gmqcc/gmqcc.ini.example

697 lines
22 KiB
Text
Raw Normal View History

#This configuration file is similar to a regular .ini file. Comments start
#with hashtags or semicolons, sections are written in square brackets and
#in each section there can be arbitrary many key-value pairs.
#There are 3 sections currently: flags, warnings, optimizations.
#They contain a list of boolean values of the form VARNAME = true or
#VARNAME = false. The variable names are the same as for the corre
#sponding -W, -f or -O flag written with only capital letters and dashes
#replaced by underscores.
[flags]
#Add some additional characters to the string table in order to
#compensate for a wrong boundcheck in some specific version of the
#darkplaces engine.
DARKPLACES_STRING_TABLE_BUG = true
#When assigning to field pointers of type .vector the common be
#haviour in compilers like fteqcc is to only assign the x-compo
#nent of the pointer. This means that you can use the vector as
#such, but you cannot use its y and z components directly. This
#flag fixes this behaviour. Before using it make sure your code
#does not depend on the buggy behaviour.
ADJUST_VECTOR_FIELDS = true
#Enable a partially fteqcc-compatible preprocessor. It supports
#all the features used in the Xonotic codebase. If you need more,
#write a ticket.
FTEPP = true
#Enable some predefined macros. This only works in combination
#with '-fftepp' and is currently not included by '-std=fteqcc'.
#The following macros will be added:
#
# __LINE__
# __FILE__
# __COUNTER__
# __COUNTER_LAST__
# __RANDOM__
# __RANDOM_LAST__
# __DATE__
# __TIME__
# __FUNC__
#
#Note that __FUNC__ is not actually a preprocessor macro, but is
#recognized by the parser even with the preprocessor disabled.
#
#Note that fteqcc also defines __NULL__ which becomes the first
#global. Assigning it to a vector does not yield the same result
#as in gmqcc where __NULL__ is defined to nil (See -funtyped-nil
#), which will cause the vector to be zero in all components. With
#fteqcc only the first component will be 0, while the other two
#will become the first to of the global return value. This behav
#ior is odd and relying on it should be discouraged, and thus is
#not supported by gmqcc.
FTEPP_PREDEFS = false
#Enable math constant definitions. This only works in combination
#with '-fftepp' and is currently not included by '-std=fteqcc'.
#The following macros will be added:
#
# M_E
# M_LOG2E
# M_LOG10E
# M_LN2
# M_LN10
# M_PI
# M_PI_2
# M_PI_4
# M_1_PI
# M_2_PI
# M_2_SQRTPI
# M_SQRT2
# M_SQRT1_2
# M_TAU
FTEPP_MATHDEFS = false
#Allow switch cases to use non constant variables.
RELAXED_SWITCH = true
#Perform early out in logical AND and OR expressions. The final
#result will be either a 0 or a 1, see the next flag for more pos
#sibilities.
SHORT_LOGIC = true
#In many languages, logical expressions perform early out in a
#special way: If the left operand of an AND yeilds true, or the
#one of an OR yields false, the complete expression evaluates to
#the right side. Thus true && 5 evaluates to 5 rather than 1.
PERL_LOGIC = false
#Enable the underscore intrinsic: Using _("A string constant")
#will cause the string immediate to get a name with a "dotrans
#late_" prefix. The darkplaces engine recognizes these and trans
#lates them in a way similar to how gettext works.
TRANSLATABLE_STRINGS = true
#Don't implicitly convert initialized variables to constants. With
#this flag, the const keyword is required to make a constant.
INITIALIZED_NONCONSTANTS = false
#If this flag is not set, (and it is set by default in the qcc and
#fteqcc standards), assigning function pointers of mismatching
#signatures will result in an error rather than a warning.
ASSIGN_FUNCTION_TYPES = true
#Produce a linenumber file along with the output .dat file.
LNO = false
#Use C's operator precedence for ternary expressions. Unless your
#code depends on fteqcc-compatible behaviour, you'll want to use
#this option.
CORRECT_TERNARY = true
#Normally vectors generate 4 defs, once for the vector, and once
#for its components with _x, _y, _z suffixes. This option prevents
#components from being listed.
SINGLE_VECTOR_DEFS = true
#Most QC compilers translate if(a_vector) directly as an IF on
#the vector, which means only the x-component is checked. This
#option causes vectors to be cast to actual booleans via a NOT_V
#and, if necessary, a NOT_F chained to it.
#
# if (a_vector) // becomes
# if not(!a_vector)
# // likewise
# a = a_vector && a_float // becomes
# a = !!a_vector && a_float
CORRECT_LOGIC = true
#An empty string is considered to be true everywhere. The NOT_S
#instruction usually considers an empty string to be false, this
#option effectively causes the unary not in strings to use NOT_F
#instead.
TRUE_EMPTY_STRINGS = false
#An empty string is considered to be false everywhere. This means
#loops and if statements which depend on a string will perform a
#NOT_S instruction on the string before using it.
FALSE_EMPTY_STRINGS = true
#Enable utf8 characters. This allows utf-8 encoded character con
#stants, and escape sequence codepoints in the valid utf-8 range.
#Effectively enabling escape sequences like '\{x2211}'.
UTF8 = true
#When a warning is treated as an error, and this option is set
#(which it is by default), it is like any other error and will
#cause compilation to stop. When disabling this flag by using
#-fno-bail-on-werror, compilation will continue until the end, but
#no output is generated. Instead the first such error message's
#context is shown.
BAIL_ON_WERROR = false
#Allow loops to be labeled, and allow 'break' and 'continue' to
#take an optional label to decide which loop to actually jump out
#of or continue.
#
# for :outer (i = 0; i < n; ++i) {
# while (inner) {
# ...;
# if (something)
# continue outer;
# }
# }
LOOP_LABELS = true
#Adds a global named 'nil' which is of no type and can be assigned
#to anything. No typechecking will be performed on assignments.
#Assigning to it is forbidden, using it in any other kind of
#expression is also not allowed.
#
#Note that this is different from fteqcc's __NULL__: In fteqcc,
#__NULL__ maps to the integer written as '0i'. It's can be
#assigned to function pointers and integers, but it'll error about
#invalid instructions when assigning it to floats without enabling
#the FTE instruction set. There's also a bug which allows it to be
#assigned to vectors, for which the source will be the global at
#offset 0, meaning the vector's y and z components will contain
#the OFS_RETURN x and y components.#
#
#In that gmqcc the nil global is an actual global filled with
#zeroes, and can be assigned to anything including fields, vectors
#or function pointers, and they end up becoming zeroed.
UNTYPED_NIL = true
#Various effects, usually to weaken some conditions.
# with -funtyped-nil
# Allow local variables named nil. (This will not
# allow declaring a global of that name.)
PERMISSIVE = false
#Allow variadic parameters to be accessed by QC code. This can be
#achieved via the '...' function, which takes a parameter index
#and a typename.
#
#Example:
#
# void vafunc(string...count) {
# float i;
# for (i = 0; i < count; ++i)
# print(...(i, string), "\n");
# }
VARIADIC_ARGS = true
#Most Quake VMs, including the one from FTEQW or up till recently
#Darkplaces, do not cope well with vector instructions with over
#lapping input and output. This option will avoid producing such
#code.
LEGACY_VECTOR_MATHS = false
#Usually builtin-numbers are just immediate constants. With this
#flag expressions can be used, as long as they are compile-time
#constant.
#
#Example:
#
# void printA() = #1; // the usual way
# void printB() = #2-1; // with a constant expression
EXPRESSIONS_FOR_BUILTINS = true
#Enabiling this option will allow assigning values or expressions
#to the return keyword as if it were a local variable of the same
#type as the function's signature's return type.
#
#Example:
#
# float bar() { return 1024; }
# float fun() {
# return = bar();
# return; // returns value of bar (this can be omitted)
# }
RETURN_ASSIGNMENTS = true
#When passing on varargs to a different functions, this turns some
#static error cases into warnings. Like when the caller's varargs
#are restricted to a different type than the callee's parameter.
#Or a list of unrestricted varargs is passed into restricted
#varargs.
UNSAFE_VARARGS = false
#Always use STORE_F, LOAD_F, STOREP_F when accessing scalar variables.
#This is somewhat incorrect assembly instruction use, but in all engines
#they do exactly the same. This makes disassembly output harder to read,
#breaks decompilers, but causes the output file to be better compressible.
TYPELESS_STORES = false
#In commutative instructions, always put the lower-numbered operand first.
#This shaves off 1 byte of entropy from all these instructions, reducing
#compressed size of the output file.
SORT_OPERANDS = false
#Emulate OP_STATE operations in code rather than using the instruction.
#The desired fps can be set via -state-fps=NUM, defaults to 10.
EMULATE_STATE = false
[warnings]
#Generate a warning about variables which are declared but never
#used. This can be avoided by adding the noref keyword in front
#of the variable declaration. Additionally a complete section of
#unreferenced variables can be opened using #pragma noref 1 and
#closed via #pragma noref 0.
UNUSED_VARIABLE = false
#Generate a warning if it is possible that a variable can be used
#without prior initialization. Note that this warning is not nec
#essarily reliable if the initialization happens only under cer
#tain conditions. The other way is not possible: that the warning
#is not generated when uninitialized use is possible.
USED_UNINITIALIZED = false
#Generate an error when an unrecognized control sequence in a
#string is used. Meaning: when there's a character after a back
#slash in a string which has no known meaning.
2012-12-21 04:01:47 +00:00
UNKNOWN_CONTROL_SEQUENCE = false
2012-12-21 04:01:47 +00:00
#Warn when using special extensions which are not part of the
#selected standard.
2012-12-21 04:01:47 +00:00
EXTENSIONS = false
2012-12-21 04:01:47 +00:00
#Generally QC compilers ignore redeclaration of fields. Here you
#can optionally enable a warning.
2012-12-21 04:01:47 +00:00
FIELD_REDECLARED = false
2012-12-21 04:01:47 +00:00
#Functions which aren't of type void will warn if it possible to
#reach the end without returning an actual value.
2012-12-21 04:01:47 +00:00
MISSING_RETURN_VALUES = false
2012-12-21 04:01:47 +00:00
#Warn about a function call with an invalid number of parameters.
2012-12-21 04:01:47 +00:00
INVALID_PARAMETER_COUNT = false
2012-12-21 04:01:47 +00:00
#Warn when a locally declared variable shadows variable.
2012-12-21 04:01:47 +00:00
LOCAL_SHADOWS = false
2012-12-21 04:01:47 +00:00
#Warn when the initialization of a local variable turns the vari
#able into a constant. This is default behaviour unless
#-finitialized-nonconstants is used.
2012-12-21 04:01:47 +00:00
LOCAL_CONSTANTS = false
2012-12-21 04:01:47 +00:00
#There are only 2 known global variables of type void:
#end_sys_globals and end_sys_fields. Any other void-variable
#will warn.
2012-12-21 04:01:47 +00:00
VOID_VARIABLES = false
2012-12-21 04:01:47 +00:00
#A global function which is not declared with the var keyword is
#expected to have an implementing body, or be a builtin. If nei
#ther is the case, it implicitly becomes a function pointer, and a
#warning is generated.
2012-12-21 04:01:47 +00:00
IMPLICIT_FUNCTION_POINTER = false
2012-12-28 20:04:14 +00:00
#Currently there's no way for an in QC implemented function to
#access variadic parameters. If a function with variadic parame
#ters has an implementing body, a warning will be generated.
2012-12-28 20:04:14 +00:00
VARIADIC_FUNCTION = false
2012-12-28 20:04:14 +00:00
#Generate warnings about $frame commands, for instance about
#duplicate frame definitions.
FRAME_MACROS = false
#Warn about statements which have no effect. Any expression which
#does not call a function or assigns a variable.
EFFECTLESS_STATEMENT = false
#The end_sys_fields variable is supposed to be a global variable
#of type void. It is also recognized as a field but this will
#generate a warning.
END_SYS_FIELDS = false
#Warn when assigning to a function pointer with an unmatching sig
#nature. This usually happens in cases like assigning the null
#function to an entity's .think function pointer.
ASSIGN_FUNCTION_TYPES = false
#Show warnings created using the preprocessor's '#warning' directive
CPP = true
#Warn if there's a preprocessor #if spanning across several files.
MULTIFILE_IF = true
#Warn about multiple declarations of globals. This seems pretty
#common in QC code so you probably do not want this unless you
#want to clean up your code.
DOUBLE_DECLARATION = false
#The combination of const and var is not illegal, however differ
#ent compilers may handle them differently. We were told, the
#intention is to create a function-pointer which is not assigna
#ble. This is exactly how we interpret it. However for this
#interpretation the var keyword is considered superfluous (and
#philosophically wrong), so it is possible to generate a warning
#about this.
CONST_VAR = true
#Warn about multibyte character constants, they do not work right
#now.
MULTIBYTE_CHARACTER = false
#Warn if a ternary expression which contains a comma operator is
#used without enclosing parenthesis, since this is most likely not
#what you actually want. We recommend the -fcorrect-ternary
#option.
TERNARY_PRECEDENCE = false
#Warn when encountering an unrecognized #pragma line.
UNKNOWN_PRAGMAS = true
#Warn about unreachable code. That is: code after a return state
#ment, or code after a call to a function marked as 'noreturn'.
UNREACHABLE_CODE = true
#Enable some warnings added in order to help debugging in the com
#piler. You won't need this.
DEBUG = false
#Warn on an unknown attribute. The warning will inlclude only the
#first token inside the enclosing attribute-brackets. This may
#change when the actual attribute syntax is better defined.
UNKNOWN_ATTRIBUTE = true
#Warn when using reserved names such as nil.
RESERVED_NAMES = true
#Warn about global constants (using the const keyword) with no
#assigned value.
UNINITIALIZED_CONSTANT = true
#Warn about global variables with no initializing value. This is
#off by default, and is added mostly to help find null-values
#which are supposed to be replaced by the untyped 'nil' constant.
UNINITIALIZED_GLOBAL = true
#Warn when a variables is redeclared with a different qualifier.
#For example when redeclaring a variable as 'var' which was previ
#ously marked 'const'.
DIFFERENT_QUALIFIERS = true
#Similar to the above but for attributes like [[noreturn]].
DIFFERENT_ATTRIBUTES = true
#Warn when a function is marked with the attribute "[[depre
#cated]]". This flag enables a warning on calls to functions
#marked as such.
DEPRECATED = true
#Warn about possible mistakes caused by missing or wrong parenthe
#sis, like an assignment in an 'if' condition when there's no
#additional set of parens around the assignment.
PARENTHESIS = true
#When passing variadic parameters via ...(N) it can happen that
#incompatible types are passed to functions. This enables several
#warnings when static typechecking cannot guarantee consistent
#behavior.
UNSAFE_TYPES = true
#When compiling original id1 QC there is a definition for `break`
#which conflicts with the 'break' keyword in GMQCC. Enabling this
#print a warning when the definition occurs. The definition is
#ignored for both cases.
BREAKDEF = true
2012-12-31 10:14:43 +00:00
#When compiling original QuakeWorld QC there are instances where
#code overwrites constants. This is considered an error, however
#for QuakeWorld to compile it needs to be treated as a warning
#instead, as such this warning only works when -std=qcc.
CONST_OVERWRITE = true
2013-09-25 20:19:33 +00:00
2013-09-30 20:03:22 +00:00
#Warn about the use of preprocessor directives inside macros.
DIRECTIVE_INMACRO = true
#When using a function that is not explicitly defined, the compiler
#will search its intrinsics table for something that matches that
#function name by appending "__builtin_" to it. This behaviour may
#be unexpected, so enabling this will produce a diagnostic when
#such a function is resolved to a builtin.
BUILTINS = true
2013-09-25 20:19:33 +00:00
[optimizations]
#Some general peephole optimizations. For instance the code `a = b
#+ c` typically generates 2 instructions, an ADD and a STORE. This
#optimization removes the STORE and lets the ADD write directly
#into A.
PEEPHOLE = true
#Tail recursive function calls will be turned into loops to avoid
#the overhead of the CALL and RETURN instructions.
TAIL_RECURSION = true
#Make all functions which use neither local arrays nor have locals
#which are seen as possibly uninitialized use the same local sec
#tion. This should be pretty safe compared to other compilers
#which do not check for uninitialized values properly. The problem
#is that there's QC code out there which really doesn't initialize
#some values. This is fine as long as this kind of optimization
#isn't used, but also, only as long as the functions cannot be
#called in a recursive manner. Since it's hard to know whether or
#not an array is actually fully initialized, especially when ini
#tializing it via a loop, we assume functions with arrays to be
#too dangerous for this optimization.
OVERLAP_LOCALS = true
#This promotes locally declared variables to "temps". Meaning when
#a temporary result of an operation has to be stored somewhere, a
#local variable which is not 'alive' at that point can be used to
#keep the result. This can reduce the size of the global section.
#This will not have declared variables overlap, even if it was
#possible.
LOCAL_TEMPS = true
#Causes temporary values which do not need to be backed up on a
#CALL to not be stored in the function's locals-area. With this, a
#CALL to a function may need to back up fewer values and thus exe
#cute faster.
GLOBAL_TEMPS = true
#Don't generate defs for immediate values or even declared con
#stants. Meaning variables which are implicitly constant or qual
#ified as such using the 'const' keyword.
STRIP_CONSTANT_NAMES = true
#Aggressively reuse strings in the string section. When a string
#should be added which is the trailing substring of an already
#existing string, the existing string's tail will be returned
#instead of the new string being added.
#
#For example the following code will only generate 1 string:
#
# print("Hello you!\n");
# print("you!\n"); // trailing substring of "Hello you!\n"
#
#There's however one limitation. Strings are still processed in
#order, so if the above print statements were reversed, this opti
#mization would not happen.
OVERLAP_STRINGS = true
#By default, all parameters of a CALL are copied into the parame
#ter-globals right before the CALL instructions. This is the easi
#est and safest way to translate calls, but also adds a lot of
#unnecessary copying and unnecessary temporary values. This opti
#mization makes operations which are used as a parameter evaluate
#directly into the parameter-global if that is possible, which is
#when there's no other CALL instruction in between.
CALL_STORES = true
#Usually an empty RETURN instruction is added to the end of a void
#typed function. However, additionally after every function a DONE
#instruction is added for several reasons. (For example the qcvm's
#disassemble switch uses it to know when the function ends.). This
#optimization replaces that last RETURN with DONE rather than
#adding the DONE additionally.
2012-12-21 04:01:47 +00:00
VOID_RETURN = true
2012-12-21 04:01:47 +00:00
#Because traditional QC code doesn't allow you to access individ
#ual vector components of a computed vector without storing it in
#a local first, sometimes people multiply it by a constant like
#'0 1 0' to get, in this case, the y component of a vector. This
#optimization will turn such a multiplication into a direct compo
#nent access. If the factor is anything other than 1, a float-mul
#tiplication will be added, which is still faster than a vector
#multiplication.
2012-12-28 20:04:14 +00:00
VECTOR_COMPONENTS = true
2012-12-28 20:04:14 +00:00
#For constant expressions that result in dead code (such as a
#branch whos condition can be evaluated at compile-time), this
#will eliminate the branch and else body (if present) to produce
#more optimal code.
2012-12-28 20:04:14 +00:00
CONST_FOLD_DCE = true
2012-12-28 20:04:14 +00:00
2013-09-25 20:19:33 +00:00
#For constant expressions we can fold them to immediate values.
#this option cannot be disabled or enabled, the compiler forces
#it to stay enabled by ignoring the value entierly. There are
#plans to enable some level of constant fold disabling, but right
#now the language can't function without it. This is merley here
#as an exercise to the reader.
2012-12-29 14:13:28 +00:00
CONST_FOLD = true