Remove my MT impl for PRNG, it's full of buffer overflows that I don't want to fix. Just fallback to using srand/rand

This commit is contained in:
Dale Weiler 2013-08-14 06:22:32 +00:00
parent 1201f06a55
commit 0a5353532b

167
util.c
View file

@ -409,173 +409,10 @@ int util_asprintf(char **ret, const char *fmt, ...) {
#endif /*! _MSC_VER */
/*
* Implementation of the Mersenne twister PRNG (pseudo random numer
* generator). Implementation of MT19937. Has a period of 2^19937-1
* which is a Mersenne Prime (hence the name).
*
* Implemented from specification and original paper:
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
*
* This code is placed in the public domain by me personally
* (Dale Weiler, a.k.a graphitemaster).
*/
#define MT_SIZE 624
#define MT_PERIOD 397
#define MT_SPACE (MT_SIZE - MT_PERIOD)
static uint32_t mt_state[MT_SIZE];
static size_t mt_index = 0;
static GMQCC_INLINE void mt_generate(void) {
/*
* The loop has been unrolled here: the original paper and implemenation
* Called for the following code:
* for (register unsigned i = 0; i < MT_SIZE; ++i) {
* register uint32_t load;
* load = (0x80000000 & mt_state[i]) // most significant 32nd bit
* load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit
*
* mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1);
*
* if (load & 1) mt_state[i] ^= 0x9908B0DF;
* }
*
* This essentially is a waste: we have two modulus operations, and
* a branch that is executed every iteration from [0, MT_SIZE).
*
* Please see: http://www.quadibloc.com/crypto/co4814.htm for more
* information on how this clever trick works.
*/
static const uint32_t matrix[2] = {
0x00000000,
0x9908B0Df
};
/*
* This register gives up a little more speed by instructing the compiler
* to force these into CPU registers (they're counters for indexing mt_state
* which we can force the compiler to generate prefetch instructions for)
*/
register uint32_t y;
register uint32_t i;
/*
* Said loop has been unrolled for MT_SPACE (226 iterations), opposed
* to [0, MT_SIZE) (634 iterations).
*/
for (i = 0; i < MT_SPACE-1; ++i) {
y = (0x80000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
i ++; /* loop unroll */
y = (0x80000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
}
/*
* collapsing the walls unrolled (evenly dividing 396 [632-227 = 396
* = 2*2*3*3*11])
*/
i = MT_SPACE;
while (i < MT_SIZE-2) {
/*
* We expand this 11 times .. manually, no macros are required
* here. This all fits in the CPU cache.
*/
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
}
/* i = mt_state[623] */
y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]);
mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1];
}
void util_seed(uint32_t value) {
/*
* We seed the mt_state with a LCG (linear congruential generator)
* We're operating exactly on exactly m=32, so there is no need to
* use modulus.
*
* The multipler of choice is 0x6C07865, also knows as the Borosh-
* Niederreiter multipler used for modulus 2^32. More can be read
* about this in Knuth's TAOCP Volume 2, page 106.
*
* If you don't own TAOCP something is wrong with you :-) .. so I
* also provided a link to the original paper by Borosh and
* Niederreiter. It's called "Optional Multipliers for PRNG by The
* Linear Congruential Method" (1983).
* http://en.wikipedia.org/wiki/Linear_congruential_generator
*
* From said page, it says the following:
* "A common Mersenne twister implementation, interestingly enough
* used an LCG to generate seed data."
*
* Remarks:
* The data we're operating on is 32-bits for the mt_state array, so
* there is no masking required with 0xFFFFFFFF
*/
register size_t i;
mt_state[0] = value;
for (i = 1; i < MT_SIZE; ++i)
mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i;
srand((int)value);
}
uint32_t util_rand() {
register uint32_t y;
/*
* This is inlined with any sane compiler (I checked)
* for some reason though, SubC seems to be generating invalid
* code when it inlines this.
*/
if (!mt_index)
mt_generate();
y = mt_state[mt_index];
/* Standard tempering */
y ^= y >> 11; /* +7 */
y ^= y << 7 & 0x9D2C5680; /* +4 */
y ^= y << 15 & 0xEFC60000; /* -4 */
y ^= y >> 18; /* -7 */
if(++mt_index == MT_SIZE)
mt_index = 0;
return y;
return rand();
}