gmqcc/stat.c
2013-06-06 06:20:11 +00:00

628 lines
18 KiB
C

/*
* Copyright (C) 2012, 2013
* Dale Weiler
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "gmqcc.h"
/*
* GMQCC performs tons of allocations, constructions, and crazyness
* all around. When trying to optimizes systems, or just get fancy
* statistics out of the compiler, it's often printf mess. This file
* implements the statistics system of the compiler. I.E the allocator
* we use to track allocations, and other systems of interest.
*/
#define ST_SIZE 1024
typedef struct stat_mem_block_s {
const char *file;
size_t line;
size_t size;
struct stat_mem_block_s *next;
struct stat_mem_block_s *prev;
} stat_mem_block_t;
typedef struct {
size_t key;
size_t value;
} stat_size_entry_t, **stat_size_table_t;
static uint64_t stat_mem_allocated = 0;
static uint64_t stat_mem_deallocated = 0;
static uint64_t stat_mem_allocated_total = 0;
static uint64_t stat_mem_deallocated_total = 0;
static uint64_t stat_mem_high = 0;
static uint64_t stat_mem_peak = 0;
static uint64_t stat_used_strdups = 0;
static uint64_t stat_used_vectors = 0;
static uint64_t stat_used_hashtables = 0;
static uint64_t stat_type_vectors = 0;
static uint64_t stat_type_hashtables = 0;
static stat_size_table_t stat_size_vectors = NULL;
static stat_size_table_t stat_size_hashtables = NULL;
static stat_mem_block_t *stat_mem_block_root = NULL;
/*
* A tiny size_t key-value hashtbale for tracking vector and hashtable
* sizes. We can use it for other things too, if we need to. This is
* very TIGHT, and efficent in terms of space though.
*/
static stat_size_table_t stat_size_new(void) {
return (stat_size_table_t)memset(
mem_a(sizeof(stat_size_entry_t*) * ST_SIZE),
0, ST_SIZE * sizeof(stat_size_entry_t*)
);
}
static void stat_size_del(stat_size_table_t table) {
size_t i = 0;
for (; i < ST_SIZE; i++) if(table[i]) mem_d(table[i]);
mem_d(table);
}
static stat_size_entry_t *stat_size_get(stat_size_table_t table, size_t key) {
size_t hash = (key % ST_SIZE);
while (table[hash] && table[hash]->key != key)
hash = (hash + 1) % ST_SIZE;
return table[hash];
}
static void stat_size_put(stat_size_table_t table, size_t key, size_t value) {
size_t hash = (key % ST_SIZE);
while (table[hash] && table[hash]->key != key)
hash = (hash + 1) % ST_SIZE;
table[hash] = (stat_size_entry_t*)mem_a(sizeof(stat_size_entry_t));
table[hash]->key = key;
table[hash]->value = value;
}
/*
* A basic header of information wrapper allocator. Simply stores
* information as a header, returns the memory + 1 past it, can be
* retrieved again with - 1. Where type is stat_mem_block_t*.
*/
void *stat_mem_allocate(size_t size, size_t line, const char *file) {
stat_mem_block_t *info = (stat_mem_block_t*)malloc(sizeof(stat_mem_block_t) + size);
void *data = (void*)(info + 1);
if(!info)
return NULL;
info->line = line;
info->size = size;
info->file = file;
info->prev = NULL;
info->next = stat_mem_block_root;
if (stat_mem_block_root)
stat_mem_block_root->prev = info;
stat_mem_block_root = info;
stat_mem_allocated += size;
stat_mem_high += size;
stat_mem_allocated_total ++;
if (stat_mem_high > stat_mem_peak)
stat_mem_peak = stat_mem_high;
return data;
}
void stat_mem_deallocate(void *ptr) {
stat_mem_block_t *info = NULL;
if (!ptr)
return;
info = ((stat_mem_block_t*)ptr - 1);
stat_mem_deallocated += info->size;
stat_mem_high -= info->size;
stat_mem_deallocated_total ++;
if (info->prev) info->prev->next = info->next;
if (info->next) info->next->prev = info->prev;
/* move ahead */
if (info == stat_mem_block_root)
stat_mem_block_root = info->next;
free(info);
}
void *stat_mem_reallocate(void *ptr, size_t size, size_t line, const char *file) {
stat_mem_block_t *oldinfo = NULL;
stat_mem_block_t *newinfo;
if (!ptr)
return stat_mem_allocate(size, line, file);
/* stay consistent with glic */
if (!size) {
stat_mem_deallocate(ptr);
return NULL;
}
oldinfo = ((stat_mem_block_t*)ptr - 1);
newinfo = ((stat_mem_block_t*)malloc(sizeof(stat_mem_block_t) + size));
if (!newinfo) {
stat_mem_deallocate(ptr);
return NULL;
}
memcpy(newinfo+1, oldinfo+1, oldinfo->size);
if (oldinfo->prev) oldinfo->prev->next = oldinfo->next;
if (oldinfo->next) oldinfo->next->prev = oldinfo->prev;
/* move ahead */
if (oldinfo == stat_mem_block_root)
stat_mem_block_root = oldinfo->next;
newinfo->line = line;
newinfo->size = size;
newinfo->file = file;
newinfo->prev = NULL;
newinfo->next = stat_mem_block_root;
if (stat_mem_block_root)
stat_mem_block_root->prev = newinfo;
stat_mem_block_root = newinfo;
stat_mem_allocated -= oldinfo->size;
stat_mem_high -= oldinfo->size;
stat_mem_allocated += newinfo->size;
stat_mem_high += newinfo->size;
if (stat_mem_high > stat_mem_peak)
stat_mem_peak = stat_mem_high;
free(oldinfo);
return newinfo + 1;
}
/*
* strdup does it's own malloc, we need to track malloc. We don't want
* to overwrite malloc though, infact, we can't really hook it at all
* without library specific assumptions. So we re implement strdup.
*/
char *stat_mem_strdup(const char *src, size_t line, const char *file, bool empty) {
size_t len = 0;
char *ptr = NULL;
if (!src)
return NULL;
len = strlen(src);
if (((!empty) ? len : true) && (ptr = (char*)stat_mem_allocate(len + 1, line, file))) {
memcpy(ptr, src, len);
ptr[len] = '\0';
}
stat_used_strdups ++;
return ptr;
}
/*
* The reallocate function for resizing vectors.
*/
void _util_vec_grow(void **a, size_t i, size_t s) {
vector_t *d = vec_meta(*a);
size_t m = 0;
stat_size_entry_t *e = NULL;
void *p = NULL;
if (*a) {
m = 2 * d->allocated + i;
p = mem_r(d, s * m + sizeof(vector_t));
} else {
m = i + 1;
p = mem_a(s * m + sizeof(vector_t));
((vector_t*)p)->used = 0;
stat_used_vectors++;
}
if (!stat_size_vectors)
stat_size_vectors = stat_size_new();
if ((e = stat_size_get(stat_size_vectors, s))) {
e->value ++;
} else {
stat_size_put(stat_size_vectors, s, 1); /* start off with 1 */
stat_type_vectors++;
}
*a = (vector_t*)p + 1;
vec_meta(*a)->allocated = m;
}
/*
* Hash table for generic data, based on dynamic memory allocations
* all around. This is the internal interface, please look for
* EXPOSED INTERFACE comment below
*/
typedef struct hash_node_t {
char *key; /* the key for this node in table */
void *value; /* pointer to the data as void* */
struct hash_node_t *next; /* next node (linked list) */
} hash_node_t;
GMQCC_INLINE size_t util_hthash(hash_table_t *ht, const char *key) {
const uint32_t mix = 0x5BD1E995;
const uint32_t rot = 24;
size_t size = strlen(key);
uint32_t hash = 0x1EF0 /* LICRC TAB */ ^ size;
uint32_t alias = 0;
const unsigned char *data = (const unsigned char*)key;
while (size >= 4) {
alias = (data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24));
alias *= mix;
alias ^= alias >> rot;
alias *= mix;
hash *= mix;
hash ^= alias;
data += 4;
size -= 4;
}
switch (size) {
case 3: hash ^= data[2] << 16;
case 2: hash ^= data[1] << 8;
case 1: hash ^= data[0];
hash *= mix;
}
hash ^= hash >> 13;
hash *= mix;
hash ^= hash >> 15;
return (size_t) (hash % ht->size);
}
static hash_node_t *_util_htnewpair(const char *key, void *value) {
hash_node_t *node;
if (!(node = (hash_node_t*)mem_a(sizeof(hash_node_t))))
return NULL;
if (!(node->key = util_strdupe(key))) {
mem_d(node);
return NULL;
}
node->value = value;
node->next = NULL;
return node;
}
/*
* EXPOSED INTERFACE for the hashtable implementation
* util_htnew(size) -- to make a new hashtable
* util_htset(table, key, value, sizeof(value)) -- to set something in the table
* util_htget(table, key) -- to get something from the table
* util_htdel(table) -- to delete the table
*/
hash_table_t *util_htnew(size_t size) {
hash_table_t *hashtable = NULL;
stat_size_entry_t *find = NULL;
if (size < 1)
return NULL;
if (!stat_size_hashtables)
stat_size_hashtables = stat_size_new();
if (!(hashtable = (hash_table_t*)mem_a(sizeof(hash_table_t))))
return NULL;
if (!(hashtable->table = (hash_node_t**)mem_a(sizeof(hash_node_t*) * size))) {
mem_d(hashtable);
return NULL;
}
if ((find = stat_size_get(stat_size_hashtables, size)))
find->value++;
else {
stat_type_hashtables++;
stat_size_put(stat_size_hashtables, size, 1);
}
hashtable->size = size;
memset(hashtable->table, 0, sizeof(hash_node_t*) * size);
stat_used_hashtables++;
return hashtable;
}
void util_htseth(hash_table_t *ht, const char *key, size_t bin, void *value) {
hash_node_t *newnode = NULL;
hash_node_t *next = NULL;
hash_node_t *last = NULL;
next = ht->table[bin];
while (next && next->key && strcmp(key, next->key) > 0)
last = next, next = next->next;
/* already in table, do a replace */
if (next && next->key && strcmp(key, next->key) == 0) {
next->value = value;
} else {
/* not found, grow a pair man :P */
newnode = _util_htnewpair(key, value);
if (next == ht->table[bin]) {
newnode->next = next;
ht->table[bin] = newnode;
} else if (!next) {
last->next = newnode;
} else {
newnode->next = next;
last->next = newnode;
}
}
}
void util_htset(hash_table_t *ht, const char *key, void *value) {
util_htseth(ht, key, util_hthash(ht, key), value);
}
void *util_htgeth(hash_table_t *ht, const char *key, size_t bin) {
hash_node_t *pair = ht->table[bin];
while (pair && pair->key && strcmp(key, pair->key) > 0)
pair = pair->next;
if (!pair || !pair->key || strcmp(key, pair->key) != 0)
return NULL;
return pair->value;
}
void *util_htget(hash_table_t *ht, const char *key) {
return util_htgeth(ht, key, util_hthash(ht, key));
}
void *code_util_str_htgeth(hash_table_t *ht, const char *key, size_t bin) {
hash_node_t *pair;
size_t len, keylen;
int cmp;
keylen = strlen(key);
pair = ht->table[bin];
while (pair && pair->key) {
len = strlen(pair->key);
if (len < keylen) {
pair = pair->next;
continue;
}
if (keylen == len) {
cmp = strcmp(key, pair->key);
if (cmp == 0)
return pair->value;
if (cmp < 0)
return NULL;
pair = pair->next;
continue;
}
cmp = strcmp(key, pair->key + len - keylen);
if (cmp == 0) {
uintptr_t up = (uintptr_t)pair->value;
up += len - keylen;
return (void*)up;
}
pair = pair->next;
}
return NULL;
}
/*
* Free all allocated data in a hashtable, this is quite the amount
* of work.
*/
void util_htrem(hash_table_t *ht, void (*callback)(void *data)) {
size_t i = 0;
for (; i < ht->size; i++) {
hash_node_t *n = ht->table[i];
hash_node_t *p;
/* free in list */
while (n) {
if (n->key)
mem_d(n->key);
if (callback)
callback(n->value);
p = n;
n = n->next;
mem_d(p);
}
}
/* free table */
mem_d(ht->table);
mem_d(ht);
}
void util_htrmh(hash_table_t *ht, const char *key, size_t bin, void (*cb)(void*)) {
hash_node_t **pair = &ht->table[bin];
hash_node_t *tmp;
while (*pair && (*pair)->key && strcmp(key, (*pair)->key) > 0)
pair = &(*pair)->next;
tmp = *pair;
if (!tmp || !tmp->key || strcmp(key, tmp->key) != 0)
return;
if (cb)
(*cb)(tmp->value);
*pair = tmp->next;
mem_d(tmp->key);
mem_d(tmp);
}
void util_htrm(hash_table_t *ht, const char *key, void (*cb)(void*)) {
util_htrmh(ht, key, util_hthash(ht, key), cb);
}
void util_htdel(hash_table_t *ht) {
util_htrem(ht, NULL);
}
/*
* The following functions below implement printing / dumping of statistical
* information.
*/
static void stat_dump_mem_contents(stat_mem_block_t *memory, uint16_t cols) {
uint32_t i, j;
for (i = 0; i < memory->size + ((memory->size % cols) ? (cols - memory->size % cols) : 0); i++) {
if (i % cols == 0) con_out(" 0x%06X: ", i);
if (i < memory->size) con_out("%02X " , 0xFF & ((unsigned char*)(memory + 1))[i]);
else con_out(" ");
if ((uint16_t)(i % cols) == (cols - 1)) {
for (j = i - (cols - 1); j <= i; j++) {
con_out("%c",
(j >= memory->size)
? ' '
: (isprint(((unsigned char*)(memory + 1))[j]))
? 0xFF & ((unsigned char*)(memory + 1)) [j]
: '.'
);
}
con_out("\n");
}
}
}
static void stat_dump_mem_leaks(void) {
stat_mem_block_t *info;
for (info = stat_mem_block_root; info; info = info->next) {
con_out("lost: %u (bytes) at %s:%u\n",
info->size,
info->file,
info->line
);
stat_dump_mem_contents(info, OPTS_OPTION_U16(OPTION_MEMDUMPCOLS));
}
}
static void stat_dump_mem_info(void) {
con_out("Memory information:\n\
Total allocations: %llu\n\
Total deallocations: %llu\n\
Total allocated: %f (MB)\n\
Total deallocated: %f (MB)\n\
Total peak memory: %f (MB)\n\
Total leaked memory: %f (MB) in %llu allocations\n",
stat_mem_allocated_total,
stat_mem_deallocated_total,
(float)(stat_mem_allocated) / 1048576.0f,
(float)(stat_mem_deallocated) / 1048576.0f,
(float)(stat_mem_peak) / 1048576.0f,
(float)(stat_mem_allocated - stat_mem_deallocated) / 1048576.0f,
stat_mem_allocated_total - stat_mem_deallocated_total
);
}
static void stat_dump_stats_table(stat_size_table_t table, const char *string, uint64_t *size) {
size_t i,j;
if (!table)
return;
for (i = 0, j = 1; i < ST_SIZE; i++) {
stat_size_entry_t *entry;
if (!(entry = table[i]))
continue;
con_out(string, (unsigned)j, (unsigned)entry->key, (unsigned)entry->value);
j++;
if (size)
*size += entry->key * entry->value;
}
}
void stat_info() {
if (OPTS_OPTION_BOOL(OPTION_DEBUG))
stat_dump_mem_leaks();
if (OPTS_OPTION_BOOL(OPTION_DEBUG) ||
OPTS_OPTION_BOOL(OPTION_MEMCHK))
stat_dump_mem_info();
if (OPTS_OPTION_BOOL(OPTION_MEMCHK) ||
OPTS_OPTION_BOOL(OPTION_STATISTICS)) {
uint64_t mem = 0;
con_out("\nAdditional Statistics:\n\
Total vectors allocated: %llu\n\
Total string duplicates: %llu\n\
Total hashtables allocated: %llu\n\
Total unique vector sizes: %llu\n",
stat_used_vectors,
stat_used_strdups,
stat_used_hashtables,
stat_type_vectors
);
stat_dump_stats_table (
stat_size_vectors,
" %2u| # of %4u byte vectors: %u\n",
&mem
);
con_out (
" Total unique hashtable sizes: %llu\n",
stat_type_hashtables
);
stat_dump_stats_table (
stat_size_hashtables,
" %2u| # of %4u element hashtables: %u\n",
NULL
);
con_out (
" Total vector memory: %f (MB)\n",
(float)(mem) / 1048576.0f
);
}
if (stat_size_vectors)
stat_size_del(stat_size_vectors);
if (stat_size_hashtables)
stat_size_del(stat_size_hashtables);
}
#undef ST_SIZE