mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2025-01-21 23:50:56 +00:00
3212 lines
88 KiB
C
3212 lines
88 KiB
C
/*
|
|
* Copyright (C) 2012
|
|
* Wolfgang Bumiller
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished to do
|
|
* so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "gmqcc.h"
|
|
#include "ir.h"
|
|
|
|
/***********************************************************************
|
|
* Type sizes used at multiple points in the IR codegen
|
|
*/
|
|
|
|
const char *type_name[TYPE_COUNT] = {
|
|
"void",
|
|
"string",
|
|
"float",
|
|
"vector",
|
|
"entity",
|
|
"field",
|
|
"function",
|
|
"pointer",
|
|
#if 0
|
|
"integer",
|
|
#endif
|
|
"variant"
|
|
};
|
|
|
|
size_t type_sizeof[TYPE_COUNT] = {
|
|
1, /* TYPE_VOID */
|
|
1, /* TYPE_STRING */
|
|
1, /* TYPE_FLOAT */
|
|
3, /* TYPE_VECTOR */
|
|
1, /* TYPE_ENTITY */
|
|
1, /* TYPE_FIELD */
|
|
1, /* TYPE_FUNCTION */
|
|
1, /* TYPE_POINTER */
|
|
#if 0
|
|
1, /* TYPE_INTEGER */
|
|
#endif
|
|
3, /* TYPE_VARIANT */
|
|
};
|
|
|
|
uint16_t type_store_instr[TYPE_COUNT] = {
|
|
INSTR_STORE_F, /* should use I when having integer support */
|
|
INSTR_STORE_S,
|
|
INSTR_STORE_F,
|
|
INSTR_STORE_V,
|
|
INSTR_STORE_ENT,
|
|
INSTR_STORE_FLD,
|
|
INSTR_STORE_FNC,
|
|
INSTR_STORE_ENT, /* should use I */
|
|
#if 0
|
|
INSTR_STORE_I, /* integer type */
|
|
#endif
|
|
|
|
INSTR_STORE_V, /* variant, should never be accessed */
|
|
};
|
|
|
|
uint16_t type_storep_instr[TYPE_COUNT] = {
|
|
INSTR_STOREP_F, /* should use I when having integer support */
|
|
INSTR_STOREP_S,
|
|
INSTR_STOREP_F,
|
|
INSTR_STOREP_V,
|
|
INSTR_STOREP_ENT,
|
|
INSTR_STOREP_FLD,
|
|
INSTR_STOREP_FNC,
|
|
INSTR_STOREP_ENT, /* should use I */
|
|
#if 0
|
|
INSTR_STOREP_ENT, /* integer type */
|
|
#endif
|
|
|
|
INSTR_STOREP_V, /* variant, should never be accessed */
|
|
};
|
|
|
|
uint16_t type_eq_instr[TYPE_COUNT] = {
|
|
INSTR_EQ_F, /* should use I when having integer support */
|
|
INSTR_EQ_S,
|
|
INSTR_EQ_F,
|
|
INSTR_EQ_V,
|
|
INSTR_EQ_E,
|
|
INSTR_EQ_E, /* FLD has no comparison */
|
|
INSTR_EQ_FNC,
|
|
INSTR_EQ_E, /* should use I */
|
|
#if 0
|
|
INSTR_EQ_I,
|
|
#endif
|
|
|
|
INSTR_EQ_V, /* variant, should never be accessed */
|
|
};
|
|
|
|
uint16_t type_ne_instr[TYPE_COUNT] = {
|
|
INSTR_NE_F, /* should use I when having integer support */
|
|
INSTR_NE_S,
|
|
INSTR_NE_F,
|
|
INSTR_NE_V,
|
|
INSTR_NE_E,
|
|
INSTR_NE_E, /* FLD has no comparison */
|
|
INSTR_NE_FNC,
|
|
INSTR_NE_E, /* should use I */
|
|
#if 0
|
|
INSTR_NE_I,
|
|
#endif
|
|
|
|
INSTR_NE_V, /* variant, should never be accessed */
|
|
};
|
|
|
|
MEM_VEC_FUNCTIONS(ir_value_vector, ir_value*, v)
|
|
|
|
static void irerror(lex_ctx ctx, const char *msg, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, msg);
|
|
cvprintmsg(ctx, LVL_ERROR, "internal error", msg, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
static bool irwarning(lex_ctx ctx, int warntype, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
int lvl = LVL_WARNING;
|
|
|
|
if (warntype && !OPTS_WARN(warntype))
|
|
return false;
|
|
|
|
if (opts_werror)
|
|
lvl = LVL_ERROR;
|
|
|
|
va_start(ap, fmt);
|
|
vprintmsg(lvl, ctx.file, ctx.line, "warning", fmt, ap);
|
|
va_end(ap);
|
|
|
|
return opts_werror;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Builder
|
|
*/
|
|
|
|
static void ir_block_delete_quick(ir_block* self);
|
|
static void ir_instr_delete_quick(ir_instr *self);
|
|
static void ir_function_delete_quick(ir_function *self);
|
|
|
|
ir_builder* ir_builder_new(const char *modulename)
|
|
{
|
|
ir_builder* self;
|
|
|
|
self = (ir_builder*)mem_a(sizeof(*self));
|
|
if (!self)
|
|
return NULL;
|
|
|
|
MEM_VECTOR_INIT(self, functions);
|
|
MEM_VECTOR_INIT(self, globals);
|
|
MEM_VECTOR_INIT(self, fields);
|
|
MEM_VECTOR_INIT(self, filenames);
|
|
MEM_VECTOR_INIT(self, filestrings);
|
|
self->str_immediate = 0;
|
|
self->name = NULL;
|
|
if (!ir_builder_set_name(self, modulename)) {
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals)
|
|
MEM_VEC_FUNCTIONS(ir_builder, ir_value*, fields)
|
|
MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions)
|
|
MEM_VEC_FUNCTIONS(ir_builder, const char*, filenames)
|
|
MEM_VEC_FUNCTIONS(ir_builder, qcint, filestrings)
|
|
|
|
void ir_builder_delete(ir_builder* self)
|
|
{
|
|
size_t i;
|
|
mem_d((void*)self->name);
|
|
for (i = 0; i != self->functions_count; ++i) {
|
|
ir_function_delete_quick(self->functions[i]);
|
|
}
|
|
MEM_VECTOR_CLEAR(self, functions);
|
|
for (i = 0; i != self->globals_count; ++i) {
|
|
ir_value_delete(self->globals[i]);
|
|
}
|
|
MEM_VECTOR_CLEAR(self, globals);
|
|
for (i = 0; i != self->fields_count; ++i) {
|
|
ir_value_delete(self->fields[i]);
|
|
}
|
|
MEM_VECTOR_CLEAR(self, fields);
|
|
MEM_VECTOR_CLEAR(self, filenames);
|
|
MEM_VECTOR_CLEAR(self, filestrings);
|
|
mem_d(self);
|
|
}
|
|
|
|
bool ir_builder_set_name(ir_builder *self, const char *name)
|
|
{
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
self->name = util_strdup(name);
|
|
return !!self->name;
|
|
}
|
|
|
|
ir_function* ir_builder_get_function(ir_builder *self, const char *name)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->functions_count; ++i) {
|
|
if (!strcmp(name, self->functions[i]->name))
|
|
return self->functions[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
|
|
{
|
|
ir_function *fn = ir_builder_get_function(self, name);
|
|
if (fn) {
|
|
return NULL;
|
|
}
|
|
|
|
fn = ir_function_new(self, outtype);
|
|
if (!ir_function_set_name(fn, name) ||
|
|
!ir_builder_functions_add(self, fn) )
|
|
{
|
|
ir_function_delete(fn);
|
|
return NULL;
|
|
}
|
|
|
|
fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
|
|
if (!fn->value) {
|
|
ir_function_delete(fn);
|
|
return NULL;
|
|
}
|
|
|
|
fn->value->isconst = true;
|
|
fn->value->outtype = outtype;
|
|
fn->value->constval.vfunc = fn;
|
|
fn->value->context = fn->context;
|
|
|
|
return fn;
|
|
}
|
|
|
|
ir_value* ir_builder_get_global(ir_builder *self, const char *name)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->globals_count; ++i) {
|
|
if (!strcmp(self->globals[i]->name, name))
|
|
return self->globals[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
|
|
{
|
|
ir_value *ve;
|
|
|
|
if (name && name[0] != '#')
|
|
{
|
|
ve = ir_builder_get_global(self, name);
|
|
if (ve) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ve = ir_value_var(name, store_global, vtype);
|
|
if (!ir_builder_globals_add(self, ve)) {
|
|
ir_value_delete(ve);
|
|
return NULL;
|
|
}
|
|
return ve;
|
|
}
|
|
|
|
ir_value* ir_builder_get_field(ir_builder *self, const char *name)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->fields_count; ++i) {
|
|
if (!strcmp(self->fields[i]->name, name))
|
|
return self->fields[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
|
|
{
|
|
ir_value *ve = ir_builder_get_field(self, name);
|
|
if (ve) {
|
|
return NULL;
|
|
}
|
|
|
|
ve = ir_value_var(name, store_global, TYPE_FIELD);
|
|
ve->fieldtype = vtype;
|
|
if (!ir_builder_fields_add(self, ve)) {
|
|
ir_value_delete(ve);
|
|
return NULL;
|
|
}
|
|
return ve;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Function
|
|
*/
|
|
|
|
bool ir_function_naive_phi(ir_function*);
|
|
void ir_function_enumerate(ir_function*);
|
|
bool ir_function_calculate_liferanges(ir_function*);
|
|
bool ir_function_allocate_locals(ir_function*);
|
|
|
|
ir_function* ir_function_new(ir_builder* owner, int outtype)
|
|
{
|
|
ir_function *self;
|
|
self = (ir_function*)mem_a(sizeof(*self));
|
|
|
|
if (!self)
|
|
return NULL;
|
|
|
|
memset(self, 0, sizeof(*self));
|
|
|
|
self->name = NULL;
|
|
if (!ir_function_set_name(self, "<@unnamed>")) {
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
self->owner = owner;
|
|
self->context.file = "<@no context>";
|
|
self->context.line = 0;
|
|
self->outtype = outtype;
|
|
self->value = NULL;
|
|
self->builtin = 0;
|
|
MEM_VECTOR_INIT(self, params);
|
|
MEM_VECTOR_INIT(self, blocks);
|
|
MEM_VECTOR_INIT(self, values);
|
|
MEM_VECTOR_INIT(self, locals);
|
|
|
|
self->code_function_def = -1;
|
|
self->allocated_locals = 0;
|
|
|
|
self->run_id = 0;
|
|
return self;
|
|
}
|
|
MEM_VEC_FUNCTIONS(ir_function, ir_value*, values)
|
|
MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks)
|
|
MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals)
|
|
MEM_VEC_FUNCTIONS(ir_function, int, params)
|
|
|
|
bool ir_function_set_name(ir_function *self, const char *name)
|
|
{
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
self->name = util_strdup(name);
|
|
return !!self->name;
|
|
}
|
|
|
|
static void ir_function_delete_quick(ir_function *self)
|
|
{
|
|
size_t i;
|
|
mem_d((void*)self->name);
|
|
|
|
for (i = 0; i != self->blocks_count; ++i)
|
|
ir_block_delete_quick(self->blocks[i]);
|
|
MEM_VECTOR_CLEAR(self, blocks);
|
|
|
|
MEM_VECTOR_CLEAR(self, params);
|
|
|
|
for (i = 0; i != self->values_count; ++i)
|
|
ir_value_delete(self->values[i]);
|
|
MEM_VECTOR_CLEAR(self, values);
|
|
|
|
for (i = 0; i != self->locals_count; ++i)
|
|
ir_value_delete(self->locals[i]);
|
|
MEM_VECTOR_CLEAR(self, locals);
|
|
|
|
/* self->value is deleted by the builder */
|
|
|
|
mem_d(self);
|
|
}
|
|
|
|
void ir_function_delete(ir_function *self)
|
|
{
|
|
size_t i;
|
|
mem_d((void*)self->name);
|
|
|
|
for (i = 0; i != self->blocks_count; ++i)
|
|
ir_block_delete(self->blocks[i]);
|
|
MEM_VECTOR_CLEAR(self, blocks);
|
|
|
|
MEM_VECTOR_CLEAR(self, params);
|
|
|
|
for (i = 0; i != self->values_count; ++i)
|
|
ir_value_delete(self->values[i]);
|
|
MEM_VECTOR_CLEAR(self, values);
|
|
|
|
for (i = 0; i != self->locals_count; ++i)
|
|
ir_value_delete(self->locals[i]);
|
|
MEM_VECTOR_CLEAR(self, locals);
|
|
|
|
/* self->value is deleted by the builder */
|
|
|
|
mem_d(self);
|
|
}
|
|
|
|
bool GMQCC_WARN ir_function_collect_value(ir_function *self, ir_value *v)
|
|
{
|
|
return ir_function_values_add(self, v);
|
|
}
|
|
|
|
ir_block* ir_function_create_block(ir_function *self, const char *label)
|
|
{
|
|
ir_block* bn = ir_block_new(self, label);
|
|
memcpy(&bn->context, &self->context, sizeof(self->context));
|
|
if (!ir_function_blocks_add(self, bn)) {
|
|
ir_block_delete(bn);
|
|
return NULL;
|
|
}
|
|
return bn;
|
|
}
|
|
|
|
bool ir_function_finalize(ir_function *self)
|
|
{
|
|
if (self->builtin)
|
|
return true;
|
|
|
|
if (!ir_function_naive_phi(self))
|
|
return false;
|
|
|
|
ir_function_enumerate(self);
|
|
|
|
if (!ir_function_calculate_liferanges(self))
|
|
return false;
|
|
|
|
if (!ir_function_allocate_locals(self))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
ir_value* ir_function_get_local(ir_function *self, const char *name)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->locals_count; ++i) {
|
|
if (!strcmp(self->locals[i]->name, name))
|
|
return self->locals[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
|
|
{
|
|
ir_value *ve;
|
|
|
|
/*
|
|
if (ir_function_get_local(self, name))
|
|
return NULL;
|
|
*/
|
|
|
|
if (param &&
|
|
self->locals_count &&
|
|
self->locals[self->locals_count-1]->store != store_param) {
|
|
irerror(self->context, "cannot add parameters after adding locals");
|
|
return NULL;
|
|
}
|
|
|
|
ve = ir_value_var(name, (param ? store_param : store_local), vtype);
|
|
if (!ir_function_locals_add(self, ve)) {
|
|
ir_value_delete(ve);
|
|
return NULL;
|
|
}
|
|
return ve;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Block
|
|
*/
|
|
|
|
ir_block* ir_block_new(ir_function* owner, const char *name)
|
|
{
|
|
ir_block *self;
|
|
self = (ir_block*)mem_a(sizeof(*self));
|
|
if (!self)
|
|
return NULL;
|
|
|
|
memset(self, 0, sizeof(*self));
|
|
|
|
self->label = NULL;
|
|
if (name && !ir_block_set_label(self, name)) {
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
self->owner = owner;
|
|
self->context.file = "<@no context>";
|
|
self->context.line = 0;
|
|
self->final = false;
|
|
MEM_VECTOR_INIT(self, instr);
|
|
MEM_VECTOR_INIT(self, entries);
|
|
MEM_VECTOR_INIT(self, exits);
|
|
|
|
self->eid = 0;
|
|
self->is_return = false;
|
|
self->run_id = 0;
|
|
MEM_VECTOR_INIT(self, living);
|
|
|
|
self->generated = false;
|
|
|
|
return self;
|
|
}
|
|
MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr)
|
|
MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries)
|
|
MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits)
|
|
MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living)
|
|
|
|
static void ir_block_delete_quick(ir_block* self)
|
|
{
|
|
size_t i;
|
|
if (self->label) mem_d(self->label);
|
|
for (i = 0; i != self->instr_count; ++i)
|
|
ir_instr_delete_quick(self->instr[i]);
|
|
MEM_VECTOR_CLEAR(self, instr);
|
|
MEM_VECTOR_CLEAR(self, entries);
|
|
MEM_VECTOR_CLEAR(self, exits);
|
|
MEM_VECTOR_CLEAR(self, living);
|
|
mem_d(self);
|
|
}
|
|
|
|
void ir_block_delete(ir_block* self)
|
|
{
|
|
size_t i;
|
|
if (self->label) mem_d(self->label);
|
|
for (i = 0; i != self->instr_count; ++i)
|
|
ir_instr_delete(self->instr[i]);
|
|
MEM_VECTOR_CLEAR(self, instr);
|
|
MEM_VECTOR_CLEAR(self, entries);
|
|
MEM_VECTOR_CLEAR(self, exits);
|
|
MEM_VECTOR_CLEAR(self, living);
|
|
mem_d(self);
|
|
}
|
|
|
|
bool ir_block_set_label(ir_block *self, const char *name)
|
|
{
|
|
if (self->label)
|
|
mem_d((void*)self->label);
|
|
self->label = util_strdup(name);
|
|
return !!self->label;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Instructions
|
|
*/
|
|
|
|
ir_instr* ir_instr_new(ir_block* owner, int op)
|
|
{
|
|
ir_instr *self;
|
|
self = (ir_instr*)mem_a(sizeof(*self));
|
|
if (!self)
|
|
return NULL;
|
|
|
|
self->owner = owner;
|
|
self->context.file = "<@no context>";
|
|
self->context.line = 0;
|
|
self->opcode = op;
|
|
self->_ops[0] = NULL;
|
|
self->_ops[1] = NULL;
|
|
self->_ops[2] = NULL;
|
|
self->bops[0] = NULL;
|
|
self->bops[1] = NULL;
|
|
MEM_VECTOR_INIT(self, phi);
|
|
MEM_VECTOR_INIT(self, params);
|
|
|
|
self->eid = 0;
|
|
return self;
|
|
}
|
|
MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi)
|
|
MEM_VEC_FUNCTIONS(ir_instr, ir_value*, params)
|
|
|
|
static void ir_instr_delete_quick(ir_instr *self)
|
|
{
|
|
MEM_VECTOR_CLEAR(self, phi);
|
|
MEM_VECTOR_CLEAR(self, params);
|
|
mem_d(self);
|
|
}
|
|
|
|
void ir_instr_delete(ir_instr *self)
|
|
{
|
|
size_t i;
|
|
/* The following calls can only delete from
|
|
* vectors, we still want to delete this instruction
|
|
* so ignore the return value. Since with the warn_unused_result attribute
|
|
* gcc doesn't care about an explicit: (void)foo(); to ignore the result,
|
|
* I have to improvise here and use if(foo());
|
|
*/
|
|
for (i = 0; i < self->phi_count; ++i) {
|
|
size_t idx;
|
|
if (ir_value_writes_find(self->phi[i].value, self, &idx))
|
|
if (ir_value_writes_remove(self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
if (ir_value_reads_find(self->phi[i].value, self, &idx))
|
|
if (ir_value_reads_remove (self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
}
|
|
MEM_VECTOR_CLEAR(self, phi);
|
|
for (i = 0; i < self->params_count; ++i) {
|
|
size_t idx;
|
|
if (ir_value_writes_find(self->params[i], self, &idx))
|
|
if (ir_value_writes_remove(self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
if (ir_value_reads_find(self->params[i], self, &idx))
|
|
if (ir_value_reads_remove (self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
}
|
|
MEM_VECTOR_CLEAR(self, params);
|
|
if (ir_instr_op(self, 0, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
if (ir_instr_op(self, 1, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
if (ir_instr_op(self, 2, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
|
|
mem_d(self);
|
|
}
|
|
|
|
bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
|
|
{
|
|
if (self->_ops[op]) {
|
|
size_t idx;
|
|
if (writing && ir_value_writes_find(self->_ops[op], self, &idx))
|
|
{
|
|
if (!ir_value_writes_remove(self->_ops[op], idx))
|
|
return false;
|
|
}
|
|
else if (ir_value_reads_find(self->_ops[op], self, &idx))
|
|
{
|
|
if (!ir_value_reads_remove(self->_ops[op], idx))
|
|
return false;
|
|
}
|
|
}
|
|
if (v) {
|
|
if (writing) {
|
|
if (!ir_value_writes_add(v, self))
|
|
return false;
|
|
} else {
|
|
if (!ir_value_reads_add(v, self))
|
|
return false;
|
|
}
|
|
}
|
|
self->_ops[op] = v;
|
|
return true;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Value
|
|
*/
|
|
|
|
void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
|
|
{
|
|
self->code.globaladdr = gaddr;
|
|
if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
|
|
if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
|
|
if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
|
|
}
|
|
|
|
int32_t ir_value_code_addr(const ir_value *self)
|
|
{
|
|
if (self->store == store_return)
|
|
return OFS_RETURN + self->code.addroffset;
|
|
return self->code.globaladdr + self->code.addroffset;
|
|
}
|
|
|
|
ir_value* ir_value_var(const char *name, int storetype, int vtype)
|
|
{
|
|
ir_value *self;
|
|
self = (ir_value*)mem_a(sizeof(*self));
|
|
self->vtype = vtype;
|
|
self->fieldtype = TYPE_VOID;
|
|
self->outtype = TYPE_VOID;
|
|
self->store = storetype;
|
|
MEM_VECTOR_INIT(self, reads);
|
|
MEM_VECTOR_INIT(self, writes);
|
|
self->isconst = false;
|
|
self->context.file = "<@no context>";
|
|
self->context.line = 0;
|
|
self->name = NULL;
|
|
if (name && !ir_value_set_name(self, name)) {
|
|
irerror(self->context, "out of memory");
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
|
|
memset(&self->constval, 0, sizeof(self->constval));
|
|
memset(&self->code, 0, sizeof(self->code));
|
|
|
|
self->members[0] = NULL;
|
|
self->members[1] = NULL;
|
|
self->members[2] = NULL;
|
|
self->memberof = NULL;
|
|
|
|
MEM_VECTOR_INIT(self, life);
|
|
return self;
|
|
}
|
|
|
|
ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
|
|
{
|
|
ir_value *m;
|
|
if (member >= 3)
|
|
return NULL;
|
|
|
|
if (self->members[member])
|
|
return self->members[member];
|
|
|
|
if (self->vtype == TYPE_VECTOR)
|
|
{
|
|
m = ir_value_var(self->name, self->store, TYPE_FLOAT);
|
|
if (!m)
|
|
return NULL;
|
|
m->context = self->context;
|
|
|
|
self->members[member] = m;
|
|
m->code.addroffset = member;
|
|
}
|
|
else if (self->vtype == TYPE_FIELD)
|
|
{
|
|
if (self->fieldtype != TYPE_VECTOR)
|
|
return NULL;
|
|
m = ir_value_var(self->name, self->store, TYPE_FIELD);
|
|
if (!m)
|
|
return NULL;
|
|
m->fieldtype = TYPE_FLOAT;
|
|
m->context = self->context;
|
|
|
|
self->members[member] = m;
|
|
m->code.addroffset = member;
|
|
}
|
|
else
|
|
{
|
|
irerror(self->context, "invalid member access on %s", self->name);
|
|
return NULL;
|
|
}
|
|
|
|
m->memberof = self;
|
|
return m;
|
|
}
|
|
|
|
MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life)
|
|
MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, reads)
|
|
MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, writes)
|
|
|
|
ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
|
|
{
|
|
ir_value *v = ir_value_var(name, storetype, vtype);
|
|
if (!v)
|
|
return NULL;
|
|
if (!ir_function_collect_value(owner, v))
|
|
{
|
|
ir_value_delete(v);
|
|
return NULL;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
void ir_value_delete(ir_value* self)
|
|
{
|
|
size_t i;
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
if (self->isconst)
|
|
{
|
|
if (self->vtype == TYPE_STRING)
|
|
mem_d((void*)self->constval.vstring);
|
|
}
|
|
for (i = 0; i < 3; ++i) {
|
|
if (self->members[i])
|
|
ir_value_delete(self->members[i]);
|
|
}
|
|
MEM_VECTOR_CLEAR(self, reads);
|
|
MEM_VECTOR_CLEAR(self, writes);
|
|
MEM_VECTOR_CLEAR(self, life);
|
|
mem_d(self);
|
|
}
|
|
|
|
bool ir_value_set_name(ir_value *self, const char *name)
|
|
{
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
self->name = util_strdup(name);
|
|
return !!self->name;
|
|
}
|
|
|
|
bool ir_value_set_float(ir_value *self, float f)
|
|
{
|
|
if (self->vtype != TYPE_FLOAT)
|
|
return false;
|
|
self->constval.vfloat = f;
|
|
self->isconst = true;
|
|
return true;
|
|
}
|
|
|
|
bool ir_value_set_func(ir_value *self, int f)
|
|
{
|
|
if (self->vtype != TYPE_FUNCTION)
|
|
return false;
|
|
self->constval.vint = f;
|
|
self->isconst = true;
|
|
return true;
|
|
}
|
|
|
|
bool ir_value_set_vector(ir_value *self, vector v)
|
|
{
|
|
if (self->vtype != TYPE_VECTOR)
|
|
return false;
|
|
self->constval.vvec = v;
|
|
self->isconst = true;
|
|
return true;
|
|
}
|
|
|
|
bool ir_value_set_field(ir_value *self, ir_value *fld)
|
|
{
|
|
if (self->vtype != TYPE_FIELD)
|
|
return false;
|
|
self->constval.vpointer = fld;
|
|
self->isconst = true;
|
|
return true;
|
|
}
|
|
|
|
static char *ir_strdup(const char *str)
|
|
{
|
|
if (str && !*str) {
|
|
/* actually dup empty strings */
|
|
char *out = mem_a(1);
|
|
*out = 0;
|
|
return out;
|
|
}
|
|
return util_strdup(str);
|
|
}
|
|
|
|
bool ir_value_set_string(ir_value *self, const char *str)
|
|
{
|
|
if (self->vtype != TYPE_STRING)
|
|
return false;
|
|
self->constval.vstring = ir_strdup(str);
|
|
self->isconst = true;
|
|
return true;
|
|
}
|
|
|
|
#if 0
|
|
bool ir_value_set_int(ir_value *self, int i)
|
|
{
|
|
if (self->vtype != TYPE_INTEGER)
|
|
return false;
|
|
self->constval.vint = i;
|
|
self->isconst = true;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
bool ir_value_lives(ir_value *self, size_t at)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->life_count; ++i)
|
|
{
|
|
ir_life_entry_t *life = &self->life[i];
|
|
if (life->start <= at && at <= life->end)
|
|
return true;
|
|
if (life->start > at) /* since it's ordered */
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
|
|
{
|
|
size_t k;
|
|
if (!ir_value_life_add(self, e)) /* naive... */
|
|
return false;
|
|
for (k = self->life_count-1; k > idx; --k)
|
|
self->life[k] = self->life[k-1];
|
|
self->life[idx] = e;
|
|
return true;
|
|
}
|
|
|
|
bool ir_value_life_merge(ir_value *self, size_t s)
|
|
{
|
|
size_t i;
|
|
ir_life_entry_t *life = NULL;
|
|
ir_life_entry_t *before = NULL;
|
|
ir_life_entry_t new_entry;
|
|
|
|
/* Find the first range >= s */
|
|
for (i = 0; i < self->life_count; ++i)
|
|
{
|
|
before = life;
|
|
life = &self->life[i];
|
|
if (life->start > s)
|
|
break;
|
|
}
|
|
/* nothing found? append */
|
|
if (i == self->life_count) {
|
|
ir_life_entry_t e;
|
|
if (life && life->end+1 == s)
|
|
{
|
|
/* previous life range can be merged in */
|
|
life->end++;
|
|
return true;
|
|
}
|
|
if (life && life->end >= s)
|
|
return false;
|
|
e.start = e.end = s;
|
|
if (!ir_value_life_add(self, e))
|
|
return false; /* failing */
|
|
return true;
|
|
}
|
|
/* found */
|
|
if (before)
|
|
{
|
|
if (before->end + 1 == s &&
|
|
life->start - 1 == s)
|
|
{
|
|
/* merge */
|
|
before->end = life->end;
|
|
if (!ir_value_life_remove(self, i))
|
|
return false; /* failing */
|
|
return true;
|
|
}
|
|
if (before->end + 1 == s)
|
|
{
|
|
/* extend before */
|
|
before->end++;
|
|
return true;
|
|
}
|
|
/* already contained */
|
|
if (before->end >= s)
|
|
return false;
|
|
}
|
|
/* extend */
|
|
if (life->start - 1 == s)
|
|
{
|
|
life->start--;
|
|
return true;
|
|
}
|
|
/* insert a new entry */
|
|
new_entry.start = new_entry.end = s;
|
|
return ir_value_life_insert(self, i, new_entry);
|
|
}
|
|
|
|
bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
|
|
{
|
|
size_t i, myi;
|
|
|
|
if (!other->life_count)
|
|
return true;
|
|
|
|
if (!self->life_count) {
|
|
for (i = 0; i < other->life_count; ++i) {
|
|
if (!ir_value_life_add(self, other->life[i]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
myi = 0;
|
|
for (i = 0; i < other->life_count; ++i)
|
|
{
|
|
const ir_life_entry_t *life = &other->life[i];
|
|
while (true)
|
|
{
|
|
ir_life_entry_t *entry = &self->life[myi];
|
|
|
|
if (life->end+1 < entry->start)
|
|
{
|
|
/* adding an interval before entry */
|
|
if (!ir_value_life_insert(self, myi, *life))
|
|
return false;
|
|
++myi;
|
|
break;
|
|
}
|
|
|
|
if (life->start < entry->start &&
|
|
life->end+1 >= entry->start)
|
|
{
|
|
/* starts earlier and overlaps */
|
|
entry->start = life->start;
|
|
}
|
|
|
|
if (life->end > entry->end &&
|
|
life->start <= entry->end+1)
|
|
{
|
|
/* ends later and overlaps */
|
|
entry->end = life->end;
|
|
}
|
|
|
|
/* see if our change combines it with the next ranges */
|
|
while (myi+1 < self->life_count &&
|
|
entry->end+1 >= self->life[1+myi].start)
|
|
{
|
|
/* overlaps with (myi+1) */
|
|
if (entry->end < self->life[1+myi].end)
|
|
entry->end = self->life[1+myi].end;
|
|
if (!ir_value_life_remove(self, myi+1))
|
|
return false;
|
|
entry = &self->life[myi];
|
|
}
|
|
|
|
/* see if we're after the entry */
|
|
if (life->start > entry->end)
|
|
{
|
|
++myi;
|
|
/* append if we're at the end */
|
|
if (myi >= self->life_count) {
|
|
if (!ir_value_life_add(self, *life))
|
|
return false;
|
|
break;
|
|
}
|
|
/* otherweise check the next range */
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ir_values_overlap(const ir_value *a, const ir_value *b)
|
|
{
|
|
/* For any life entry in A see if it overlaps with
|
|
* any life entry in B.
|
|
* Note that the life entries are orderes, so we can make a
|
|
* more efficient algorithm there than naively translating the
|
|
* statement above.
|
|
*/
|
|
|
|
ir_life_entry_t *la, *lb, *enda, *endb;
|
|
|
|
/* first of all, if either has no life range, they cannot clash */
|
|
if (!a->life_count || !b->life_count)
|
|
return false;
|
|
|
|
la = a->life;
|
|
lb = b->life;
|
|
enda = la + a->life_count;
|
|
endb = lb + b->life_count;
|
|
while (true)
|
|
{
|
|
/* check if the entries overlap, for that,
|
|
* both must start before the other one ends.
|
|
*/
|
|
if (la->start < lb->end &&
|
|
lb->start < la->end)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/* entries are ordered
|
|
* one entry is earlier than the other
|
|
* that earlier entry will be moved forward
|
|
*/
|
|
if (la->start < lb->start)
|
|
{
|
|
/* order: A B, move A forward
|
|
* check if we hit the end with A
|
|
*/
|
|
if (++la == enda)
|
|
break;
|
|
}
|
|
else /* if (lb->start < la->start) actually <= */
|
|
{
|
|
/* order: B A, move B forward
|
|
* check if we hit the end with B
|
|
*/
|
|
if (++lb == endb)
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR main operations
|
|
*/
|
|
|
|
bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what)
|
|
{
|
|
ir_instr *in = ir_instr_new(self, op);
|
|
if (!in)
|
|
return false;
|
|
|
|
if (target->store == store_value &&
|
|
(op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
|
|
{
|
|
irerror(self->context, "cannot store to an SSA value");
|
|
irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
|
|
irerror(self->context, "instruction: %s", asm_instr[op].m);
|
|
return false;
|
|
}
|
|
|
|
if (!ir_instr_op(in, 0, target, true) ||
|
|
!ir_instr_op(in, 1, what, false) ||
|
|
!ir_block_instr_add(self, in) )
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what)
|
|
{
|
|
int op = 0;
|
|
int vtype;
|
|
if (target->vtype == TYPE_VARIANT)
|
|
vtype = what->vtype;
|
|
else
|
|
vtype = target->vtype;
|
|
|
|
#if 0
|
|
if (vtype == TYPE_FLOAT && what->vtype == TYPE_INTEGER)
|
|
op = INSTR_CONV_ITOF;
|
|
else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
|
|
op = INSTR_CONV_FTOI;
|
|
#endif
|
|
op = type_store_instr[vtype];
|
|
|
|
if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
|
|
if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
|
|
op = INSTR_STORE_V;
|
|
}
|
|
|
|
return ir_block_create_store_op(self, op, target, what);
|
|
}
|
|
|
|
bool ir_block_create_storep(ir_block *self, ir_value *target, ir_value *what)
|
|
{
|
|
int op = 0;
|
|
int vtype;
|
|
|
|
if (target->vtype != TYPE_POINTER)
|
|
return false;
|
|
|
|
/* storing using pointer - target is a pointer, type must be
|
|
* inferred from source
|
|
*/
|
|
vtype = what->vtype;
|
|
|
|
op = type_storep_instr[vtype];
|
|
if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
|
|
if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
|
|
op = INSTR_STOREP_V;
|
|
}
|
|
|
|
return ir_block_create_store_op(self, op, target, what);
|
|
}
|
|
|
|
bool ir_block_create_return(ir_block *self, ir_value *v)
|
|
{
|
|
ir_instr *in;
|
|
if (self->final) {
|
|
irerror(self->context, "block already ended (%s)", self->label);
|
|
return false;
|
|
}
|
|
self->final = true;
|
|
self->is_return = true;
|
|
in = ir_instr_new(self, INSTR_RETURN);
|
|
if (!in)
|
|
return false;
|
|
|
|
if (v && !ir_instr_op(in, 0, v, false))
|
|
return false;
|
|
|
|
if (!ir_block_instr_add(self, in))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool ir_block_create_if(ir_block *self, ir_value *v,
|
|
ir_block *ontrue, ir_block *onfalse)
|
|
{
|
|
ir_instr *in;
|
|
if (self->final) {
|
|
irerror(self->context, "block already ended (%s)", self->label);
|
|
return false;
|
|
}
|
|
self->final = true;
|
|
/*in = ir_instr_new(self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
|
|
in = ir_instr_new(self, VINSTR_COND);
|
|
if (!in)
|
|
return false;
|
|
|
|
if (!ir_instr_op(in, 0, v, false)) {
|
|
ir_instr_delete(in);
|
|
return false;
|
|
}
|
|
|
|
in->bops[0] = ontrue;
|
|
in->bops[1] = onfalse;
|
|
|
|
if (!ir_block_instr_add(self, in))
|
|
return false;
|
|
|
|
if (!ir_block_exits_add(self, ontrue) ||
|
|
!ir_block_exits_add(self, onfalse) ||
|
|
!ir_block_entries_add(ontrue, self) ||
|
|
!ir_block_entries_add(onfalse, self) )
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ir_block_create_jump(ir_block *self, ir_block *to)
|
|
{
|
|
ir_instr *in;
|
|
if (self->final) {
|
|
irerror(self->context, "block already ended (%s)", self->label);
|
|
return false;
|
|
}
|
|
self->final = true;
|
|
in = ir_instr_new(self, VINSTR_JUMP);
|
|
if (!in)
|
|
return false;
|
|
|
|
in->bops[0] = to;
|
|
if (!ir_block_instr_add(self, in))
|
|
return false;
|
|
|
|
if (!ir_block_exits_add(self, to) ||
|
|
!ir_block_entries_add(to, self) )
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ir_block_create_goto(ir_block *self, ir_block *to)
|
|
{
|
|
ir_instr *in;
|
|
if (self->final) {
|
|
irerror(self->context, "block already ended (%s)", self->label);
|
|
return false;
|
|
}
|
|
self->final = true;
|
|
in = ir_instr_new(self, INSTR_GOTO);
|
|
if (!in)
|
|
return false;
|
|
|
|
in->bops[0] = to;
|
|
if (!ir_block_instr_add(self, in))
|
|
return false;
|
|
|
|
if (!ir_block_exits_add(self, to) ||
|
|
!ir_block_entries_add(to, self) )
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot)
|
|
{
|
|
ir_value *out;
|
|
ir_instr *in;
|
|
in = ir_instr_new(self, VINSTR_PHI);
|
|
if (!in)
|
|
return NULL;
|
|
out = ir_value_out(self->owner, label, store_value, ot);
|
|
if (!out) {
|
|
ir_instr_delete(in);
|
|
return NULL;
|
|
}
|
|
if (!ir_instr_op(in, 0, out, true)) {
|
|
ir_instr_delete(in);
|
|
ir_value_delete(out);
|
|
return NULL;
|
|
}
|
|
if (!ir_block_instr_add(self, in)) {
|
|
ir_instr_delete(in);
|
|
ir_value_delete(out);
|
|
return NULL;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
ir_value* ir_phi_value(ir_instr *self)
|
|
{
|
|
return self->_ops[0];
|
|
}
|
|
|
|
bool ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
|
|
{
|
|
ir_phi_entry_t pe;
|
|
|
|
if (!ir_block_entries_find(self->owner, b, NULL)) {
|
|
/* Must not be possible to cause this, otherwise the AST
|
|
* is doing something wrong.
|
|
*/
|
|
irerror(self->context, "Invalid entry block for PHI");
|
|
abort();
|
|
}
|
|
|
|
pe.value = v;
|
|
pe.from = b;
|
|
if (!ir_value_reads_add(v, self))
|
|
return false;
|
|
return ir_instr_phi_add(self, pe);
|
|
}
|
|
|
|
/* call related code */
|
|
ir_instr* ir_block_create_call(ir_block *self, const char *label, ir_value *func)
|
|
{
|
|
ir_value *out;
|
|
ir_instr *in;
|
|
in = ir_instr_new(self, INSTR_CALL0);
|
|
if (!in)
|
|
return NULL;
|
|
out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
|
|
if (!out) {
|
|
ir_instr_delete(in);
|
|
return NULL;
|
|
}
|
|
if (!ir_instr_op(in, 0, out, true) ||
|
|
!ir_instr_op(in, 1, func, false) ||
|
|
!ir_block_instr_add(self, in))
|
|
{
|
|
ir_instr_delete(in);
|
|
ir_value_delete(out);
|
|
return NULL;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
ir_value* ir_call_value(ir_instr *self)
|
|
{
|
|
return self->_ops[0];
|
|
}
|
|
|
|
bool ir_call_param(ir_instr* self, ir_value *v)
|
|
{
|
|
if (!ir_instr_params_add(self, v))
|
|
return false;
|
|
if (!ir_value_reads_add(v, self)) {
|
|
if (!ir_instr_params_remove(self, self->params_count-1))
|
|
GMQCC_SUPPRESS_EMPTY_BODY;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* binary op related code */
|
|
|
|
ir_value* ir_block_create_binop(ir_block *self,
|
|
const char *label, int opcode,
|
|
ir_value *left, ir_value *right)
|
|
{
|
|
int ot = TYPE_VOID;
|
|
switch (opcode) {
|
|
case INSTR_ADD_F:
|
|
case INSTR_SUB_F:
|
|
case INSTR_DIV_F:
|
|
case INSTR_MUL_F:
|
|
case INSTR_MUL_V:
|
|
case INSTR_AND:
|
|
case INSTR_OR:
|
|
#if 0
|
|
case INSTR_AND_I:
|
|
case INSTR_AND_IF:
|
|
case INSTR_AND_FI:
|
|
case INSTR_OR_I:
|
|
case INSTR_OR_IF:
|
|
case INSTR_OR_FI:
|
|
#endif
|
|
case INSTR_BITAND:
|
|
case INSTR_BITOR:
|
|
#if 0
|
|
case INSTR_SUB_S: /* -- offset of string as float */
|
|
case INSTR_MUL_IF:
|
|
case INSTR_MUL_FI:
|
|
case INSTR_DIV_IF:
|
|
case INSTR_DIV_FI:
|
|
case INSTR_BITOR_IF:
|
|
case INSTR_BITOR_FI:
|
|
case INSTR_BITAND_FI:
|
|
case INSTR_BITAND_IF:
|
|
case INSTR_EQ_I:
|
|
case INSTR_NE_I:
|
|
#endif
|
|
ot = TYPE_FLOAT;
|
|
break;
|
|
#if 0
|
|
case INSTR_ADD_I:
|
|
case INSTR_ADD_IF:
|
|
case INSTR_ADD_FI:
|
|
case INSTR_SUB_I:
|
|
case INSTR_SUB_FI:
|
|
case INSTR_SUB_IF:
|
|
case INSTR_MUL_I:
|
|
case INSTR_DIV_I:
|
|
case INSTR_BITAND_I:
|
|
case INSTR_BITOR_I:
|
|
case INSTR_XOR_I:
|
|
case INSTR_RSHIFT_I:
|
|
case INSTR_LSHIFT_I:
|
|
ot = TYPE_INTEGER;
|
|
break;
|
|
#endif
|
|
case INSTR_ADD_V:
|
|
case INSTR_SUB_V:
|
|
case INSTR_MUL_VF:
|
|
case INSTR_MUL_FV:
|
|
#if 0
|
|
case INSTR_DIV_VF:
|
|
case INSTR_MUL_IV:
|
|
case INSTR_MUL_VI:
|
|
#endif
|
|
ot = TYPE_VECTOR;
|
|
break;
|
|
#if 0
|
|
case INSTR_ADD_SF:
|
|
ot = TYPE_POINTER;
|
|
break;
|
|
#endif
|
|
default:
|
|
/* ranges: */
|
|
/* boolean operations result in floats */
|
|
if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
|
|
ot = TYPE_FLOAT;
|
|
else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
|
|
ot = TYPE_FLOAT;
|
|
#if 0
|
|
else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
|
|
ot = TYPE_FLOAT;
|
|
#endif
|
|
break;
|
|
};
|
|
if (ot == TYPE_VOID) {
|
|
/* The AST or parser were supposed to check this! */
|
|
return NULL;
|
|
}
|
|
|
|
return ir_block_create_general_instr(self, label, opcode, left, right, ot);
|
|
}
|
|
|
|
ir_value* ir_block_create_unary(ir_block *self,
|
|
const char *label, int opcode,
|
|
ir_value *operand)
|
|
{
|
|
int ot = TYPE_FLOAT;
|
|
switch (opcode) {
|
|
case INSTR_NOT_F:
|
|
case INSTR_NOT_V:
|
|
case INSTR_NOT_S:
|
|
case INSTR_NOT_ENT:
|
|
case INSTR_NOT_FNC:
|
|
#if 0
|
|
case INSTR_NOT_I:
|
|
#endif
|
|
ot = TYPE_FLOAT;
|
|
break;
|
|
/* QC doesn't have other unary operations. We expect extensions to fill
|
|
* the above list, otherwise we assume out-type = in-type, eg for an
|
|
* unary minus
|
|
*/
|
|
default:
|
|
ot = operand->vtype;
|
|
break;
|
|
};
|
|
if (ot == TYPE_VOID) {
|
|
/* The AST or parser were supposed to check this! */
|
|
return NULL;
|
|
}
|
|
|
|
/* let's use the general instruction creator and pass NULL for OPB */
|
|
return ir_block_create_general_instr(self, label, opcode, operand, NULL, ot);
|
|
}
|
|
|
|
ir_value* ir_block_create_general_instr(ir_block *self, const char *label,
|
|
int op, ir_value *a, ir_value *b, int outype)
|
|
{
|
|
ir_instr *instr;
|
|
ir_value *out;
|
|
|
|
out = ir_value_out(self->owner, label, store_value, outype);
|
|
if (!out)
|
|
return NULL;
|
|
|
|
instr = ir_instr_new(self, op);
|
|
if (!instr) {
|
|
ir_value_delete(out);
|
|
return NULL;
|
|
}
|
|
|
|
if (!ir_instr_op(instr, 0, out, true) ||
|
|
!ir_instr_op(instr, 1, a, false) ||
|
|
!ir_instr_op(instr, 2, b, false) )
|
|
{
|
|
goto on_error;
|
|
}
|
|
|
|
if (!ir_block_instr_add(self, instr))
|
|
goto on_error;
|
|
|
|
return out;
|
|
on_error:
|
|
ir_instr_delete(instr);
|
|
ir_value_delete(out);
|
|
return NULL;
|
|
}
|
|
|
|
ir_value* ir_block_create_fieldaddress(ir_block *self, const char *label, ir_value *ent, ir_value *field)
|
|
{
|
|
ir_value *v;
|
|
|
|
/* Support for various pointer types todo if so desired */
|
|
if (ent->vtype != TYPE_ENTITY)
|
|
return NULL;
|
|
|
|
if (field->vtype != TYPE_FIELD)
|
|
return NULL;
|
|
|
|
v = ir_block_create_general_instr(self, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
|
|
v->fieldtype = field->fieldtype;
|
|
return v;
|
|
}
|
|
|
|
ir_value* ir_block_create_load_from_ent(ir_block *self, const char *label, ir_value *ent, ir_value *field, int outype)
|
|
{
|
|
int op;
|
|
if (ent->vtype != TYPE_ENTITY)
|
|
return NULL;
|
|
|
|
/* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
|
|
if (field->vtype != TYPE_FIELD)
|
|
return NULL;
|
|
|
|
switch (outype)
|
|
{
|
|
case TYPE_FLOAT: op = INSTR_LOAD_F; break;
|
|
case TYPE_VECTOR: op = INSTR_LOAD_V; break;
|
|
case TYPE_STRING: op = INSTR_LOAD_S; break;
|
|
case TYPE_FIELD: op = INSTR_LOAD_FLD; break;
|
|
case TYPE_ENTITY: op = INSTR_LOAD_ENT; break;
|
|
case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
|
|
#if 0
|
|
case TYPE_POINTER: op = INSTR_LOAD_I; break;
|
|
case TYPE_INTEGER: op = INSTR_LOAD_I; break;
|
|
#endif
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return ir_block_create_general_instr(self, label, op, ent, field, outype);
|
|
}
|
|
|
|
ir_value* ir_block_create_add(ir_block *self,
|
|
const char *label,
|
|
ir_value *left, ir_value *right)
|
|
{
|
|
int op = 0;
|
|
int l = left->vtype;
|
|
int r = right->vtype;
|
|
if (l == r) {
|
|
switch (l) {
|
|
default:
|
|
return NULL;
|
|
case TYPE_FLOAT:
|
|
op = INSTR_ADD_F;
|
|
break;
|
|
#if 0
|
|
case TYPE_INTEGER:
|
|
op = INSTR_ADD_I;
|
|
break;
|
|
#endif
|
|
case TYPE_VECTOR:
|
|
op = INSTR_ADD_V;
|
|
break;
|
|
}
|
|
} else {
|
|
#if 0
|
|
if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
|
|
op = INSTR_ADD_FI;
|
|
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
|
|
op = INSTR_ADD_IF;
|
|
else
|
|
#endif
|
|
return NULL;
|
|
}
|
|
return ir_block_create_binop(self, label, op, left, right);
|
|
}
|
|
|
|
ir_value* ir_block_create_sub(ir_block *self,
|
|
const char *label,
|
|
ir_value *left, ir_value *right)
|
|
{
|
|
int op = 0;
|
|
int l = left->vtype;
|
|
int r = right->vtype;
|
|
if (l == r) {
|
|
|
|
switch (l) {
|
|
default:
|
|
return NULL;
|
|
case TYPE_FLOAT:
|
|
op = INSTR_SUB_F;
|
|
break;
|
|
#if 0
|
|
case TYPE_INTEGER:
|
|
op = INSTR_SUB_I;
|
|
break;
|
|
#endif
|
|
case TYPE_VECTOR:
|
|
op = INSTR_SUB_V;
|
|
break;
|
|
}
|
|
} else {
|
|
#if 0
|
|
if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
|
|
op = INSTR_SUB_FI;
|
|
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
|
|
op = INSTR_SUB_IF;
|
|
else
|
|
#endif
|
|
return NULL;
|
|
}
|
|
return ir_block_create_binop(self, label, op, left, right);
|
|
}
|
|
|
|
ir_value* ir_block_create_mul(ir_block *self,
|
|
const char *label,
|
|
ir_value *left, ir_value *right)
|
|
{
|
|
int op = 0;
|
|
int l = left->vtype;
|
|
int r = right->vtype;
|
|
if (l == r) {
|
|
|
|
switch (l) {
|
|
default:
|
|
return NULL;
|
|
case TYPE_FLOAT:
|
|
op = INSTR_MUL_F;
|
|
break;
|
|
#if 0
|
|
case TYPE_INTEGER:
|
|
op = INSTR_MUL_I;
|
|
break;
|
|
#endif
|
|
case TYPE_VECTOR:
|
|
op = INSTR_MUL_V;
|
|
break;
|
|
}
|
|
} else {
|
|
if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
|
|
op = INSTR_MUL_VF;
|
|
else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) )
|
|
op = INSTR_MUL_FV;
|
|
#if 0
|
|
else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) )
|
|
op = INSTR_MUL_VI;
|
|
else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) )
|
|
op = INSTR_MUL_IV;
|
|
else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
|
|
op = INSTR_MUL_FI;
|
|
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
|
|
op = INSTR_MUL_IF;
|
|
#endif
|
|
else
|
|
return NULL;
|
|
}
|
|
return ir_block_create_binop(self, label, op, left, right);
|
|
}
|
|
|
|
ir_value* ir_block_create_div(ir_block *self,
|
|
const char *label,
|
|
ir_value *left, ir_value *right)
|
|
{
|
|
int op = 0;
|
|
int l = left->vtype;
|
|
int r = right->vtype;
|
|
if (l == r) {
|
|
|
|
switch (l) {
|
|
default:
|
|
return NULL;
|
|
case TYPE_FLOAT:
|
|
op = INSTR_DIV_F;
|
|
break;
|
|
#if 0
|
|
case TYPE_INTEGER:
|
|
op = INSTR_DIV_I;
|
|
break;
|
|
#endif
|
|
}
|
|
} else {
|
|
#if 0
|
|
if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
|
|
op = INSTR_DIV_VF;
|
|
else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
|
|
op = INSTR_DIV_FI;
|
|
else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
|
|
op = INSTR_DIV_IF;
|
|
else
|
|
#endif
|
|
return NULL;
|
|
}
|
|
return ir_block_create_binop(self, label, op, left, right);
|
|
}
|
|
|
|
/* PHI resolving breaks the SSA, and must thus be the last
|
|
* step before life-range calculation.
|
|
*/
|
|
|
|
static bool ir_block_naive_phi(ir_block *self);
|
|
bool ir_function_naive_phi(ir_function *self)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < self->blocks_count; ++i)
|
|
{
|
|
if (!ir_block_naive_phi(self->blocks[i]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what)
|
|
{
|
|
ir_instr *instr;
|
|
size_t i;
|
|
|
|
/* create a store */
|
|
if (!ir_block_create_store(block, old, what))
|
|
return false;
|
|
|
|
/* we now move it up */
|
|
instr = block->instr[block->instr_count-1];
|
|
for (i = block->instr_count; i > iid; --i)
|
|
block->instr[i] = block->instr[i-1];
|
|
block->instr[i] = instr;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ir_block_naive_phi(ir_block *self)
|
|
{
|
|
size_t i, p, w;
|
|
/* FIXME: optionally, create_phi can add the phis
|
|
* to a list so we don't need to loop through blocks
|
|
* - anyway: "don't optimize YET"
|
|
*/
|
|
for (i = 0; i < self->instr_count; ++i)
|
|
{
|
|
ir_instr *instr = self->instr[i];
|
|
if (instr->opcode != VINSTR_PHI)
|
|
continue;
|
|
|
|
if (!ir_block_instr_remove(self, i))
|
|
return false;
|
|
--i; /* NOTE: i+1 below */
|
|
|
|
for (p = 0; p < instr->phi_count; ++p)
|
|
{
|
|
ir_value *v = instr->phi[p].value;
|
|
for (w = 0; w < v->writes_count; ++w) {
|
|
ir_value *old;
|
|
|
|
if (!v->writes[w]->_ops[0])
|
|
continue;
|
|
|
|
/* When the write was to a global, we have to emit a mov */
|
|
old = v->writes[w]->_ops[0];
|
|
|
|
/* The original instruction now writes to the PHI target local */
|
|
if (v->writes[w]->_ops[0] == v)
|
|
v->writes[w]->_ops[0] = instr->_ops[0];
|
|
|
|
if (old->store != store_value && old->store != store_local && old->store != store_param)
|
|
{
|
|
/* If it originally wrote to a global we need to store the value
|
|
* there as welli
|
|
*/
|
|
if (!ir_naive_phi_emit_store(self, i+1, old, v))
|
|
return false;
|
|
if (i+1 < self->instr_count)
|
|
instr = self->instr[i+1];
|
|
else
|
|
instr = NULL;
|
|
/* In case I forget and access instr later, it'll be NULL
|
|
* when it's a problem, to make sure we crash, rather than accessing
|
|
* invalid data.
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
/* If it didn't, we can replace all reads by the phi target now. */
|
|
size_t r;
|
|
for (r = 0; r < old->reads_count; ++r)
|
|
{
|
|
size_t op;
|
|
ir_instr *ri = old->reads[r];
|
|
for (op = 0; op < ri->phi_count; ++op) {
|
|
if (ri->phi[op].value == old)
|
|
ri->phi[op].value = v;
|
|
}
|
|
for (op = 0; op < 3; ++op) {
|
|
if (ri->_ops[op] == old)
|
|
ri->_ops[op] = v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ir_instr_delete(instr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Temp allocation code
|
|
* Propagating value life ranges by walking through the function backwards
|
|
* until no more changes are made.
|
|
* In theory this should happen once more than once for every nested loop
|
|
* level.
|
|
* Though this implementation might run an additional time for if nests.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
ir_value* *v;
|
|
size_t v_count;
|
|
size_t v_alloc;
|
|
} new_reads_t;
|
|
MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v)
|
|
|
|
/* Enumerate instructions used by value's life-ranges
|
|
*/
|
|
static void ir_block_enumerate(ir_block *self, size_t *_eid)
|
|
{
|
|
size_t i;
|
|
size_t eid = *_eid;
|
|
for (i = 0; i < self->instr_count; ++i)
|
|
{
|
|
self->instr[i]->eid = eid++;
|
|
}
|
|
*_eid = eid;
|
|
}
|
|
|
|
/* Enumerate blocks and instructions.
|
|
* The block-enumeration is unordered!
|
|
* We do not really use the block enumreation, however
|
|
* the instruction enumeration is important for life-ranges.
|
|
*/
|
|
void ir_function_enumerate(ir_function *self)
|
|
{
|
|
size_t i;
|
|
size_t instruction_id = 0;
|
|
for (i = 0; i < self->blocks_count; ++i)
|
|
{
|
|
self->blocks[i]->eid = i;
|
|
self->blocks[i]->run_id = 0;
|
|
ir_block_enumerate(self->blocks[i], &instruction_id);
|
|
}
|
|
}
|
|
|
|
static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
|
|
bool ir_function_calculate_liferanges(ir_function *self)
|
|
{
|
|
size_t i;
|
|
bool changed;
|
|
|
|
do {
|
|
self->run_id++;
|
|
changed = false;
|
|
for (i = 0; i != self->blocks_count; ++i)
|
|
{
|
|
if (self->blocks[i]->is_return)
|
|
{
|
|
self->blocks[i]->living_count = 0;
|
|
if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
|
|
return false;
|
|
}
|
|
}
|
|
} while (changed);
|
|
if (self->blocks_count) {
|
|
ir_block *block = self->blocks[0];
|
|
for (i = 0; i < block->living_count; ++i) {
|
|
ir_value *v = block->living[i];
|
|
if (v->memberof || v->store != store_local)
|
|
continue;
|
|
if (irwarning(v->context, WARN_USED_UNINITIALIZED,
|
|
"variable `%s` may be used uninitialized in this function", v->name))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Local-value allocator
|
|
* After finishing creating the liferange of all values used in a function
|
|
* we can allocate their global-positions.
|
|
* This is the counterpart to register-allocation in register machines.
|
|
*/
|
|
typedef struct {
|
|
MEM_VECTOR_MAKE(ir_value*, locals);
|
|
MEM_VECTOR_MAKE(size_t, sizes);
|
|
MEM_VECTOR_MAKE(size_t, positions);
|
|
} function_allocator;
|
|
MEM_VEC_FUNCTIONS(function_allocator, ir_value*, locals)
|
|
MEM_VEC_FUNCTIONS(function_allocator, size_t, sizes)
|
|
MEM_VEC_FUNCTIONS(function_allocator, size_t, positions)
|
|
|
|
static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var)
|
|
{
|
|
ir_value *slot;
|
|
size_t vsize = type_sizeof[var->vtype];
|
|
|
|
slot = ir_value_var("reg", store_global, var->vtype);
|
|
if (!slot)
|
|
return false;
|
|
|
|
if (!ir_value_life_merge_into(slot, var))
|
|
goto localerror;
|
|
|
|
if (!function_allocator_locals_add(alloc, slot))
|
|
goto localerror;
|
|
|
|
if (!function_allocator_sizes_add(alloc, vsize))
|
|
goto localerror;
|
|
|
|
return true;
|
|
|
|
localerror:
|
|
ir_value_delete(slot);
|
|
return false;
|
|
}
|
|
|
|
bool ir_function_allocate_locals(ir_function *self)
|
|
{
|
|
size_t i, a;
|
|
bool retval = true;
|
|
size_t pos;
|
|
|
|
ir_value *slot;
|
|
const ir_value *v;
|
|
|
|
function_allocator alloc;
|
|
|
|
if (!self->locals_count && !self->values_count)
|
|
return true;
|
|
|
|
MEM_VECTOR_INIT(&alloc, locals);
|
|
MEM_VECTOR_INIT(&alloc, sizes);
|
|
MEM_VECTOR_INIT(&alloc, positions);
|
|
|
|
for (i = 0; i < self->locals_count; ++i)
|
|
{
|
|
if (!function_allocator_alloc(&alloc, self->locals[i]))
|
|
goto error;
|
|
}
|
|
|
|
/* Allocate a slot for any value that still exists */
|
|
for (i = 0; i < self->values_count; ++i)
|
|
{
|
|
v = self->values[i];
|
|
|
|
if (!v->life_count)
|
|
continue;
|
|
|
|
for (a = 0; a < alloc.locals_count; ++a)
|
|
{
|
|
slot = alloc.locals[a];
|
|
|
|
if (ir_values_overlap(v, slot))
|
|
continue;
|
|
|
|
if (!ir_value_life_merge_into(slot, v))
|
|
goto error;
|
|
|
|
/* adjust size for this slot */
|
|
if (alloc.sizes[a] < type_sizeof[v->vtype])
|
|
alloc.sizes[a] = type_sizeof[v->vtype];
|
|
|
|
self->values[i]->code.local = a;
|
|
break;
|
|
}
|
|
if (a >= alloc.locals_count) {
|
|
self->values[i]->code.local = alloc.locals_count;
|
|
if (!function_allocator_alloc(&alloc, v))
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (!alloc.sizes) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Adjust slot positions based on sizes */
|
|
if (!function_allocator_positions_add(&alloc, 0))
|
|
goto error;
|
|
|
|
if (alloc.sizes_count)
|
|
pos = alloc.positions[0] + alloc.sizes[0];
|
|
else
|
|
pos = 0;
|
|
for (i = 1; i < alloc.sizes_count; ++i)
|
|
{
|
|
pos = alloc.positions[i-1] + alloc.sizes[i-1];
|
|
if (!function_allocator_positions_add(&alloc, pos))
|
|
goto error;
|
|
}
|
|
|
|
self->allocated_locals = pos + alloc.sizes[alloc.sizes_count-1];
|
|
|
|
/* Take over the actual slot positions */
|
|
for (i = 0; i < self->values_count; ++i) {
|
|
self->values[i]->code.local = alloc.positions[self->values[i]->code.local];
|
|
}
|
|
|
|
goto cleanup;
|
|
|
|
error:
|
|
retval = false;
|
|
cleanup:
|
|
for (i = 0; i < alloc.locals_count; ++i)
|
|
ir_value_delete(alloc.locals[i]);
|
|
MEM_VECTOR_CLEAR(&alloc, locals);
|
|
MEM_VECTOR_CLEAR(&alloc, sizes);
|
|
MEM_VECTOR_CLEAR(&alloc, positions);
|
|
return retval;
|
|
}
|
|
|
|
/* Get information about which operand
|
|
* is read from, or written to.
|
|
*/
|
|
static void ir_op_read_write(int op, size_t *read, size_t *write)
|
|
{
|
|
switch (op)
|
|
{
|
|
case VINSTR_JUMP:
|
|
case INSTR_GOTO:
|
|
*write = 0;
|
|
*read = 0;
|
|
break;
|
|
case INSTR_IF:
|
|
case INSTR_IFNOT:
|
|
#if 0
|
|
case INSTR_IF_S:
|
|
case INSTR_IFNOT_S:
|
|
#endif
|
|
case INSTR_RETURN:
|
|
case VINSTR_COND:
|
|
*write = 0;
|
|
*read = 1;
|
|
break;
|
|
case INSTR_STOREP_F:
|
|
case INSTR_STOREP_V:
|
|
case INSTR_STOREP_S:
|
|
case INSTR_STOREP_ENT:
|
|
case INSTR_STOREP_FLD:
|
|
case INSTR_STOREP_FNC:
|
|
*write = 0;
|
|
*read = 7;
|
|
break;
|
|
default:
|
|
*write = 1;
|
|
*read = 6;
|
|
break;
|
|
};
|
|
}
|
|
|
|
static bool ir_block_living_add_instr(ir_block *self, size_t eid)
|
|
{
|
|
size_t i;
|
|
bool changed = false;
|
|
bool tempbool;
|
|
for (i = 0; i != self->living_count; ++i)
|
|
{
|
|
tempbool = ir_value_life_merge(self->living[i], eid);
|
|
/* debug
|
|
if (tempbool)
|
|
irerror(self->context, "block_living_add_instr() value instruction added %s: %i", self->living[i]->_name, (int)eid);
|
|
*/
|
|
changed = changed || tempbool;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
|
|
{
|
|
size_t i;
|
|
/* values which have been read in a previous iteration are now
|
|
* in the "living" array even if the previous block doesn't use them.
|
|
* So we have to remove whatever does not exist in the previous block.
|
|
* They will be re-added on-read, but the liferange merge won't cause
|
|
* a change.
|
|
*/
|
|
for (i = 0; i < self->living_count; ++i)
|
|
{
|
|
if (!ir_block_living_find(prev, self->living[i], NULL)) {
|
|
if (!ir_block_living_remove(self, i))
|
|
return false;
|
|
--i;
|
|
}
|
|
}
|
|
|
|
/* Whatever the previous block still has in its living set
|
|
* must now be added to ours as well.
|
|
*/
|
|
for (i = 0; i < prev->living_count; ++i)
|
|
{
|
|
if (ir_block_living_find(self, prev->living[i], NULL))
|
|
continue;
|
|
if (!ir_block_living_add(self, prev->living[i]))
|
|
return false;
|
|
/*
|
|
irerror(self->contextt from prev: %s", self->label, prev->living[i]->_name);
|
|
*/
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
|
|
{
|
|
ir_instr *instr;
|
|
ir_value *value;
|
|
bool tempbool;
|
|
size_t i, o, p;
|
|
/* bitmasks which operands are read from or written to */
|
|
size_t read, write;
|
|
char dbg_ind[16] = { '#', '0' };
|
|
(void)dbg_ind;
|
|
|
|
if (prev)
|
|
{
|
|
if (!ir_block_life_prop_previous(self, prev, changed))
|
|
return false;
|
|
}
|
|
|
|
i = self->instr_count;
|
|
while (i)
|
|
{ --i;
|
|
instr = self->instr[i];
|
|
|
|
/* PHI operands are always read operands */
|
|
for (p = 0; p < instr->phi_count; ++p)
|
|
{
|
|
value = instr->phi[p].value;
|
|
if (value->memberof)
|
|
value = value->memberof;
|
|
if (!ir_block_living_find(self, value, NULL) &&
|
|
!ir_block_living_add(self, value))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* call params are read operands too */
|
|
for (p = 0; p < instr->params_count; ++p)
|
|
{
|
|
value = instr->params[p];
|
|
if (value->memberof)
|
|
value = value->memberof;
|
|
if (!ir_block_living_find(self, value, NULL) &&
|
|
!ir_block_living_add(self, value))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* See which operands are read and write operands */
|
|
ir_op_read_write(instr->opcode, &read, &write);
|
|
|
|
if (instr->opcode == INSTR_MUL_VF)
|
|
{
|
|
/* the float source will get an additional lifetime */
|
|
tempbool = ir_value_life_merge(instr->_ops[2], instr->eid+1);
|
|
*changed = *changed || tempbool;
|
|
}
|
|
else if (instr->opcode == INSTR_MUL_FV)
|
|
{
|
|
/* the float source will get an additional lifetime */
|
|
tempbool = ir_value_life_merge(instr->_ops[1], instr->eid+1);
|
|
*changed = *changed || tempbool;
|
|
}
|
|
|
|
/* Go through the 3 main operands */
|
|
for (o = 0; o < 3; ++o)
|
|
{
|
|
if (!instr->_ops[o]) /* no such operand */
|
|
continue;
|
|
|
|
value = instr->_ops[o];
|
|
if (value->memberof)
|
|
value = value->memberof;
|
|
|
|
/* We only care about locals */
|
|
/* we also calculate parameter liferanges so that locals
|
|
* can take up parameter slots */
|
|
if (value->store != store_value &&
|
|
value->store != store_local &&
|
|
value->store != store_param)
|
|
continue;
|
|
|
|
/* read operands */
|
|
if (read & (1<<o))
|
|
{
|
|
if (!ir_block_living_find(self, value, NULL) &&
|
|
!ir_block_living_add(self, value))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* write operands */
|
|
/* When we write to a local, we consider it "dead" for the
|
|
* remaining upper part of the function, since in SSA a value
|
|
* can only be written once (== created)
|
|
*/
|
|
if (write & (1<<o))
|
|
{
|
|
size_t idx;
|
|
bool in_living = ir_block_living_find(self, value, &idx);
|
|
if (!in_living)
|
|
{
|
|
/* If the value isn't alive it hasn't been read before... */
|
|
/* TODO: See if the warning can be emitted during parsing or AST processing
|
|
* otherwise have warning printed here.
|
|
* IF printing a warning here: include filecontext_t,
|
|
* and make sure it's only printed once
|
|
* since this function is run multiple times.
|
|
*/
|
|
/* For now: debug info: */
|
|
/* fprintf(stderr, "Value only written %s\n", value->name); */
|
|
tempbool = ir_value_life_merge(value, instr->eid);
|
|
*changed = *changed || tempbool;
|
|
/*
|
|
ir_instr_dump(instr, dbg_ind, printf);
|
|
abort();
|
|
*/
|
|
} else {
|
|
/* since 'living' won't contain it
|
|
* anymore, merge the value, since
|
|
* (A) doesn't.
|
|
*/
|
|
tempbool = ir_value_life_merge(value, instr->eid);
|
|
/*
|
|
if (tempbool)
|
|
fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid);
|
|
*/
|
|
*changed = *changed || tempbool;
|
|
/* Then remove */
|
|
if (!ir_block_living_remove(self, idx))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
/* (A) */
|
|
tempbool = ir_block_living_add_instr(self, instr->eid);
|
|
/*fprintf(stderr, "living added values\n");*/
|
|
*changed = *changed || tempbool;
|
|
|
|
}
|
|
|
|
if (self->run_id == self->owner->run_id)
|
|
return true;
|
|
|
|
self->run_id = self->owner->run_id;
|
|
|
|
for (i = 0; i < self->entries_count; ++i)
|
|
{
|
|
ir_block *entry = self->entries[i];
|
|
ir_block_life_propagate(entry, self, changed);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR Code-Generation
|
|
*
|
|
* Since the IR has the convention of putting 'write' operands
|
|
* at the beginning, we have to rotate the operands of instructions
|
|
* properly in order to generate valid QCVM code.
|
|
*
|
|
* Having destinations at a fixed position is more convenient. In QC
|
|
* this is *mostly* OPC, but FTE adds at least 2 instructions which
|
|
* read from from OPA, and store to OPB rather than OPC. Which is
|
|
* partially the reason why the implementation of these instructions
|
|
* in darkplaces has been delayed for so long.
|
|
*
|
|
* Breaking conventions is annoying...
|
|
*/
|
|
static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal);
|
|
|
|
static bool gen_global_field(ir_value *global)
|
|
{
|
|
if (global->isconst)
|
|
{
|
|
ir_value *fld = global->constval.vpointer;
|
|
if (!fld) {
|
|
irerror(global->context, "Invalid field constant with no field: %s", global->name);
|
|
return false;
|
|
}
|
|
|
|
/* Now, in this case, a relocation would be impossible to code
|
|
* since it looks like this:
|
|
* .vector v = origin; <- parse error, wtf is 'origin'?
|
|
* .vector origin;
|
|
*
|
|
* But we will need a general relocation support later anyway
|
|
* for functions... might as well support that here.
|
|
*/
|
|
if (!fld->code.globaladdr) {
|
|
irerror(global->context, "FIXME: Relocation support");
|
|
return false;
|
|
}
|
|
|
|
/* copy the field's value */
|
|
ir_value_code_setaddr(global, code_globals_add(code_globals_data[fld->code.globaladdr]));
|
|
if (global->fieldtype == TYPE_VECTOR) {
|
|
code_globals_add(code_globals_data[fld->code.globaladdr]+1);
|
|
code_globals_add(code_globals_data[fld->code.globaladdr]+2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
if (global->fieldtype == TYPE_VECTOR) {
|
|
code_globals_add(0);
|
|
code_globals_add(0);
|
|
}
|
|
}
|
|
if (global->code.globaladdr < 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool gen_global_pointer(ir_value *global)
|
|
{
|
|
if (global->isconst)
|
|
{
|
|
ir_value *target = global->constval.vpointer;
|
|
if (!target) {
|
|
irerror(global->context, "Invalid pointer constant: %s", global->name);
|
|
/* NULL pointers are pointing to the NULL constant, which also
|
|
* sits at address 0, but still has an ir_value for itself.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
/* Here, relocations ARE possible - in fteqcc-enhanced-qc:
|
|
* void() foo; <- proto
|
|
* void() *fooptr = &foo;
|
|
* void() foo = { code }
|
|
*/
|
|
if (!target->code.globaladdr) {
|
|
/* FIXME: Check for the constant nullptr ir_value!
|
|
* because then code.globaladdr being 0 is valid.
|
|
*/
|
|
irerror(global->context, "FIXME: Relocation support");
|
|
return false;
|
|
}
|
|
|
|
ir_value_code_setaddr(global, code_globals_add(target->code.globaladdr));
|
|
}
|
|
else
|
|
{
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
}
|
|
if (global->code.globaladdr < 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool gen_blocks_recursive(ir_function *func, ir_block *block)
|
|
{
|
|
prog_section_statement stmt;
|
|
ir_instr *instr;
|
|
ir_block *target;
|
|
ir_block *ontrue;
|
|
ir_block *onfalse;
|
|
size_t stidx;
|
|
size_t i;
|
|
|
|
tailcall:
|
|
block->generated = true;
|
|
block->code_start = code_statements_elements;
|
|
for (i = 0; i < block->instr_count; ++i)
|
|
{
|
|
instr = block->instr[i];
|
|
|
|
if (instr->opcode == VINSTR_PHI) {
|
|
irerror(block->context, "cannot generate virtual instruction (phi)");
|
|
return false;
|
|
}
|
|
|
|
if (instr->opcode == VINSTR_JUMP) {
|
|
target = instr->bops[0];
|
|
/* for uncoditional jumps, if the target hasn't been generated
|
|
* yet, we generate them right here.
|
|
*/
|
|
if (!target->generated) {
|
|
block = target;
|
|
goto tailcall;
|
|
}
|
|
|
|
/* otherwise we generate a jump instruction */
|
|
stmt.opcode = INSTR_GOTO;
|
|
stmt.o1.s1 = (target->code_start) - code_statements_elements;
|
|
stmt.o2.s1 = 0;
|
|
stmt.o3.s1 = 0;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
|
|
/* no further instructions can be in this block */
|
|
return true;
|
|
}
|
|
|
|
if (instr->opcode == VINSTR_COND) {
|
|
ontrue = instr->bops[0];
|
|
onfalse = instr->bops[1];
|
|
/* TODO: have the AST signal which block should
|
|
* come first: eg. optimize IFs without ELSE...
|
|
*/
|
|
|
|
stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
|
|
stmt.o2.u1 = 0;
|
|
stmt.o3.s1 = 0;
|
|
|
|
if (ontrue->generated) {
|
|
stmt.opcode = INSTR_IF;
|
|
stmt.o2.s1 = (ontrue->code_start) - code_statements_elements;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
}
|
|
if (onfalse->generated) {
|
|
stmt.opcode = INSTR_IFNOT;
|
|
stmt.o2.s1 = (onfalse->code_start) - code_statements_elements;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
}
|
|
if (!ontrue->generated) {
|
|
if (onfalse->generated) {
|
|
block = ontrue;
|
|
goto tailcall;
|
|
}
|
|
}
|
|
if (!onfalse->generated) {
|
|
if (ontrue->generated) {
|
|
block = onfalse;
|
|
goto tailcall;
|
|
}
|
|
}
|
|
/* neither ontrue nor onfalse exist */
|
|
stmt.opcode = INSTR_IFNOT;
|
|
stidx = code_statements_elements;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
/* on false we jump, so add ontrue-path */
|
|
if (!gen_blocks_recursive(func, ontrue))
|
|
return false;
|
|
/* fixup the jump address */
|
|
code_statements_data[stidx].o2.s1 = code_statements_elements - stidx;
|
|
/* generate onfalse path */
|
|
if (onfalse->generated) {
|
|
/* fixup the jump address */
|
|
code_statements_data[stidx].o2.s1 = (onfalse->code_start) - (stidx);
|
|
/* may have been generated in the previous recursive call */
|
|
stmt.opcode = INSTR_GOTO;
|
|
stmt.o1.s1 = (onfalse->code_start) - code_statements_elements;
|
|
stmt.o2.s1 = 0;
|
|
stmt.o3.s1 = 0;
|
|
return (code_statements_add(stmt) >= 0);
|
|
}
|
|
/* if not, generate now */
|
|
block = onfalse;
|
|
goto tailcall;
|
|
}
|
|
|
|
if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
|
|
/* Trivial call translation:
|
|
* copy all params to OFS_PARM*
|
|
* if the output's storetype is not store_return,
|
|
* add append a STORE instruction!
|
|
*
|
|
* NOTES on how to do it better without much trouble:
|
|
* -) The liferanges!
|
|
* Simply check the liferange of all parameters for
|
|
* other CALLs. For each param with no CALL in its
|
|
* liferange, we can store it in an OFS_PARM at
|
|
* generation already. This would even include later
|
|
* reuse.... probably... :)
|
|
*/
|
|
size_t p;
|
|
ir_value *retvalue;
|
|
|
|
for (p = 0; p < instr->params_count; ++p)
|
|
{
|
|
ir_value *param = instr->params[p];
|
|
|
|
stmt.opcode = INSTR_STORE_F;
|
|
stmt.o3.u1 = 0;
|
|
|
|
stmt.opcode = type_store_instr[param->vtype];
|
|
stmt.o1.u1 = ir_value_code_addr(param);
|
|
stmt.o2.u1 = OFS_PARM0 + 3 * p;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
}
|
|
stmt.opcode = INSTR_CALL0 + instr->params_count;
|
|
if (stmt.opcode > INSTR_CALL8)
|
|
stmt.opcode = INSTR_CALL8;
|
|
stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
|
|
stmt.o2.u1 = 0;
|
|
stmt.o3.u1 = 0;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
|
|
retvalue = instr->_ops[0];
|
|
if (retvalue && retvalue->store != store_return && retvalue->life_count)
|
|
{
|
|
/* not to be kept in OFS_RETURN */
|
|
stmt.opcode = type_store_instr[retvalue->vtype];
|
|
stmt.o1.u1 = OFS_RETURN;
|
|
stmt.o2.u1 = ir_value_code_addr(retvalue);
|
|
stmt.o3.u1 = 0;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (instr->opcode == INSTR_STATE) {
|
|
irerror(block->context, "TODO: state instruction");
|
|
return false;
|
|
}
|
|
|
|
stmt.opcode = instr->opcode;
|
|
stmt.o1.u1 = 0;
|
|
stmt.o2.u1 = 0;
|
|
stmt.o3.u1 = 0;
|
|
|
|
/* This is the general order of operands */
|
|
if (instr->_ops[0])
|
|
stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
|
|
|
|
if (instr->_ops[1])
|
|
stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
|
|
|
|
if (instr->_ops[2])
|
|
stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
|
|
|
|
if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
|
|
{
|
|
stmt.o1.u1 = stmt.o3.u1;
|
|
stmt.o3.u1 = 0;
|
|
}
|
|
else if ((stmt.opcode >= INSTR_STORE_F &&
|
|
stmt.opcode <= INSTR_STORE_FNC) ||
|
|
(stmt.opcode >= INSTR_STOREP_F &&
|
|
stmt.opcode <= INSTR_STOREP_FNC))
|
|
{
|
|
/* 2-operand instructions with A -> B */
|
|
stmt.o2.u1 = stmt.o3.u1;
|
|
stmt.o3.u1 = 0;
|
|
}
|
|
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool gen_function_code(ir_function *self)
|
|
{
|
|
ir_block *block;
|
|
prog_section_statement stmt;
|
|
|
|
/* Starting from entry point, we generate blocks "as they come"
|
|
* for now. Dead blocks will not be translated obviously.
|
|
*/
|
|
if (!self->blocks_count) {
|
|
irerror(self->context, "Function '%s' declared without body.", self->name);
|
|
return false;
|
|
}
|
|
|
|
block = self->blocks[0];
|
|
if (block->generated)
|
|
return true;
|
|
|
|
if (!gen_blocks_recursive(self, block)) {
|
|
irerror(self->context, "failed to generate blocks for '%s'", self->name);
|
|
return false;
|
|
}
|
|
|
|
/* otherwise code_write crashes since it debug-prints functions until AINSTR_END */
|
|
stmt.opcode = AINSTR_END;
|
|
stmt.o1.u1 = 0;
|
|
stmt.o2.u1 = 0;
|
|
stmt.o3.u1 = 0;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static qcint ir_builder_filestring(ir_builder *ir, const char *filename)
|
|
{
|
|
/* NOTE: filename pointers are copied, we never strdup them,
|
|
* thus we can use pointer-comparison to find the string.
|
|
*/
|
|
size_t i;
|
|
qcint str;
|
|
|
|
for (i = 0; i < ir->filenames_count; ++i) {
|
|
if (ir->filenames[i] == filename)
|
|
return ir->filestrings[i];
|
|
}
|
|
|
|
str = code_genstring(filename);
|
|
if (!ir_builder_filenames_add(ir, filename))
|
|
return 0;
|
|
if (!ir_builder_filestrings_add(ir, str))
|
|
ir->filenames_count--;
|
|
return str;
|
|
}
|
|
|
|
static bool gen_global_function(ir_builder *ir, ir_value *global)
|
|
{
|
|
prog_section_function fun;
|
|
ir_function *irfun;
|
|
|
|
size_t i;
|
|
size_t local_var_end;
|
|
|
|
if (!global->isconst || (!global->constval.vfunc))
|
|
{
|
|
irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
|
|
return false;
|
|
}
|
|
|
|
irfun = global->constval.vfunc;
|
|
|
|
fun.name = global->code.name;
|
|
fun.file = ir_builder_filestring(ir, global->context.file);
|
|
fun.profile = 0; /* always 0 */
|
|
fun.nargs = irfun->params_count;
|
|
|
|
for (i = 0;i < 8; ++i) {
|
|
if (i >= fun.nargs)
|
|
fun.argsize[i] = 0;
|
|
else
|
|
fun.argsize[i] = type_sizeof[irfun->params[i]];
|
|
}
|
|
|
|
fun.firstlocal = code_globals_elements;
|
|
|
|
local_var_end = fun.firstlocal;
|
|
for (i = 0; i < irfun->locals_count; ++i) {
|
|
if (!ir_builder_gen_global(ir, irfun->locals[i], true)) {
|
|
irerror(irfun->locals[i]->context, "Failed to generate local %s", irfun->locals[i]->name);
|
|
return false;
|
|
}
|
|
}
|
|
if (irfun->locals_count) {
|
|
ir_value *last = irfun->locals[irfun->locals_count-1];
|
|
local_var_end = last->code.globaladdr;
|
|
local_var_end += type_sizeof[last->vtype];
|
|
}
|
|
for (i = 0; i < irfun->values_count; ++i)
|
|
{
|
|
/* generate code.globaladdr for ssa values */
|
|
ir_value *v = irfun->values[i];
|
|
ir_value_code_setaddr(v, local_var_end + v->code.local);
|
|
}
|
|
for (i = 0; i < irfun->allocated_locals; ++i) {
|
|
/* fill the locals with zeros */
|
|
code_globals_add(0);
|
|
}
|
|
|
|
fun.locals = code_globals_elements - fun.firstlocal;
|
|
|
|
if (irfun->builtin)
|
|
fun.entry = irfun->builtin;
|
|
else {
|
|
irfun->code_function_def = code_functions_elements;
|
|
fun.entry = code_statements_elements;
|
|
}
|
|
|
|
return (code_functions_add(fun) >= 0);
|
|
}
|
|
|
|
static bool gen_global_function_code(ir_builder *ir, ir_value *global)
|
|
{
|
|
prog_section_function *fundef;
|
|
ir_function *irfun;
|
|
|
|
irfun = global->constval.vfunc;
|
|
if (!irfun) {
|
|
irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
|
|
"function `%s` has no body and in QC implicitly becomes a function-pointer", global->name);
|
|
/* this was a function pointer, don't generate code for those */
|
|
return true;
|
|
}
|
|
|
|
if (irfun->builtin)
|
|
return true;
|
|
|
|
if (irfun->code_function_def < 0) {
|
|
irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
|
|
return false;
|
|
}
|
|
fundef = &code_functions_data[irfun->code_function_def];
|
|
|
|
fundef->entry = code_statements_elements;
|
|
if (!gen_function_code(irfun)) {
|
|
irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal)
|
|
{
|
|
size_t i;
|
|
int32_t *iptr;
|
|
prog_section_def def;
|
|
|
|
def.type = global->vtype;
|
|
def.offset = code_globals_elements;
|
|
|
|
if (global->name) {
|
|
if (global->name[0] == '#') {
|
|
if (!self->str_immediate)
|
|
self->str_immediate = code_genstring("IMMEDIATE");
|
|
def.name = global->code.name = self->str_immediate;
|
|
}
|
|
else
|
|
def.name = global->code.name = code_genstring(global->name);
|
|
}
|
|
else
|
|
def.name = 0;
|
|
|
|
switch (global->vtype)
|
|
{
|
|
case TYPE_VOID:
|
|
if (!strcmp(global->name, "end_sys_globals")) {
|
|
/* TODO: remember this point... all the defs before this one
|
|
* should be checksummed and added to progdefs.h when we generate it.
|
|
*/
|
|
}
|
|
else if (!strcmp(global->name, "end_sys_fields")) {
|
|
/* TODO: same as above but for entity-fields rather than globsl
|
|
*/
|
|
}
|
|
else
|
|
irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
|
|
global->name);
|
|
/* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
|
|
* the system fields actually go? Though the engine knows this anyway...
|
|
* Maybe this could be an -foption
|
|
* fteqcc creates data for end_sys_* - of size 1, so let's do the same
|
|
*/
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
/* Add the def */
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
return true;
|
|
case TYPE_POINTER:
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
return gen_global_pointer(global);
|
|
case TYPE_FIELD:
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
return gen_global_field(global);
|
|
case TYPE_ENTITY:
|
|
/* fall through */
|
|
case TYPE_FLOAT:
|
|
{
|
|
if (global->isconst) {
|
|
iptr = (int32_t*)&global->constval.vfloat;
|
|
ir_value_code_setaddr(global, code_globals_add(*iptr));
|
|
} else {
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
if (!islocal)
|
|
def.type |= DEF_SAVEGLOBAL;
|
|
}
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
|
|
return global->code.globaladdr >= 0;
|
|
}
|
|
case TYPE_STRING:
|
|
{
|
|
if (global->isconst)
|
|
ir_value_code_setaddr(global, code_globals_add(code_genstring(global->constval.vstring)));
|
|
else {
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
if (!islocal)
|
|
def.type |= DEF_SAVEGLOBAL;
|
|
}
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
return global->code.globaladdr >= 0;
|
|
}
|
|
case TYPE_VECTOR:
|
|
{
|
|
size_t d;
|
|
if (global->isconst) {
|
|
iptr = (int32_t*)&global->constval.vvec;
|
|
ir_value_code_setaddr(global, code_globals_add(iptr[0]));
|
|
if (global->code.globaladdr < 0)
|
|
return false;
|
|
for (d = 1; d < type_sizeof[global->vtype]; ++d)
|
|
{
|
|
if (code_globals_add(iptr[d]) < 0)
|
|
return false;
|
|
}
|
|
} else {
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
if (global->code.globaladdr < 0)
|
|
return false;
|
|
for (d = 1; d < type_sizeof[global->vtype]; ++d)
|
|
{
|
|
if (code_globals_add(0) < 0)
|
|
return false;
|
|
}
|
|
if (!islocal)
|
|
def.type |= DEF_SAVEGLOBAL;
|
|
}
|
|
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
return global->code.globaladdr >= 0;
|
|
}
|
|
case TYPE_FUNCTION:
|
|
if (!global->isconst) {
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
if (global->code.globaladdr < 0)
|
|
return false;
|
|
} else {
|
|
ir_value_code_setaddr(global, code_globals_elements);
|
|
code_globals_add(code_functions_elements);
|
|
if (!gen_global_function(self, global))
|
|
return false;
|
|
if (!islocal)
|
|
def.type |= DEF_SAVEGLOBAL;
|
|
}
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
return true;
|
|
case TYPE_VARIANT:
|
|
/* assume biggest type */
|
|
ir_value_code_setaddr(global, code_globals_add(0));
|
|
for (i = 1; i < type_sizeof[TYPE_VARIANT]; ++i)
|
|
code_globals_add(0);
|
|
return true;
|
|
default:
|
|
/* refuse to create 'void' type or any other fancy business. */
|
|
irerror(global->context, "Invalid type for global variable `%s`: %s",
|
|
global->name, type_name[global->vtype]);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
|
|
{
|
|
prog_section_def def;
|
|
prog_section_field fld;
|
|
|
|
def.type = field->vtype;
|
|
def.offset = code_globals_elements;
|
|
|
|
/* create a global named the same as the field */
|
|
if (opts_standard == COMPILER_GMQCC) {
|
|
/* in our standard, the global gets a dot prefix */
|
|
size_t len = strlen(field->name);
|
|
char name[1024];
|
|
|
|
/* we really don't want to have to allocate this, and 1024
|
|
* bytes is more than enough for a variable/field name
|
|
*/
|
|
if (len+2 >= sizeof(name)) {
|
|
irerror(field->context, "invalid field name size: %u", (unsigned int)len);
|
|
return false;
|
|
}
|
|
|
|
name[0] = '.';
|
|
memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
|
|
name[len+1] = 0;
|
|
|
|
def.name = code_genstring(name);
|
|
fld.name = def.name + 1; /* we reuse that string table entry */
|
|
} else {
|
|
/* in plain QC, there cannot be a global with the same name,
|
|
* and so we also name the global the same.
|
|
* FIXME: fteqcc should create a global as well
|
|
* check if it actually uses the same name. Probably does
|
|
*/
|
|
def.name = code_genstring(field->name);
|
|
fld.name = def.name;
|
|
}
|
|
|
|
field->code.name = def.name;
|
|
|
|
if (code_defs_add(def) < 0)
|
|
return false;
|
|
|
|
fld.type = field->fieldtype;
|
|
|
|
if (fld.type == TYPE_VOID) {
|
|
irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
|
|
return false;
|
|
}
|
|
|
|
fld.offset = code_alloc_field(type_sizeof[field->fieldtype]);
|
|
|
|
if (code_fields_add(fld) < 0)
|
|
return false;
|
|
|
|
ir_value_code_setaddr(field, code_globals_elements);
|
|
if (!code_globals_add(fld.offset))
|
|
return false;
|
|
if (fld.type == TYPE_VECTOR) {
|
|
if (!code_globals_add(fld.offset+1))
|
|
return false;
|
|
if (!code_globals_add(fld.offset+2))
|
|
return false;
|
|
}
|
|
|
|
return field->code.globaladdr >= 0;
|
|
}
|
|
|
|
bool ir_builder_generate(ir_builder *self, const char *filename)
|
|
{
|
|
prog_section_statement stmt;
|
|
size_t i;
|
|
|
|
code_init();
|
|
|
|
for (i = 0; i < self->globals_count; ++i)
|
|
{
|
|
if (!ir_builder_gen_global(self, self->globals[i], false)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < self->fields_count; ++i)
|
|
{
|
|
if (!ir_builder_gen_field(self, self->fields[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* generate function code */
|
|
for (i = 0; i < self->globals_count; ++i)
|
|
{
|
|
if (self->globals[i]->vtype == TYPE_FUNCTION) {
|
|
if (!gen_global_function_code(self, self->globals[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* DP errors if the last instruction is not an INSTR_DONE
|
|
* and for debugging purposes we add an additional AINSTR_END
|
|
* to the end of functions, so here it goes:
|
|
*/
|
|
stmt.opcode = INSTR_DONE;
|
|
stmt.o1.u1 = 0;
|
|
stmt.o2.u1 = 0;
|
|
stmt.o3.u1 = 0;
|
|
if (code_statements_add(stmt) < 0)
|
|
return false;
|
|
|
|
printf("writing '%s'...\n", filename);
|
|
return code_write(filename);
|
|
}
|
|
|
|
/***********************************************************************
|
|
*IR DEBUG Dump functions...
|
|
*/
|
|
|
|
#define IND_BUFSZ 1024
|
|
|
|
#ifdef WIN32
|
|
# define strncat(dst, src, sz) strncat_s(dst, sz, src, _TRUNCATE)
|
|
#else
|
|
# define strncat strncat
|
|
#endif
|
|
|
|
const char *qc_opname(int op)
|
|
{
|
|
if (op < 0) return "<INVALID>";
|
|
if (op < ( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
|
|
return asm_instr[op].m;
|
|
switch (op) {
|
|
case VINSTR_PHI: return "PHI";
|
|
case VINSTR_JUMP: return "JUMP";
|
|
case VINSTR_COND: return "COND";
|
|
default: return "<UNK>";
|
|
}
|
|
}
|
|
|
|
void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
|
|
{
|
|
size_t i;
|
|
char indent[IND_BUFSZ];
|
|
indent[0] = '\t';
|
|
indent[1] = 0;
|
|
|
|
oprintf("module %s\n", b->name);
|
|
for (i = 0; i < b->globals_count; ++i)
|
|
{
|
|
oprintf("global ");
|
|
if (b->globals[i]->isconst)
|
|
oprintf("%s = ", b->globals[i]->name);
|
|
ir_value_dump(b->globals[i], oprintf);
|
|
oprintf("\n");
|
|
}
|
|
for (i = 0; i < b->functions_count; ++i)
|
|
ir_function_dump(b->functions[i], indent, oprintf);
|
|
oprintf("endmodule %s\n", b->name);
|
|
}
|
|
|
|
void ir_function_dump(ir_function *f, char *ind,
|
|
int (*oprintf)(const char*, ...))
|
|
{
|
|
size_t i;
|
|
if (f->builtin != 0) {
|
|
oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
|
|
return;
|
|
}
|
|
oprintf("%sfunction %s\n", ind, f->name);
|
|
strncat(ind, "\t", IND_BUFSZ);
|
|
if (f->locals_count)
|
|
{
|
|
oprintf("%s%i locals:\n", ind, (int)f->locals_count);
|
|
for (i = 0; i < f->locals_count; ++i) {
|
|
oprintf("%s\t", ind);
|
|
ir_value_dump(f->locals[i], oprintf);
|
|
oprintf("\n");
|
|
}
|
|
}
|
|
oprintf("%sliferanges:\n", ind);
|
|
for (i = 0; i < f->locals_count; ++i) {
|
|
size_t l;
|
|
ir_value *v = f->locals[i];
|
|
oprintf("%s\t%s: unique ", ind, v->name);
|
|
for (l = 0; l < v->life_count; ++l) {
|
|
oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
|
|
}
|
|
oprintf("\n");
|
|
}
|
|
for (i = 0; i < f->values_count; ++i) {
|
|
size_t l;
|
|
ir_value *v = f->values[i];
|
|
oprintf("%s\t%s: @%i ", ind, v->name, (int)v->code.local);
|
|
for (l = 0; l < v->life_count; ++l) {
|
|
oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
|
|
}
|
|
oprintf("\n");
|
|
}
|
|
if (f->blocks_count)
|
|
{
|
|
oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
|
|
for (i = 0; i < f->blocks_count; ++i) {
|
|
if (f->blocks[i]->run_id != f->run_id) {
|
|
oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
|
|
}
|
|
ir_block_dump(f->blocks[i], ind, oprintf);
|
|
}
|
|
|
|
}
|
|
ind[strlen(ind)-1] = 0;
|
|
oprintf("%sendfunction %s\n", ind, f->name);
|
|
}
|
|
|
|
void ir_block_dump(ir_block* b, char *ind,
|
|
int (*oprintf)(const char*, ...))
|
|
{
|
|
size_t i;
|
|
oprintf("%s:%s\n", ind, b->label);
|
|
strncat(ind, "\t", IND_BUFSZ);
|
|
|
|
for (i = 0; i < b->instr_count; ++i)
|
|
ir_instr_dump(b->instr[i], ind, oprintf);
|
|
ind[strlen(ind)-1] = 0;
|
|
}
|
|
|
|
void dump_phi(ir_instr *in, char *ind,
|
|
int (*oprintf)(const char*, ...))
|
|
{
|
|
size_t i;
|
|
oprintf("%s <- phi ", in->_ops[0]->name);
|
|
for (i = 0; i < in->phi_count; ++i)
|
|
{
|
|
oprintf("([%s] : %s) ", in->phi[i].from->label,
|
|
in->phi[i].value->name);
|
|
}
|
|
oprintf("\n");
|
|
}
|
|
|
|
void ir_instr_dump(ir_instr *in, char *ind,
|
|
int (*oprintf)(const char*, ...))
|
|
{
|
|
size_t i;
|
|
const char *comma = NULL;
|
|
|
|
oprintf("%s (%i) ", ind, (int)in->eid);
|
|
|
|
if (in->opcode == VINSTR_PHI) {
|
|
dump_phi(in, ind, oprintf);
|
|
return;
|
|
}
|
|
|
|
strncat(ind, "\t", IND_BUFSZ);
|
|
|
|
if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
|
|
ir_value_dump(in->_ops[0], oprintf);
|
|
if (in->_ops[1] || in->_ops[2])
|
|
oprintf(" <- ");
|
|
}
|
|
if (in->opcode == INSTR_CALL0) {
|
|
oprintf("CALL%i\t", in->params_count);
|
|
} else
|
|
oprintf("%s\t", qc_opname(in->opcode));
|
|
|
|
if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
|
|
ir_value_dump(in->_ops[0], oprintf);
|
|
comma = ",\t";
|
|
}
|
|
else
|
|
{
|
|
for (i = 1; i != 3; ++i) {
|
|
if (in->_ops[i]) {
|
|
if (comma)
|
|
oprintf(comma);
|
|
ir_value_dump(in->_ops[i], oprintf);
|
|
comma = ",\t";
|
|
}
|
|
}
|
|
}
|
|
if (in->bops[0]) {
|
|
if (comma)
|
|
oprintf(comma);
|
|
oprintf("[%s]", in->bops[0]->label);
|
|
comma = ",\t";
|
|
}
|
|
if (in->bops[1])
|
|
oprintf("%s[%s]", comma, in->bops[1]->label);
|
|
if (in->params_count) {
|
|
oprintf("\tparams: ");
|
|
for (i = 0; i != in->params_count; ++i) {
|
|
oprintf("%s, ", in->params[i]->name);
|
|
}
|
|
}
|
|
oprintf("\n");
|
|
ind[strlen(ind)-1] = 0;
|
|
}
|
|
|
|
void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
|
|
{
|
|
if (v->isconst) {
|
|
switch (v->vtype) {
|
|
default:
|
|
case TYPE_VOID:
|
|
oprintf("(void)");
|
|
break;
|
|
case TYPE_FUNCTION:
|
|
oprintf("fn:%s", v->name);
|
|
break;
|
|
case TYPE_FLOAT:
|
|
oprintf("%g", v->constval.vfloat);
|
|
break;
|
|
case TYPE_VECTOR:
|
|
oprintf("'%g %g %g'",
|
|
v->constval.vvec.x,
|
|
v->constval.vvec.y,
|
|
v->constval.vvec.z);
|
|
break;
|
|
case TYPE_ENTITY:
|
|
oprintf("(entity)");
|
|
break;
|
|
case TYPE_STRING:
|
|
oprintf("\"%s\"", v->constval.vstring);
|
|
break;
|
|
#if 0
|
|
case TYPE_INTEGER:
|
|
oprintf("%i", v->constval.vint);
|
|
break;
|
|
#endif
|
|
case TYPE_POINTER:
|
|
oprintf("&%s",
|
|
v->constval.vpointer->name);
|
|
break;
|
|
}
|
|
} else {
|
|
oprintf("%s", v->name);
|
|
}
|
|
}
|
|
|
|
void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
|
|
{
|
|
size_t i;
|
|
oprintf("Life of %12s:", self->name);
|
|
for (i = 0; i < self->life_count; ++i)
|
|
{
|
|
oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
|
|
}
|
|
}
|