cnq3/code/renderer/tr_gl2.cpp
myT c60d47e93f cleaned up tr_gl2.cpp and prefixes in win32 code
tr_gl2.cpp now uses the proper interface for printing errors
tr_gl2.cpp now has function names that make sense
removed old references to GLimp_*
cleaned up prefixes in the Windows platform layer
2017-11-03 19:35:35 +01:00

790 lines
22 KiB
C++

#include "tr_local.h"
struct GLSL_Program {
GLuint p; // linked program
GLuint vs; // vertex shader
GLuint fs; // fragment shader
};
static GLuint progCurrent;
static void GL_Program( const GLSL_Program& prog )
{
assert( prog.p );
if ( prog.p != progCurrent ) {
qglUseProgram( prog.p );
progCurrent = prog.p;
}
}
void GL_Program()
{
if ( progCurrent != 0 ) {
qglUseProgram(0);
progCurrent = 0;
}
}
static GLSL_Program dynLightProg;
struct GLSL_DynLightProgramAttribs {
// vertex shader:
GLint osEyePos; // 4f, object-space
GLint osLightPos; // 4f, object-space
// pixel shader:
GLint texture; // 2D texture
GLint lightColorRadius; // 4f, w = 1 / (r^2)
};
static GLSL_DynLightProgramAttribs dynLightProgAttribs;
///////////////////////////////////////////////////////////////
void GL2_SetupDynLight()
{
GL_Program( dynLightProg );
const dlight_t* dl = tess.light;
vec3_t lightColor;
VectorCopy( dl->color, lightColor );
qglUniform4f( dynLightProgAttribs.osLightPos, dl->transformed[0], dl->transformed[1], dl->transformed[2], 0.0f );
qglUniform4f( dynLightProgAttribs.osEyePos, backEnd.orient.viewOrigin[0], backEnd.orient.viewOrigin[1], backEnd.orient.viewOrigin[2], 0.0f );
qglUniform4f( dynLightProgAttribs.lightColorRadius, lightColor[0], lightColor[1], lightColor[2], 1.0f / Square(dl->radius) );
qglUniform1i( dynLightProgAttribs.texture, 0 ); // we use texture unit 0
}
///////////////////////////////////////////////////////////////
static void GL2_StageIterator_Lighting()
{
backEnd.pc[RB_LIT_VERTICES_LATECULLTEST] += tess.numVertexes;
int i;
byte clipBits[SHADER_MAX_VERTEXES];
const dlight_t* dl = tess.light;
for ( i = 0; i < tess.numVertexes; ++i ) {
vec3_t dist;
VectorSubtract( dl->transformed, tess.xyz[i], dist );
if ( DotProduct( dist, tess.normal[i] ) <= 0.0 ) {
clipBits[i] = (byte)-1;
continue;
}
int clip = 0;
if ( dist[0] > dl->radius ) {
clip |= 1;
} else if ( dist[0] < -dl->radius ) {
clip |= 2;
}
if ( dist[1] > dl->radius ) {
clip |= 4;
} else if ( dist[1] < -dl->radius ) {
clip |= 8;
}
if ( dist[2] > dl->radius ) {
clip |= 16;
} else if ( dist[2] < -dl->radius ) {
clip |= 32;
}
clipBits[i] = clip;
}
// build a list of triangles that need light
int numIndexes = 0;
unsigned hitIndexes[SHADER_MAX_INDEXES];
for ( i = 0; i < tess.numIndexes; i += 3 ) {
int a = tess.indexes[i];
int b = tess.indexes[i+1];
int c = tess.indexes[i+2];
if ( !(clipBits[a] & clipBits[b] & clipBits[c]) ) {
hitIndexes[numIndexes] = a;
hitIndexes[numIndexes+1] = b;
hitIndexes[numIndexes+2] = c;
numIndexes += 3;
}
}
backEnd.pc[RB_LIT_INDICES_LATECULL_IN] += numIndexes;
backEnd.pc[RB_LIT_INDICES_LATECULL_OUT] += tess.numIndexes - numIndexes;
if ( !numIndexes )
return;
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
const shaderStage_t* const pStage = tess.xstages[tess.shader->lightingStages[ST_DIFFUSE]];
GL_SelectTexture( 0 );
R_BindAnimatedImage( &pStage->bundle );
qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, hitIndexes );
}
static void GL2_StageIterator_LightingPass()
{
if (tess.shader->lightingStages[ST_DIFFUSE] == -1)
return;
RB_DeformTessGeometry();
GL_Cull( tess.shader->cullType );
const shaderStage_t* pStage = tess.xstages[ tess.shader->lightingStages[ST_DIFFUSE] ];
R_ComputeTexCoords( pStage, tess.svars );
// since this is guaranteed to be a single pass, fill and lock all the arrays
qglDisableClientState( GL_COLOR_ARRAY );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords );
qglEnableClientState( GL_NORMAL_ARRAY );
qglNormalPointer( GL_FLOAT, 16, tess.normal );
qglVertexPointer( 3, GL_FLOAT, 16, tess.xyz );
qglLockArraysEXT( 0, tess.numVertexes );
GL2_StageIterator_Lighting();
qglUnlockArraysEXT();
qglDisableClientState( GL_NORMAL_ARRAY );
}
///////////////////////////////////////////////////////////////
// returns qtrue if needs to break early
static qbool GL2_StageIterator_MultitextureStage( int stage )
{
static stageVars_t svarsMT; // this is a huge struct
const shaderStage_t* pPrevStage = tess.xstages[stage++];
const shaderStage_t* pStage = tess.xstages[stage];
const qbool lightmapOnly = r_lightmap->integer && (pStage->type == ST_LIGHTMAP || pPrevStage->type == ST_LIGHTMAP);
if ( lightmapOnly ) {
if ( pStage->type == ST_LIGHTMAP ) {
R_BindAnimatedImage( &pStage->bundle );
R_ComputeTexCoords( pStage, svarsMT );
qglTexCoordPointer( 2, GL_FLOAT, 0, svarsMT.texcoords );
}
qglDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
return qtrue;
}
if ( r_fullbright->integer ) {
if ( pStage->type == ST_LIGHTMAP ) {
Com_Memset( tess.svars.colors, tr.identityLightByte, tess.numVertexes * 4 );
qglDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
return qfalse;
} else if ( pPrevStage->type == ST_LIGHTMAP ) {
Com_Memset( tess.svars.colors, tr.identityLightByte, tess.numVertexes * 4 );
R_BindAnimatedImage( &pStage->bundle );
R_ComputeTexCoords( pStage, svarsMT );
qglTexCoordPointer( 2, GL_FLOAT, 0, svarsMT.texcoords );
qglDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
return qfalse;
}
}
GL_SelectTexture( 1 );
qglEnable( GL_TEXTURE_2D );
GL_TexEnv( pStage->mtEnv );
R_BindAnimatedImage( &pStage->bundle );
R_ComputeTexCoords( pStage, svarsMT );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, svarsMT.texcoords );
qglDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
qglDisable( GL_TEXTURE_2D );
GL_SelectTexture( 0 );
return qfalse;
}
void GL2_StageIterator()
{
if (tess.pass == shaderCommands_t::TP_LIGHT) {
GL2_StageIterator_LightingPass();
return;
}
GL_Program();
RB_DeformTessGeometry();
GL_Cull( tess.shader->cullType );
if ( tess.shader->polygonOffset )
qglEnable( GL_POLYGON_OFFSET_FILL );
// geometry is per-shader and can be compiled
// color and tc are per-stage, and can't
qglDisableClientState( GL_COLOR_ARRAY );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglVertexPointer( 3, GL_FLOAT, 16, tess.xyz ); // padded for SIMD
qglLockArraysEXT( 0, tess.numVertexes );
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords );
for ( int stage = 0; stage < tess.shader->numStages; ++stage ) {
const shaderStage_t* pStage = tess.xstages[stage];
R_ComputeColors( pStage, tess.svars );
R_ComputeTexCoords( pStage, tess.svars );
R_BindAnimatedImage( &pStage->bundle );
GL_State( pStage->stateBits );
// !!! FUCKING ati drivers incorrectly need this
// they're locking+pulling the color array even tho it was explicitly NOT locked
// so color changes are ignored unless we "update" the color pointer again
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors );
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords );
if ( pStage->mtStages ) {
// we can't really cope with massive collapses, so
assert( pStage->mtStages == 1 );
if ( GL2_StageIterator_MultitextureStage( stage ) )
break;
stage += pStage->mtStages;
continue;
}
qglDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
}
if ( tess.fogNum && tess.shader->fogPass )
RB_FogPass();
qglUnlockArraysEXT();
if ( tess.shader->polygonOffset )
qglDisable( GL_POLYGON_OFFSET_FILL );
}
///////////////////////////////////////////////////////////////
static qbool GL2_CreateShader( GLuint* shaderPtr, GLenum shaderType, const char* shaderSource )
{
GLuint shader = qglCreateShader( shaderType );
qglShaderSource( shader, 1, &shaderSource, NULL );
qglCompileShader( shader );
GLint result = GL_FALSE;
qglGetShaderiv( shader, GL_COMPILE_STATUS, &result );
if ( result == GL_TRUE ) {
*shaderPtr = shader;
return qtrue;
}
GLint logLength = 0;
qglGetShaderiv( shader, GL_INFO_LOG_LENGTH, &logLength );
static char log[4096]; // I've seen logs over 3 KB in size.
qglGetShaderInfoLog( shader, sizeof(log), NULL, log );
ri.Printf( PRINT_ERROR, "%s shader: %s\n", shaderType == GL_VERTEX_SHADER ? "Vertex" : "Fragment", log );
return qfalse;
}
static qbool GL2_CreateProgram( GLSL_Program& prog, const char* vs, const char* fs )
{
if ( !GL2_CreateShader( &prog.vs, GL_VERTEX_SHADER, vs ) )
return qfalse;
if ( !GL2_CreateShader( &prog.fs, GL_FRAGMENT_SHADER, fs ) )
return qfalse;
prog.p = qglCreateProgram();
qglAttachShader( prog.p, prog.vs );
qglAttachShader( prog.p, prog.fs );
qglLinkProgram( prog.p );
return qtrue;
}
// We don't use "gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;"
// because most everything is rendered using the fixed function pipeline and
// ftransform makes sure we get matching results (and thus avoid Z-fighting).
static const char* dynLightVS =
"uniform vec4 osLightPos;\n"
"uniform vec4 osEyePos;\n"
"varying vec4 L;\n" // object-space light vector
"varying vec4 V;\n" // object-space view vector
"varying vec3 nN;\n" // normalized object-space normal vector
"\n"
"void main()\n"
"{\n"
" gl_Position = ftransform();\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
" L = osLightPos - gl_Vertex;\n"
" V = osEyePos - gl_Vertex;\n"
" nN = gl_Normal;\n"
"}\n"
"";
static const char* dynLightFS =
"uniform sampler2D texture;\n"
"uniform vec4 lightColorRadius;" // w = 1 / (r^2)
"varying vec4 L;\n" // object-space light vector
"varying vec4 V;\n" // object-space view vector
"varying vec3 nN;\n" // normalized object-space normal vector
"\n"
"void main()\n"
"{\n"
" vec4 base = texture2D(texture, gl_TexCoord[0].xy);\n"
" vec3 nL = normalize(L.xyz);\n" // normalized light vector
" vec3 nV = normalize(V.xyz);\n" // normalized view vector
// light intensity
" float intensFactor = dot(L.xyz, L.xyz) * lightColorRadius.w;"
" vec3 intens = lightColorRadius.rgb * (1.0 - intensFactor);\n"
// specular reflection term (N.H)
" float specFactor = clamp(dot(nN, normalize(nL + nV)), 0.0, 1.0);\n"
" float spec = pow(specFactor, 16.0) * 0.25;\n"
// Lambertian diffuse reflection term (N.L)
" float diffuse = clamp(dot(nN, nL), 0.0, 1.0);\n"
" gl_FragColor = (base * vec4(diffuse) + vec4(spec)) * vec4(intens, 1.0);\n"
"}\n"
"";
struct FrameBuffer {
GLuint fbo;
GLuint color; // texture if MS, buffer if SS
GLuint depthStencil; // texture if MS, buffer if SS
qbool multiSampled;
qbool hasDepthStencil;
};
static FrameBuffer frameBufferMain;
static FrameBuffer frameBuffersPostProcess[2];
static unsigned int frameBufferReadIndex = 0; // read this for the latest color/depth data
static qbool frameBufferMultiSampling = qfalse;
#define CASE( x ) case x: return #x
#define GL( call ) call; GL2_CheckError( #call, __FUNCTION__, __FILE__, __LINE__ )
static const char* GL2_GetErrorString( GLenum ec )
{
switch ( ec )
{
CASE( GL_NO_ERROR );
CASE( GL_INVALID_ENUM );
CASE( GL_INVALID_VALUE );
CASE( GL_INVALID_OPERATION );
CASE( GL_INVALID_FRAMEBUFFER_OPERATION );
CASE( GL_OUT_OF_MEMORY );
CASE( GL_STACK_UNDERFLOW );
CASE( GL_STACK_OVERFLOW );
default: return "?";
}
}
static void GL2_CheckError( const char* call, const char* function, const char* file, int line )
{
const GLenum ec = qglGetError();
if ( ec == GL_NO_ERROR )
return;
const char* fileName = file;
while ( *file )
{
if ( *file == '/' || *file == '\\' )
fileName = file + 1;
++file;
}
ri.Printf( PRINT_ERROR, "%s failed\n", call );
ri.Printf( PRINT_ERROR, "%s:%d in %s\n", fileName, line, function );
ri.Printf( PRINT_ERROR, "GL error code: 0x%X (%d)\n", (unsigned int)ec, (int)ec );
ri.Printf( PRINT_ERROR, "GL error message: %s\n", GL2_GetErrorString(ec) );
}
static const char* GL2_GetFBOStatusString( GLenum status )
{
switch ( status )
{
CASE( GL_FRAMEBUFFER_COMPLETE );
CASE( GL_FRAMEBUFFER_UNDEFINED );
CASE( GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT );
CASE( GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT );
CASE( GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER );
CASE( GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER );
CASE( GL_FRAMEBUFFER_UNSUPPORTED );
CASE( GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE );
CASE( GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS );
default: return "?";
}
}
#undef CASE
static qbool GL2_FBO_CreateSS( FrameBuffer& fb, qbool depthStencil )
{
while ( qglGetError() != GL_NO_ERROR ) {} // clear the error queue
if ( depthStencil )
{
GL(qglGenTextures( 1, &fb.depthStencil ));
GL(qglBindTexture( GL_TEXTURE_2D, fb.depthStencil ));
GL(qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST ));
GL(qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ));
GL(qglTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, glConfig.vidWidth, glConfig.vidHeight, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL ));
}
GL(qglGenTextures( 1, &fb.color ));
GL(qglBindTexture( GL_TEXTURE_2D, fb.color ));
GL(qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ));
GL(qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ));
GL(qglTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, glConfig.vidWidth, glConfig.vidHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL ));
GL(qglGenFramebuffers( 1, &fb.fbo ));
GL(qglBindFramebuffer( GL_FRAMEBUFFER, fb.fbo ));
GL(qglFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb.color, 0 ));
if ( depthStencil )
GL(qglFramebufferTexture2D( GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, fb.depthStencil, 0 ));
const GLenum fboStatus = qglCheckFramebufferStatus( GL_FRAMEBUFFER );
if ( fboStatus != GL_FRAMEBUFFER_COMPLETE )
{
ri.Printf( PRINT_ERROR, "Failed to create FBO (status 0x%X, error 0x%X)\n", (unsigned int)fboStatus, (unsigned int)qglGetError() );
ri.Printf( PRINT_ERROR, "FBO status string: %s\n", GL2_GetFBOStatusString(fboStatus) );
return qfalse;
}
qglBindFramebuffer( GL_FRAMEBUFFER, 0 );
fb.multiSampled = qfalse;
fb.hasDepthStencil = depthStencil;
return qtrue;
}
static qbool GL2_FBO_CreateMS( FrameBuffer& fb )
{
while ( qglGetError() != GL_NO_ERROR ) {} // clear the error queue
GL(qglGenFramebuffers( 1, &fb.fbo ));
GL(qglBindFramebuffer( GL_FRAMEBUFFER, fb.fbo ));
GL(qglGenRenderbuffers( 1, &fb.color ));
GL(qglBindRenderbuffer( GL_RENDERBUFFER, fb.color ));
GL(qglRenderbufferStorageMultisample( GL_RENDERBUFFER, 4, GL_RGBA8, glConfig.vidWidth, glConfig.vidHeight ));
GL(qglFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, fb.color ));
GL(qglGenRenderbuffers( 1, &fb.depthStencil ));
GL(qglBindRenderbuffer( GL_RENDERBUFFER, fb.depthStencil ));
GL(qglRenderbufferStorageMultisample( GL_RENDERBUFFER, 4, GL_DEPTH24_STENCIL8, glConfig.vidWidth, glConfig.vidHeight ));
GL(qglFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, fb.color ));
GL(qglFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, fb.depthStencil ));
const GLenum fboStatus = qglCheckFramebufferStatus( GL_FRAMEBUFFER );
if ( fboStatus != GL_FRAMEBUFFER_COMPLETE )
{
ri.Printf( PRINT_ERROR, "Failed to create FBO (status 0x%X, error 0x%X)\n", (unsigned int)fboStatus, (unsigned int)qglGetError() );
ri.Printf( PRINT_ERROR, "FBO status string: %s\n", GL2_GetFBOStatusString(fboStatus) );
return qfalse;
}
qglBindFramebuffer( GL_FRAMEBUFFER, 0 );
fb.multiSampled = qtrue;
fb.hasDepthStencil = qtrue;
return qtrue;
}
static qbool GL2_FBO_Init()
{
const int msaa = r_msaa->integer;
const qbool validOption = msaa >= 2 && msaa <= 16;
const qbool enable = validOption && qglRenderbufferStorageMultisample != NULL;
frameBufferMultiSampling = enable;
if ( validOption && !enable )
ri.Printf( PRINT_WARNING, "MSAA requested but disabled because glRenderbufferStorageMultisample wasn't found\n" );
if ( !enable )
return GL2_FBO_CreateSS( frameBuffersPostProcess[0], qtrue ) &&
GL2_FBO_CreateSS( frameBuffersPostProcess[1], qtrue );
return GL2_FBO_CreateMS( frameBufferMain ) &&
GL2_FBO_CreateSS( frameBuffersPostProcess[0], qfalse ) &&
GL2_FBO_CreateSS( frameBuffersPostProcess[1], qfalse );
}
static void GL2_FBO_Bind( const FrameBuffer& fb )
{
qglBindFramebuffer( GL_FRAMEBUFFER, fb.fbo );
qglReadBuffer( GL_COLOR_ATTACHMENT0 );
qglDrawBuffer( GL_COLOR_ATTACHMENT0 );
}
static void GL2_FBO_Bind()
{
GL2_FBO_Bind( frameBuffersPostProcess[frameBufferReadIndex] );
}
static void GL2_FBO_Swap()
{
frameBufferReadIndex ^= 1;
}
static void GL2_FBO_BlitSSToBackBuffer()
{
const FrameBuffer& fbo = frameBuffersPostProcess[frameBufferReadIndex];
qglBindFramebuffer( GL_READ_FRAMEBUFFER, fbo.fbo );
qglBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 );
qglReadBuffer( GL_COLOR_ATTACHMENT0 );
qglDrawBuffer( GL_BACK );
const int w = glConfig.vidWidth;
const int h = glConfig.vidHeight;
qglBlitFramebuffer( 0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR );
}
static void GL2_FBO_BlitMSToSS()
{
const FrameBuffer& r = frameBufferMain;
const FrameBuffer& d = frameBuffersPostProcess[frameBufferReadIndex];
qglBindFramebuffer( GL_READ_FRAMEBUFFER, r.fbo );
qglBindFramebuffer( GL_DRAW_FRAMEBUFFER, d.fbo );
qglReadBuffer( GL_COLOR_ATTACHMENT0 );
qglDrawBuffer( GL_COLOR_ATTACHMENT0 );
const int w = glConfig.vidWidth;
const int h = glConfig.vidHeight;
qglBlitFramebuffer( 0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR );
}
static void GL2_FullScreenQuad()
{
const float w = glConfig.vidWidth;
const float h = glConfig.vidHeight;
qglBegin( GL_QUADS );
qglTexCoord2f( 0.0f, 0.0f );
qglVertex2f( 0.0f, h );
qglTexCoord2f( 0.0f, 1.0f );
qglVertex2f( 0.0f, 0.0f );
qglTexCoord2f( 1.0f, 1.0f );
qglVertex2f( w, 0.0f );
qglTexCoord2f( 1.0f, 0.0f );
qglVertex2f( w, h );
qglEnd();
}
static GLSL_Program gammaProg;
struct GLSL_GammaProgramAttribs
{
int texture;
int gammaOverbright;
};
static GLSL_GammaProgramAttribs gammaProgAttribs;
static void GL2_PostProcessGamma()
{
const int obBits = r_overBrightBits->integer;
const float obScale = (float)( 1 << obBits );
const float gamma = 1.0f / r_gamma->value;
if ( gamma == 1.0f && obBits == 0 )
return;
GL2_FBO_Swap();
GL2_FBO_Bind();
GL_Program( gammaProg );
qglUniform1i( gammaProgAttribs.texture, 0 ); // we use texture unit 0
qglUniform4f( gammaProgAttribs.gammaOverbright, gamma, gamma, gamma, obScale );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, frameBuffersPostProcess[frameBufferReadIndex ^ 1].color );
GL2_FullScreenQuad();
}
static const char* gammaVS =
"void main()\n"
"{\n"
" gl_Position = ftransform();\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
"}\n"
"";
static const char* gammaFS =
"uniform sampler2D texture;\n"
"uniform vec4 gammaOverbright;\n"
"\n"
"void main()\n"
"{\n"
" vec3 base = texture2D(texture, gl_TexCoord[0].xy).rgb;\n"
" gl_FragColor = vec4(pow(base, gammaOverbright.xyz) * gammaOverbright.w, 1.0);\n"
"}\n"
"";
static GLSL_Program greyscaleProg;
struct GLSL_GreyscaleProgramAttribs
{
int texture;
int greyscale;
};
static GLSL_GreyscaleProgramAttribs greyscaleProgAttribs;
static qbool greyscaleProgramValid = qfalse;
static void GL2_PostProcessGreyscale()
{
if ( !greyscaleProgramValid )
return;
const float greyscale = Com_Clamp( 0.0f, 1.0f, r_greyscale->value );
if ( greyscale == 0.0f )
return;
GL2_FBO_Swap();
GL2_FBO_Bind();
GL_Program( greyscaleProg );
qglUniform1i( greyscaleProgAttribs.texture, 0 ); // we use texture unit 0
qglUniform1f( greyscaleProgAttribs.greyscale, greyscale );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, frameBuffersPostProcess[frameBufferReadIndex ^ 1].color );
GL2_FullScreenQuad();
}
static const char* greyscaleVS =
"void main()\n"
"{\n"
" gl_Position = ftransform();\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
"}\n"
"";
static const char* greyscaleFS =
"uniform sampler2D texture;\n"
"uniform float greyscale;\n"
"\n"
"void main()\n"
"{\n"
" vec3 base = texture2D(texture, gl_TexCoord[0].xy).rgb;\n"
" vec3 grey = vec3(0.299 * base.r + 0.587 * base.g + 0.114 * base.b);\n"
" gl_FragColor = vec4(mix(base, grey, greyscale), 1.0);\n"
"}\n"
"";
qbool GL2_Init()
{
if ( !GL2_FBO_Init() ) {
ri.Printf( PRINT_ERROR, "Failed to create FBOs\n" );
return qfalse;
}
if ( !GL2_CreateProgram( dynLightProg, dynLightVS, dynLightFS ) ) {
ri.Printf( PRINT_ERROR, "Failed to compile dynamic light shaders\n" );
return qfalse;
}
dynLightProgAttribs.osEyePos = qglGetUniformLocation( dynLightProg.p, "osEyePos" );
dynLightProgAttribs.osLightPos = qglGetUniformLocation( dynLightProg.p, "osLightPos" );
dynLightProgAttribs.texture = qglGetUniformLocation( dynLightProg.p, "texture" );
dynLightProgAttribs.lightColorRadius = qglGetUniformLocation( dynLightProg.p, "lightColorRadius" );
if ( !GL2_CreateProgram( gammaProg, gammaVS, gammaFS ) ) {
ri.Printf( PRINT_ERROR, "Failed to compile gamma correction shaders\n" );
return qfalse;
}
gammaProgAttribs.texture = qglGetUniformLocation( gammaProg.p, "texture" );
gammaProgAttribs.gammaOverbright = qglGetUniformLocation( gammaProg.p, "gammaOverbright" );
greyscaleProgramValid = GL2_CreateProgram( greyscaleProg, greyscaleVS, greyscaleFS );
if ( greyscaleProgramValid ) {
greyscaleProgAttribs.texture = qglGetUniformLocation( greyscaleProg.p, "texture" );
greyscaleProgAttribs.greyscale = qglGetUniformLocation( greyscaleProg.p, "greyscale" );
} else {
ri.Printf( PRINT_ERROR, "Failed to compile greyscale shaders\n" );
}
return qtrue;
}
void GL2_BeginFrame()
{
if ( frameBufferMultiSampling )
GL2_FBO_Bind( frameBufferMain );
else
GL2_FBO_Bind();
GL_Program();
}
void GL2_EndFrame()
{
if ( frameBufferMultiSampling )
GL2_FBO_BlitMSToSS();
// this call is needed because there is no insurance for
// what the state might be right now
// we disable depth test, depth write and blending
GL_State( GLS_DEPTHTEST_DISABLE );
GL2_PostProcessGamma();
GL2_PostProcessGreyscale();
// needed for later calls to GL_Bind because
// the above functions use qglBindTexture directly
glState.texID[glState.currenttmu] = 0;
GL2_FBO_BlitSSToBackBuffer();
}