_force(ctx, entity, field, field->expression.next);
}
ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
{
ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
if (!outtype) {
mem_d(self);
/* Error: field has no type... */
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
self->entity = entity;
self->field = field;
ast_propagate_effects(self, entity);
ast_propagate_effects(self, field);
if (!ast_type_adopt(self, outtype)) {
ast_entfield_delete(self);
return NULL;
}
return self;
}
void ast_entfield_delete(ast_entfield *self)
{
ast_unref(self->entity);
ast_unref(self->field);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
{
ast_instantiate(ast_member, ctx, ast_member_delete);
if (field >= 3) {
mem_d(self);
return NULL;
}
if (owner->expression.vtype != TYPE_VECTOR &&
owner->expression.vtype != TYPE_FIELD) {
compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
self->expression.node.keep = true; /* keep */
if (owner->expression.vtype == TYPE_VECTOR) {
self->expression.vtype = TYPE_FLOAT;
self->expression.next = NULL;
} else {
self->expression.vtype = TYPE_FIELD;
self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
}
self->rvalue = false;
self->owner = owner;
ast_propagate_effects(self, owner);
self->field = field;
if (name)
self->name = util_strdup(name);
else
self->name = NULL;
return self;
}
void ast_member_delete(ast_member *self)
{
/* The owner is always an ast_value, which has .keep=true,
* also: ast_members are usually deleted after the owner, thus
* this will cause invalid access
ast_unref(self->owner);
* once we allow (expression).x to access a vector-member, we need
* to change this: preferably by creating an alternate ast node for this
* purpose that is not garbage-collected.
*/
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
bool ast_member_set_name(ast_member *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
return !!self->name;
}
ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
{
ast_expression *outtype;
ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
outtype = array->expression.next;
if (!outtype) {
mem_d(self);
/* Error: field has no type... */
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
self->array = array;
self->index = index;
ast_propagate_effects(self, array);
ast_propagate_effects(self, index);
if (!ast_type_adopt(self, outtype)) {
ast_array_index_delete(self);
return NULL;
}
if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
if (self->expression.vtype != TYPE_ARRAY) {
compile_error(ast_ctx(self), "array_index node on type");
ast_array_index_delete(self);
return NULL;
}
self->array = outtype;
self->expression.vtype = TYPE_FIELD;
}
return self;
}
void ast_array_index_delete(ast_array_index *self)
{
ast_unref(self->array);
ast_unref(self->index);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
if (!ontrue && !onfalse) {
/* because it is invalid */
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
ast_propagate_effects(self, cond);
if (ontrue)
ast_propagate_effects(self, ontrue);
if (onfalse)
ast_propagate_effects(self, onfalse);
return self;
}
void ast_ifthen_delete(ast_ifthen *self)
{
ast_unref(self->cond);
if (self->on_true)
ast_unref(self->on_true);
if (self->on_false)
ast_unref(self->on_false);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
/* This time NEITHER must be NULL */
if (!ontrue || !onfalse) {
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
ast_propagate_effects(self, cond);
ast_propagate_effects(self, ontrue);
ast_propagate_effects(self, onfalse);
if (!ast_type_adopt(self, ontrue)) {
ast_ternary_delete(self);
return NULL;
}
return self;
}
void ast_ternary_delete(ast_ternary *self)
{
ast_unref(self->cond);
ast_unref(self->on_true);
ast_unref(self->on_false);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_loop* ast_loop_new(lex_ctx ctx,
ast_expression *initexpr,
ast_expression *precond, bool pre_not,
ast_expression *postcond, bool post_not,
ast_expression *increment,
ast_expression *body)
{
ast_instantiate(ast_loop, ctx, ast_loop_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
self->initexpr = initexpr;
self->precond = precond;
self->postcond = postcond;
self->increment = increment;
self->body = body;
self->pre_not = pre_not;
self->post_not = post_not;
if (initexpr)
ast_propagate_effects(self, initexpr);
if (precond)
ast_propagate_effects(self, precond);
if (postcond)
ast_propagate_effects(self, postcond);
if (increment)
ast_propagate_effects(self, increment);
if (body)
ast_propagate_effects(self, body);
return self;
}
void ast_loop_delete(ast_loop *self)
{
if (self->initexpr)
ast_unref(self->initexpr);
if (self->precond)
ast_unref(self->precond);
if (self->postcond)
ast_unref(self->postcond);
if (self->increment)
ast_unref(self->increment);
if (self->body)
ast_unref(self->body);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont, unsigned int levels)
{
ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
self->is_continue = iscont;
self->levels = levels;
return self;
}
void ast_breakcont_delete(ast_breakcont *self)
{
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
{
ast_instantiate(ast_switch, ctx, ast_switch_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
self->operand = op;
self->cases = NULL;
ast_propagate_effects(self, op);
return self;
}
void ast_switch_delete(ast_switch *self)
{
size_t i;
ast_unref(self->operand);
for (i = 0; i < vec_size(self->cases); ++i) {
if (self->cases[i].value)
ast_unref(self->cases[i].value);
ast_unref(self->cases[i].code);
}
vec_free(self->cases);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_label* ast_label_new(lex_ctx ctx, const char *name)
{
ast_instantiate(ast_label, ctx, ast_label_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
self->name = util_strdup(name);
self->irblock = NULL;
self->gotos = NULL;
return self;
}
void ast_label_delete(ast_label *self)
{
mem_d((void*)self->name);
vec_free(self->gotos);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
void ast_label_register_goto(ast_label *self, ast_goto *g)
{
vec_push(self->gotos, g);
}
ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
{
ast_instantiate(ast_goto, ctx, ast_goto_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
self->name = util_strdup(name);
self->target = NULL;
self->irblock_from = NULL;
return self;
}
void ast_goto_delete(ast_goto *self)
{
mem_d((void*)self->name);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
void ast_goto_set_label(ast_goto *self, ast_label *label)
{
self->target = label;
}
ast_call* ast_call_new(lex_ctx ctx,
ast_expression *funcexpr)
{
ast_instantiate(ast_call, ctx, ast_call_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
ast_side_effects(self) = true;
self->params = NULL;
self->func = funcexpr;
ast_type_adopt(self, funcexpr->expression.next);
return self;
}
void ast_call_delete(ast_call *self)
{
size_t i;
for (i = 0; i < vec_size(self->params); ++i)
ast_unref(self->params[i]);
vec_free(self->params);
if (self->func)
ast_unref(self->func);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
bool ast_call_check_types(ast_call *self)
{
size_t i;
bool retval = true;
const ast_expression *func = self->func;
size_t count = vec_size(self->params);
if (count > vec_size(func->expression.params))
count = vec_size(func->expression.params);
for (i = 0; i < count; ++i) {
if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
char texp[1024];
char tgot[1024];
ast_type_to_string(self->params[i], tgot, sizeof(tgot));
ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
(unsigned int)(i+1), texp, tgot);
/* we don't immediately return */
retval = false;
}
}
return retval;
}
ast_store* ast_store_new(lex_ctx ctx, int op,
ast_expression *dest, ast_expression *source)
{
ast_instantiate(ast_store, ctx, ast_store_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
ast_side_effects(self) = true;
self->op = op;
self->dest = dest;
self->source = source;
if (!ast_type_adopt(self, dest)) {
ast_delete(self);
return NULL;
}
return self;
}
void ast_store_delete(ast_store *self)
{
ast_unref(self->dest);
ast_unref(self->source);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_block* ast_block_new(lex_ctx ctx)
{
ast_instantiate(ast_block, ctx, ast_block_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_block_codegen);
self->locals = NULL;
self->exprs = NULL;
self->collect = NULL;
return self;
}
bool ast_block_add_expr(ast_block *self, ast_expression *e)
{
ast_propagate_effects(self, e);
vec_push(self->exprs, e);
if (self->expression.next) {
ast_delete(self->expression.next);
self->expression.next = NULL;
}
if (!ast_type_adopt(self, e)) {
compile_error(ast_ctx(self), "internal error: failed to adopt type");
return false;
}
return true;
}
void ast_block_collect(ast_block *self, ast_expression *expr)
{
vec_push(self->collect, expr);
expr->expression.node.keep = true;
}
void ast_block_delete(ast_block *self)
{
size_t i;
for (i = 0; i < vec_size(self->exprs); ++i)
ast_unref(self->exprs[i]);
vec_free(self->exprs);
for (i = 0; i < vec_size(self->locals); ++i)
ast_delete(self->locals[i]);
vec_free(self->locals);
for (i = 0; i < vec_size(self->collect); ++i)
ast_delete(self->collect[i]);
vec_free(self->collect);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
bool ast_block_set_type(ast_block *self, ast_expression *from)
{
if (self->expression.next)
ast_delete(self->expression.next);
if (!ast_type_adopt(self, from))
return false;
return true;
}
ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
{
ast_instantiate(ast_function, ctx, ast_function_delete);
if (!vtype ||
vtype->hasvalue ||
vtype->expression.vtype != TYPE_FUNCTION)
{
compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
(int)!vtype,
(int)vtype->hasvalue,
vtype->expression.vtype);
mem_d(self);
return NULL;
}
self->vtype = vtype;
self->name = name ? util_strdup(name) : NULL;
self->blocks = NULL;
self->labelcount = 0;
self->builtin = 0;
self->ir_func = NULL;
self->curblock = NULL;
self->breakblocks = NULL;
self->continueblocks = NULL;
vtype->hasvalue = true;
vtype->constval.vfunc = self;
return self;
}
void ast_function_delete(ast_function *self)
{
size_t i;
if (self->name)
mem_d((void*)self->name);
if (self->vtype) {
/* ast_value_delete(self->vtype); */
self->vtype->hasvalue = false;
self->vtype->constval.vfunc = NULL;
/* We use unref - if it was stored in a global table it is supposed
* to be deleted from *there*
*/
ast_unref(self->vtype);
}
for (i = 0; i < vec_size(self->blocks); ++i)
ast_delete(self->blocks[i]);
vec_free(self->blocks);
vec_free(self->breakblocks);
vec_free(self->continueblocks);
mem_d(self);
}
const char* ast_function_label(ast_function *self, const char *prefix)
{
size_t id;
size_t len;
char *from;
if (!opts.dump && !opts.dumpfin && !opts.debug)
return NULL;
id = (self->labelcount++);
len = strlen(prefix);
from = self->labelbuf + sizeof(self->labelbuf)-1;
*from-- = 0;
do {
*from-- = (id%10) + '0';
id /= 10;
} while (id);
++from;
memcpy(from - len, prefix, len);
return from - len;
}
/*********************************************************************/
/* AST codegen part
* by convention you must never pass NULL to the 'ir_value **out'
* parameter. If you really don't care about the output, pass a dummy.
* But I can't imagine a pituation where the output is truly unnecessary.
*/
void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
{
if (out->vtype == TYPE_FIELD)
out->fieldtype = self->next->expression.vtype;
if (out->vtype == TYPE_FUNCTION)
out->outtype = self->next->expression.vtype;
}
#define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
{
(void)func;
(void)lvalue;
if (self->expression.vtype == TYPE_NIL) {
*out = func->ir_func->owner->nil;
return true;
}
/* NOTE: This is the codegen for a variable used in an expression.
* It is not the codegen to generate the value. For this purpose,
* ast_local_codegen and ast_global_codegen are to be used before this
* is executed. ast_function_codegen should take care of its locals,
* and the ast-user should take care of ast_global_codegen to be used
* on all the globals.
*/
if (!self->ir_v) {
char tname[1024]; /* typename is reserved in C++ */
ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
return false;
}
*out = self->ir_v;
return true;
}
bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
{
ir_value *v = NULL;
if (self->expression.vtype == TYPE_NIL) {
compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
return false;
}
if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
{
ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
if (!func)
return false;
func->context = ast_ctx(self);
func->value->context = ast_ctx(self);
self->constval.vfunc->ir_func = func;
self->ir_v = func->value;
/* The function is filled later on ast_function_codegen... */
return true;
}
if (isfield && self->expression.vtype == TYPE_FIELD) {
ast_expression *fieldtype = self->expression.next;
if (self->hasvalue) {
compile_error(ast_ctx(self), "TODO: constant field pointers with value");
goto error;
}
if (fieldtype->expression.vtype == TYPE_ARRAY) {
size_t ai;
char *name;
size_t namelen;
ast_expression_common *elemtype;
int vtype;
ast_value *array = (ast_value*)fieldtype;
if (!ast_istype(fieldtype, ast_value)) {
compile_error(ast_ctx(self), "internal error: ast_value required");
return false;
}
/* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
if (!array->expression.count || array->expression.count > opts.max_array_size)
compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
elemtype = &array->expression.next->expression;
vtype = elemtype->vtype;
v = ir_builder_create_field(ir, self->name, vtype);
if (!v) {
compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
return false;
}
v->context = ast_ctx(self);
v->unique_life = true;
v->locked = true;
array->ir_v = self->ir_v = v;
namelen = strlen(self->name);
name = (char*)mem_a(namelen + 16);
strcpy(name, self->name);
array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
array->ir_values[0] = v;
for (ai = 1; ai < array->expression.count; ++ai) {
snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
if (!array->ir_values[ai]) {
mem_d(name);
compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
return false;
}
array->ir_values[ai]->context = ast_ctx(self);
array->ir_values[ai]->unique_life = true;
array->ir_values[ai]->locked = true;
}
mem_d(name);
}
else
{
v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
if (!v)
return false;
v->context = ast_ctx(self);
self->ir_v = v;
}
return true;
}
if (self->expression.vtype == TYPE_ARRAY) {
size_t ai;
char *name;
size_t namelen;
ast_expression_common *elemtype = &self->expression.next->expression;
int vtype = elemtype->vtype;
/* same as with field arrays */
if (!self->expression.count || self->expression.count > opts.max_array_size)
compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
v = ir_builder_create_global(ir, self->name, vtype);
if (!v) {
compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
return false;
}
v->context = ast_ctx(self);
v->unique_life = true;
v->locked = true;
namelen = strlen(self->name);
name = (char*)mem_a(namelen + 16);
strcpy(name, self->name);
self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
self->ir_values[0] = v;
for (ai = 1; ai < self->expression.count; ++ai) {
snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
if (!self->ir_values[ai]) {
mem_d(name);
compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
return false;
}
self->ir_values[ai]->context = ast_ctx(self);
self->ir_values[ai]->unique_life = true;
self->ir_values[ai]->locked = true;
}
mem_d(name);
}
else
{
/* Arrays don't do this since there's no "array" value which spans across the
* whole thing.
*/
v = ir_builder_create_global(ir, self->name, self->expression.vtype);
if (!v) {
compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
return false;
}
codegen_output_type(self, v);
v->context = ast_ctx(self);
}
if (self->hasvalue) {
switch (self->expression.vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
case TYPE_ARRAY:
compile_error(ast_ctx(self), "TODO: global constant array");
break;
case TYPE_FUNCTION:
compile_error(ast_ctx(self), "global of type function not properly generated");
goto error;
/* Cannot generate an IR value for a function,
* need a pointer pointing to a function rather.
*/
case TYPE_FIELD:
if (!self->constval.vfield) {
compile_error(ast_ctx(self), "field constant without vfield set");
goto error;
}
if (!self->constval.vfield->ir_v) {
compile_error(ast_ctx(self), "field constant generated before its field");
goto error;
}
if (!ir_value_set_field(v, self->constval.vfield->ir_v))
goto error;
break;
default:
compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
break;
}
}
/* link us to the ir_value */
v->cvq = self->cvq;
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
{
ir_value *v = NULL;
if (self->expression.vtype == TYPE_NIL) {
compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
return false;
}
if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
{
/* Do we allow local functions? I think not...
* this is NOT a function pointer atm.
*/
return false;
}
if (self->expression.vtype == TYPE_ARRAY) {
size_t ai;
char *name;
size_t namelen;
ast_expression_common *elemtype = &self->expression.next->expression;
int vtype = elemtype->vtype;
func->flags |= IR_FLAG_HAS_ARRAYS;
if (param) {
compile_error(ast_ctx(self), "array-parameters are not supported");
return false;
}
/* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
if (!self->expression.count || self->expression.count > opts.max_array_size) {
compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
}
self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
if (!self->ir_values) {
compile_error(ast_ctx(self), "failed to allocate array values");
return false;
}
v = ir_function_create_local(func, self->name, vtype, param);
if (!v) {
compile_error(ast_ctx(self), "ir_function_create_local failed");
return false;
}
v->context = ast_ctx(self);
v->unique_life = true;
v->locked = true;
namelen = strlen(self->name);
name = (char*)mem_a(namelen + 16);
strcpy(name, self->name);
self->ir_values[0] = v;
for (ai = 1; ai < self->expression.count; ++ai) {
snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
if (!self->ir_values[ai]) {
compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
return false;
}
self->ir_values[ai]->context = ast_ctx(self);
self->ir_values[ai]->unique_life = true;
self->ir_values[ai]->locked = true;
}
}
else
{
v = ir_function_create_local(func, self->name, self->expression.vtype, param);
if (!v)
return false;
codegen_output_type(self, v);
v->context = ast_ctx(self);
}
/* A constant local... hmmm...
* I suppose the IR will have to deal with this
*/
if (self->hasvalue) {
switch (self->expression.vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
default:
compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
break;
}
}
/* link us to the ir_value */
v->cvq = self->cvq;
self->ir_v = v;
if (!ast_generate_accessors(self, func->owner))
return false;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_generate_accessors(ast_value *self, ir_builder *ir)
{
size_t i;
bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
if (!self->setter || !self->getter)
return true;
for (i = 0; i < self->expression.count; ++i) {
if (!self->ir_values) {
compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
return false;
}
if (!self->ir_values[i]) {
compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
return false;
}
if (self->ir_values[i]->life) {
compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
return false;
}
}
opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
if (self->setter) {
if (!ast_global_codegen (self->setter, ir, false) ||
!ast_function_codegen(self->setter->constval.vfunc, ir) ||
!ir_function_finalize(self->setter->constval.vfunc->ir_func))
{
compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
return false;
}
}
if (self->getter) {
if (!ast_global_codegen (self->getter, ir, false) ||
!ast_function_codegen(self->getter->constval.vfunc, ir) ||
!ir_function_finalize(self->getter->constval.vfunc->ir_func))
{
compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
return false;
}
}
for (i = 0; i < self->expression.count; ++i) {
vec_free(self->ir_values[i]->life);
}
opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
return true;
}
bool ast_function_codegen(ast_function *self, ir_builder *ir)
{
ir_function *irf;
ir_value *dummy;
ast_expression_common *ec;
size_t i;
(void)ir;
irf = self->ir_func;
if (!irf) {
compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
return false;
}
/* fill the parameter list */
ec = &self->vtype->expression;
for (i = 0; i < vec_size(ec->params); ++i)
{
if (ec->params[i]->expression.vtype == TYPE_FIELD)
vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
else
vec_push(irf->params, ec->params[i]->expression.vtype);
if (!self->builtin) {
if (!ast_local_codegen(ec->params[i], self->ir_func, true))
return false;
}
}
if (self->builtin) {
irf->builtin = self->builtin;
return true;
}
if (!vec_size(self->blocks)) {
compile_error(ast_ctx(self), "function `%s` has no body", self->name);
return false;
}
self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
if (!self->curblock) {
compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
return false;
}
for (i = 0; i < vec_size(self->blocks); ++i) {
ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
return false;
}
/* TODO: check return types */
if (!self->curblock->final)
{
if (!self->vtype->expression.next ||
self->vtype->expression.next->expression.vtype == TYPE_VOID)
{
return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
}
else if (vec_size(self->curblock->entries))
{
/* error("missing return"); */
if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
"control reaches end of non-void function (`%s`) via %s",
self->name, self->curblock->label))
{
return false;
}
return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
}
}
return true;
}
/* Note, you will not see ast_block_codegen generate ir_blocks.
* To the AST and the IR, blocks are 2 different things.
* In the AST it represents a block of code, usually enclosed in
* curly braces {...}.
* While in the IR it represents a block in terms of control-flow.
*/
bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
{
size_t i;
/* We don't use this
* Note: an ast-representation using the comma-operator
* of the form: (a, b, c) = x should not assign to c...
*/
if (lvalue) {
compile_error(ast_ctx(self), "not an l-value (code-block)");
return false;
}
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
/* output is NULL at first, we'll have each expression
* assign to out output, thus, a comma-operator represention
* using an ast_block will return the last generated value,
* so: (b, c) + a executed both b and c, and returns c,
* which is then added to a.
*/
*out = NULL;
/* generate locals */
for (i = 0; i < vec_size(self->locals); ++i)
{
if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
if (opts.debug)
compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
return false;
}
}
for (i = 0; i < vec_size(self->exprs); ++i)
{
ast_expression_codegen *gen;
if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
return false;
continue;
}
gen = self->exprs[i]->expression.codegen;
if (!(*gen)(self->exprs[i], func, false, out))
return false;
}
self->expression.outr = *out;
return true;
}
bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left = NULL;
ir_value *right = NULL;
ast_value *arr;
ast_value *idx = 0;
ast_array_index *ai = NULL;
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
return true;
}
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
return true;
}
if (ast_istype(self->dest, ast_array_index))
{
ai = (ast_array_index*)self->dest;
idx = (ast_value*)ai->index;
if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
ai = NULL;
}
if (ai) {
/* we need to call the setter */
ir_value *iridx, *funval;
ir_instr *call;
if (lvalue) {
compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
return false;
}
arr = (ast_value*)ai->array;
if (!ast_istype(ai->array, ast_value) || !arr->setter) {
compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
return false;
}
cgen = idx->expression.codegen;
if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
return false;
cgen = arr->setter->expression.codegen;
if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
return false;
cgen = self->source->expression.codegen;
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
if (!call)
return false;
ir_call_param(call, iridx);
ir_call_param(call, right);
self->expression.outr = right;
}
else
{
/* regular code */
cgen = self->dest->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
return false;
self->expression.outl = left;
cgen = self->source->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
return false;
self->expression.outr = right;
}
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? left : right);
return true;
}
bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
/* A binary operation cannot yield an l-value */
if (lvalue) {
compile_error(ast_ctx(self), "not an l-value (binop)");
return false;
}
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
(self->op == INSTR_AND || self->op == INSTR_OR))
{
/* short circuit evaluation */
ir_block *other, *merge;
ir_block *from_left, *from_right;
ir_instr *phi;
size_t merge_id;
/* prepare end-block */
merge_id = vec_size(func->ir_func->blocks);
merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
/* generate the left expression */
cgen = self->left->expression.codegen;
if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
return false;
/* remember the block */
from_left = func->curblock;
/* create a new block for the right expression */
other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
if (self->op == INSTR_AND) {
/* on AND: left==true -> other */
if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
return false;
} else {
/* on OR: left==false -> other */
if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
return false;
}
/* use the likely flag */
vec_last(func->curblock->instr)->likely = true;
/* enter the right-expression's block */
func->curblock = other;
/* generate */
cgen = self->right->expression.codegen;
if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
return false;
/* remember block */
from_right = func->curblock;
/* jump to the merge block */
if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
return false;
vec_remove(func->ir_func->blocks, merge_id, 1);
vec_push(func->ir_func->blocks, merge);
func->curblock = merge;
phi = ir_block_create_phi(func->curblock, ast_ctx(self),
ast_function_label(func, "sce_value"),
self->expression.vtype);
ir_phi_add(phi, from_left, left);
ir_phi_add(phi, from_right, right);
*out = ir_phi_value(phi);
if (!*out)
return false;
if (!OPTS_FLAG(PERL_LOGIC)) {
/* cast-to-bool */
if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
*out = ir_block_create_unary(func->curblock, ast_ctx(self),
ast_function_label(func, "sce_bool_v"),
INSTR_NOT_V, *out);
if (!*out)
return false;
*out = ir_block_create_unary(func->curblock, ast_ctx(self),
ast_function_label(func, "sce_bool"),
INSTR_NOT_F, *out);
if (!*out)
return false;
}
else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
*out = ir_block_create_unary(func->curblock, ast_ctx(self),
ast_function_label(func, "sce_bool_s"),
INSTR_NOT_S, *out);
if (!*out)
return false;
*out = ir_block_create_unary(func->curblock, ast_ctx(self),
ast_function_label(func, "sce_bool"),
INSTR_NOT_F, *out);
if (!*out)
return false;
}
else {
*out = ir_block_create_binop(func->curblock, ast_ctx(self),
ast_function_label(func, "sce_bool"),
INSTR_AND, *out, *out);
if (!*out)
return false;
}
}
self->expression.outr = *out;
return true;
}
cgen = self->left->expression.codegen;
if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
return false;
cgen = self->right->expression.codegen;
if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
return false;
*out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
self->op, left, right);
if (!*out)
return false;
self->expression.outr = *out;
return true;
}
bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *leftl = NULL, *leftr, *right, *bin;
ast_value *arr;
ast_value *idx = 0;
ast_array_index *ai = NULL;
ir_value *iridx = NULL;
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
return true;
}
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
return true;
}
if (ast_istype(self->dest, ast_array_index))
{
ai = (ast_array_index*)self->dest;
idx = (ast_value*)ai->index;
if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
ai = NULL;
}
/* for a binstore we need both an lvalue and an rvalue for the left side */
/* rvalue of destination! */
if (ai) {
cgen = idx->expression.codegen;
if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
return false;
}
cgen = self->dest->expression.codegen;
if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
return false;
/* source as rvalue only */
cgen = self->source->expression.codegen;
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
/* now the binary */
bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
self->opbin, leftr, right);
self->expression.outr = bin;
if (ai) {
/* we need to call the setter */
ir_value *funval;
ir_instr *call;
if (lvalue) {
compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
return false;
}
arr = (ast_value*)ai->array;
if (!ast_istype(ai->array, ast_value) || !arr->setter) {
compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
return false;
}
cgen = arr->setter->expression.codegen;
if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
return false;
call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
if (!call)
return false;
ir_call_param(call, iridx);
ir_call_param(call, bin);
self->expression.outr = bin;
} else {
/* now store them */
cgen = self->dest->expression.codegen;
/* lvalue of destination */
if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
return false;
self->expression.outl = leftl;
if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
return false;
self->expression.outr = bin;
}
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? leftl : bin);
return true;
}
bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *operand;
/* An unary operation cannot yield an l-value */
if (lvalue) {
compile_error(ast_ctx(self), "not an l-value (binop)");
return false;
}
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->operand->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
return false;
*out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
self->op, operand);
if (!*out)
return false;
self->expression.outr = *out;
return true;
}
bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *operand;
*out = NULL;
/* In the context of a return operation, we don't actually return
* anything...
*/
if (lvalue) {
compile_error(ast_ctx(self), "return-expression is not an l-value");
return false;
}
if (self->expression.outr) {
compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
return false;
}
self->expression.outr = (ir_value*)1;
if (self->operand) {
cgen = self->operand->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
return false;
if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
return false;
} else {
if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
return false;
}
return true;
}
bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *ent, *field;
/* This function needs to take the 'lvalue' flag into account!
* As lvalue we provide a field-pointer, as rvalue we provide the
* value in a temp.
*/
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
return true;
}
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->entity->expression.codegen;
if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
return false;
cgen = self->field->expression.codegen;
if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
return false;
if (lvalue) {
/* address! */
*out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
ent, field);
} else {
*out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
ent, field, self->expression.vtype);
/* Done AFTER error checking:
codegen_output_type(self, *out);
*/
}
if (!*out) {
compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
(lvalue ? "ADDRESS" : "FIELD"),
type_name[self->expression.vtype]);
return false;
}
if (!lvalue)
codegen_output_type(self, *out);
if (lvalue)
self->expression.outl = *out;
else
self->expression.outr = *out;
/* Hm that should be it... */
return true;
}
bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *vec;
/* in QC this is always an lvalue */
if (lvalue && self->rvalue) {
compile_error(ast_ctx(self), "not an l-value (member access)");
return false;
}
if (self->expression.outl) {
*out = self->expression.outl;
return true;
}
cgen = self->owner->expression.codegen;
if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
return false;
if (vec->vtype != TYPE_VECTOR &&
!(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
{
return false;
}
*out = ir_value_vector_member(vec, self->field);
self->expression.outl = *out;
return (*out != NULL);
}
bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_value *arr;
ast_value *idx;
if (!lvalue && self->expression.outr) {
*out = self->expression.outr;
}
if (lvalue && self->expression.outl) {
*out = self->expression.outl;
}
if (!ast_istype(self->array, ast_value)) {
compile_error(ast_ctx(self), "array indexing this way is not supported");
/* note this would actually be pointer indexing because the left side is
* not an actual array but (hopefully) an indexable expression.
* Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
* support this path will be filled.
*/
return false;
}
arr = (ast_value*)self->array;
idx = (ast_value*)self->index;
if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
/* Time to use accessor functions */
ast_expression_codegen *cgen;
ir_value *iridx, *funval;
ir_instr *call;
if (lvalue) {
compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
return false;
}
if (!arr->getter) {
compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
return false;
}
cgen = self->index->expression.codegen;
if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
return false;
cgen = arr->getter->expression.codegen;
if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
return false;
call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
if (!call)
return false;
ir_call_param(call, iridx);
*out = ir_call_value(call);
self->expression.outr = *out;
return true;
}
if (idx->expression.vtype == TYPE_FLOAT) {
unsigned int arridx = idx->constval.vfloat;
if (arridx >= self->array->expression.count)
{
compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
return false;
}
*out = arr->ir_values[arridx];
}
else if (idx->expression.vtype == TYPE_INTEGER) {
unsigned int arridx = idx->constval.vint;
if (arridx >= self->array->expression.count)
{
compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
return false;
}
*out = arr->ir_values[arridx];
}
else {
compile_error(ast_ctx(self), "array indexing here needs an integer constant");
return false;
}
return true;
}
bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *condval;
ir_value *dummy;
ir_block *cond;
ir_block *ontrue;
ir_block *onfalse;
ir_block *ontrue_endblock = NULL;
ir_block *onfalse_endblock = NULL;
ir_block *merge = NULL;
/* We don't output any value, thus also don't care about r/lvalue */
(void)out;
(void)lvalue;
if (self->expression.outr) {
compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
return false;
}
self->expression.outr = (ir_value*)1;
/* generate the condition */
cgen = self->cond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
return false;
/* update the block which will get the jump - because short-logic or ternaries may have changed this */
cond = func->curblock;
/* on-true path */
if (self->on_true) {
/* create on-true block */
ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
if (!ontrue)
return false;
/* enter the block */
func->curblock = ontrue;
/* generate */
cgen = self->on_true->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
return false;
/* we now need to work from the current endpoint */
ontrue_endblock = func->curblock;
} else
ontrue = NULL;
/* on-false path */
if (self->on_false) {
/* create on-false block */
onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
if (!onfalse)
return false;
/* enter the block */
func->curblock = onfalse;
/* generate */
cgen = self->on_false->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
return false;
/* we now need to work from the current endpoint */
onfalse_endblock = func->curblock;
} else
onfalse = NULL;
/* Merge block were they all merge in to */
if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
{
merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
if (!merge)
return false;
/* add jumps ot the merge block */
if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
return false;
if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
return false;
/* Now enter the merge block */
func->curblock = merge;
}
/* we create the if here, that way all blocks are ordered :)
*/
if (!ir_block_create_if(cond, ast_ctx(self), condval,
(ontrue ? ontrue : merge),
(onfalse ? onfalse : merge)))
{
return false;
}
return true;
}
bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *condval;
ir_value *trueval, *falseval;
ir_instr *phi;
ir_block *cond = func->curblock;
ir_block *cond_out = NULL;
ir_block *ontrue, *ontrue_out = NULL;
ir_block *onfalse, *onfalse_out = NULL;
ir_block *merge;
/* Ternary can never create an lvalue... */
if (lvalue)
return false;
/* In theory it shouldn't be possible to pass through a node twice, but
* in case we add any kind of optimization pass for the AST itself, it
* may still happen, thus we remember a created ir_value and simply return one
* if it already exists.
*/
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
/* In the following, contraty to ast_ifthen, we assume both paths exist. */
/* generate the condition */
func->curblock = cond;
cgen = self->cond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
return false;
cond_out = func->curblock;
/* create on-true block */
ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
if (!ontrue)
return false;
else
{
/* enter the block */
func->curblock = ontrue;
/* generate */
cgen = self->on_true->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
return false;
ontrue_out = func->curblock;
}
/* create on-false block */
onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
if (!onfalse)
return false;
else
{
/* enter the block */
func->curblock = onfalse;
/* generate */
cgen = self->on_false->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
return false;
onfalse_out = func->curblock;
}
/* create merge block */
merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
if (!merge)
return false;
/* jump to merge block */
if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
return false;
if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
return false;
/* create if instruction */
if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
return false;
/* Now enter the merge block */
func->curblock = merge;
/* Here, now, we need a PHI node
* but first some sanity checking...
*/
if (trueval->vtype != falseval->vtype) {
/* error("ternary with different types on the two sides"); */
return false;
}
/* create PHI */
phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
if (!phi)
return false;
ir_phi_add(phi, ontrue_out, trueval);
ir_phi_add(phi, onfalse_out, falseval);
self->expression.outr = ir_phi_value(phi);
*out = self->expression.outr;
codegen_output_type(self, *out);
return true;
}
bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *dummy = NULL;
ir_value *precond = NULL;
ir_value *postcond = NULL;
/* Since we insert some jumps "late" so we have blocks
* ordered "nicely", we need to keep track of the actual end-blocks
* of expressions to add the jumps to.
*/
ir_block *bbody = NULL, *end_bbody = NULL;
ir_block *bprecond = NULL, *end_bprecond = NULL;
ir_block *bpostcond = NULL, *end_bpostcond = NULL;
ir_block *bincrement = NULL, *end_bincrement = NULL;
ir_block *bout = NULL, *bin = NULL;
/* let's at least move the outgoing block to the end */
size_t bout_id;
/* 'break' and 'continue' need to be able to find the right blocks */
ir_block *bcontinue = NULL;
ir_block *bbreak = NULL;
ir_block *tmpblock = NULL;
(void)lvalue;
(void)out;
if (self->expression.outr) {
compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
return false;
}
self->expression.outr = (ir_value*)1;
/* NOTE:
* Should we ever need some kind of block ordering, better make this function
* move blocks around than write a block ordering algorithm later... after all
* the ast and ir should work together, not against each other.
*/
/* initexpr doesn't get its own block, it's pointless, it could create more blocks
* anyway if for example it contains a ternary.
*/
if (self->initexpr)
{
cgen = self->initexpr->expression.codegen;
if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
return false;
}
/* Store the block from which we enter this chaos */
bin = func->curblock;
/* The pre-loop condition needs its own block since we
* need to be able to jump to the start of that expression.
*/
if (self->precond)
{
bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
if (!bprecond)
return false;
/* the pre-loop-condition the least important place to 'continue' at */
bcontinue = bprecond;
/* enter */
func->curblock = bprecond;
/* generate */
cgen = self->precond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
return false;
end_bprecond = func->curblock;
} else {
bprecond = end_bprecond = NULL;
}
/* Now the next blocks won't be ordered nicely, but we need to
* generate them this early for 'break' and 'continue'.
*/
if (self->increment) {
bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
if (!bincrement)
return false;
bcontinue = bincrement; /* increment comes before the pre-loop-condition */
} else {
bincrement = end_bincrement = NULL;
}
if (self->postcond) {
bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
if (!bpostcond)
return false;
bcontinue = bpostcond; /* postcond comes before the increment */
} else {
bpostcond = end_bpostcond = NULL;
}
bout_id = vec_size(func->ir_func->blocks);
bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
if (!bout)
return false;
bbreak = bout;
/* The loop body... */
/* if (self->body) */
{
bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
if (!bbody)
return false;
/* enter */
func->curblock = bbody;
vec_push(func->breakblocks, bbreak);
if (bcontinue)
vec_push(func->continueblocks, bcontinue);
else
vec_push(func->continueblocks, bbody);
/* generate */
if (self->body) {
cgen = self->body->expression.codegen;
if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
return false;
}
end_bbody = func->curblock;
vec_pop(func->breakblocks);
vec_pop(func->continueblocks);
}
/* post-loop-condition */
if (self->postcond)
{
/* enter */
func->curblock = bpostcond;
/* generate */
cgen = self->postcond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
return false;
end_bpostcond = func->curblock;
}
/* The incrementor */
if (self->increment)
{
/* enter */
func->curblock = bincrement;
/* generate */
cgen = self->increment->expression.codegen;
if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
return false;
end_bincrement = func->curblock;
}
/* In any case now, we continue from the outgoing block */
func->curblock = bout;
/* Now all blocks are in place */
/* From 'bin' we jump to whatever comes first */
if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else if (bpostcond) tmpblock = bpostcond;
else tmpblock = bout;
if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
return false;
/* From precond */
if (bprecond)
{
ir_block *ontrue, *onfalse;
if (bbody) ontrue = bbody;
else if (bincrement) ontrue = bincrement;
else if (bpostcond) ontrue = bpostcond;
else ontrue = bprecond;
onfalse = bout;
if (self->pre_not) {
tmpblock = ontrue;
ontrue = onfalse;
onfalse = tmpblock;
}
if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
return false;
}
/* from body */
if (bbody)
{
if (bincrement) tmpblock = bincrement;
else if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else tmpblock = bbody;
if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
return false;
}
/* from increment */
if (bincrement)
{
if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else tmpblock = bout;
if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
return false;
}
/* from postcond */
if (bpostcond)
{
ir_block *ontrue, *onfalse;
if (bprecond) ontrue = bprecond;
else if (bbody) ontrue = bbody;
else if (bincrement) ontrue = bincrement;
else ontrue = bpostcond;
onfalse = bout;
if (self->post_not) {
tmpblock = ontrue;
ontrue = onfalse;
onfalse = tmpblock;
}
if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
return false;
}
/* Move 'bout' to the end */
vec_remove(func->ir_func->blocks, bout_id, 1);
vec_push(func->ir_func->blocks, bout);
return true;
}
bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
{
ir_block *target;
*out = NULL;
if (lvalue) {
compile_error(ast_ctx(self), "break/continue expression is not an l-value");
return false;
}
if (self->expression.outr) {
compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
return false;
}
self->expression.outr = (ir_value*)1;
if (self->is_continue)
target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
else
target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
if (!target) {
compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
return false;
}
if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
return false;
return true;
}
bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ast_switch_case *def_case = NULL;
ir_block *def_bfall = NULL;
ir_block *def_bfall_to = NULL;
bool set_def_bfall_to = false;
ir_value *dummy = NULL;
ir_value *irop = NULL;
ir_block *bout = NULL;
ir_block *bfall = NULL;
size_t bout_id;
size_t c;
char typestr[1024];
uint16_t cmpinstr;
if (lvalue) {
compile_error(ast_ctx(self), "switch expression is not an l-value");
return false;
}
if (self->expression.outr) {
compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
return false;
}
self->expression.outr = (ir_value*)1;
(void)lvalue;
(void)out;
cgen = self->operand->expression.codegen;
if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
return false;
if (!vec_size(self->cases))
return true;
cmpinstr = type_eq_instr[irop->vtype];
if (cmpinstr >= AINSTR_END) {
ast_type_to_string(self->operand, typestr, sizeof(typestr));
compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
return false;
}
bout_id = vec_size(func->ir_func->blocks);
bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
if (!bout)
return false;
/* setup the break block */
vec_push(func->breakblocks, bout);
/* Now create all cases */
for (c = 0; c < vec_size(self->cases); ++c) {
ir_value *cond, *val;
ir_block *bcase, *bnot;
size_t bnot_id;
ast_switch_case *swcase = &self->cases[c];
if (swcase->value) {
/* A regular case */
/* generate the condition operand */
cgen = swcase->value->expression.codegen;
if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
return false;
/* generate the condition */
cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
if (!cond)
return false;
bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
bnot_id = vec_size(func->ir_func->blocks);
bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
if (!bcase || !bnot)
return false;
if (set_def_bfall_to) {
set_def_bfall_to = false;
def_bfall_to = bcase;
}
if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
return false;
/* Make the previous case-end fall through */
if (bfall && !bfall->final) {
if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
return false;
}
/* enter the case */
func->curblock = bcase;
cgen = swcase->code->expression.codegen;
if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
return false;
/* remember this block to fall through from */
bfall = func->curblock;
/* enter the else and move it down */
func->curblock = bnot;
vec_remove(func->ir_func->blocks, bnot_id, 1);
vec_push(func->ir_func->blocks, bnot);
} else {
/* The default case */
/* Remember where to fall through from: */
def_bfall = bfall;
bfall = NULL;
/* remember which case it was */
def_case = swcase;
/* And the next case will be remembered */
set_def_bfall_to = true;
}
}
/* Jump from the last bnot to bout */
if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
/*
astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
*/
return false;
}
/* If there was a default case, put it down here */
if (def_case) {
ir_block *bcase;
/* No need to create an extra block */
bcase = func->curblock;
/* Insert the fallthrough jump */
if (def_bfall && !def_bfall->final) {
if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
return false;
}
/* Now generate the default code */
cgen = def_case->code->expression.codegen;
if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
return false;
/* see if we need to fall through */
if (def_bfall_to && !func->curblock->final)
{
if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
return false;
}
}
/* Jump from the last bnot to bout */
if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
return false;
/* enter the outgoing block */
func->curblock = bout;
/* restore the break block */
vec_pop(func->breakblocks);
/* Move 'bout' to the end, it's nicer */
vec_remove(func->ir_func->blocks, bout_id, 1);
vec_push(func->ir_func->blocks, bout);
return true;
}
bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
{
size_t i;
ir_value *dummy;
*out = NULL;
if (lvalue) {
compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
return false;
}
/* simply create a new block and jump to it */
self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
if (!self->irblock) {
compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
return false;
}
if (!func->curblock->final) {
if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
return false;
}
/* enter the new block */
func->curblock = self->irblock;
/* Generate all the leftover gotos */
for (i = 0; i < vec_size(self->gotos); ++i) {
if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
return false;
}
return true;
}
bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
{
*out = NULL;
if (lvalue) {
compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
return false;
}
if (self->target->irblock) {
if (self->irblock_from) {
/* we already tried once, this is the callback */
self->irblock_from->final = false;
if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
return false;
}
}
else
{
if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
return false;
}
}
}
else
{
/* the target has not yet been created...
* close this block in a sneaky way:
*/
func->curblock->final = true;
self->irblock_from = func->curblock;
ast_label_register_goto(self->target, self);
}
return true;
}
bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value **params;
ir_instr *callinstr;
size_t i;
ir_value *funval = NULL;
/* return values are never lvalues */
if (lvalue) {
compile_error(ast_ctx(self), "not an l-value (function call)");
return false;
}
if (self->expression.outr) {
*out = self->expression.outr;
return true;
}
cgen = self->func->expression.codegen;
if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
return false;
if (!funval)
return false;
params = NULL;
/* parameters */
for (i = 0; i < vec_size(self->params); ++i)
{
ir_value *param;
ast_expression *expr = self->params[i];
cgen = expr->expression.codegen;
if (!(*cgen)(expr, func, false, &param))
goto error;
if (!param)
goto error;
vec_push(params, param);
}
callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
ast_function_label(func, "call"),
funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
if (!callinstr)
goto error;
for (i = 0; i < vec_size(params); ++i) {
ir_call_param(callinstr, params[i]);
}
*out = ir_call_value(callinstr);
self->expression.outr = *out;
codegen_output_type(self, *out);
vec_free(params);
return true;
error:
vec_free(params);
return false;
}