cnq3/code/renderer/grp_main.cpp

981 lines
26 KiB
C++

/*
===========================================================================
Copyright (C) 2022-2023 Gian 'myT' Schellenbaum
This file is part of Challenge Quake 3 (CNQ3).
Challenge Quake 3 is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Challenge Quake 3 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
===========================================================================
*/
// Gameplay Rendering Pipeline - main interface
#include "grp_local.h"
#include "uber_shaders.h"
#include "hlsl/uber_shader.h"
#include "hlsl/complete_uber_vs.h"
#include "hlsl/complete_uber_ps.h"
#include "../client/cl_imgui.h"
GRP grp;
static const ShaderByteCode vertexShaderByteCodes[8] =
{
ShaderByteCode(g_vs_1),
ShaderByteCode(g_vs_2),
ShaderByteCode(g_vs_3),
ShaderByteCode(g_vs_4),
ShaderByteCode(g_vs_5),
ShaderByteCode(g_vs_6),
ShaderByteCode(g_vs_7),
ShaderByteCode(g_vs_8)
};
#define PS(Data) #Data,
static const char* uberPixelShaderStateStrings[] =
{
UBER_SHADER_PS_LIST(PS)
};
#undef PS
#define PS(Data) ShaderByteCode(g_ps_##Data),
static const ShaderByteCode uberPixelShaderByteCodes[] =
{
UBER_SHADER_PS_LIST(PS)
};
#undef PS
#define PS(Data) 1 +
static const uint32_t uberPixelShaderCacheSize = UBER_SHADER_PS_LIST(PS) 0;
#undef PS
static UberPixelShaderState uberPixelShaderStates[uberPixelShaderCacheSize];
static ImPlotPoint FrameTimeGetter(int index, void*)
{
const FrameStats& fs = grp.frameStats;
const int realIndex = (fs.frameIndex + index) % fs.frameCount;
const float value = fs.p2pMS[realIndex];
ImPlotPoint p;
p.x = index;
p.y = value;
return p;
}
static void UpdateAnimatedImage(image_t* image, int w, int h, const byte* data, qbool dirty)
{
if(w != image->width || h != image->height)
{
// @TODO: ?
/*image->width = w;
image->height = h;
CreateTexture(&d3d.textures[image->texnum], image, 1, w, h);
GAL_UpdateTexture(image, 0, 0, 0, w, h, data);*/
}
else if(dirty)
{
// @TODO: ?
//GAL_UpdateTexture(image, 0, 0, 0, w, h, data);
}
}
const image_t* GetBundleImage(const textureBundle_t& bundle)
{
return R_UpdateAndGetBundleImage(&bundle, &UpdateAnimatedImage);
}
uint32_t GetSamplerIndex(textureWrap_t wrap, TextureFilter::Id filter, uint32_t minLOD)
{
Q_assert((uint32_t)wrap < TW_COUNT);
Q_assert((uint32_t)filter < TextureFilter::Count);
const uint32_t index =
(uint32_t)filter +
(uint32_t)TextureFilter::Count * (uint32_t)wrap +
(uint32_t)TextureFilter::Count * (uint32_t)TW_COUNT * minLOD;
return index;
}
uint32_t GetSamplerIndex(const image_t* image)
{
TextureFilter::Id filter = TextureFilter::Anisotropic;
if(r_lego->integer &&
grp.renderMode == RenderMode::World &&
(image->flags & (IMG_LMATLAS | IMG_EXTLMATLAS | IMG_NOPICMIP)) == 0)
{
filter = TextureFilter::Point;
}
else if((image->flags & IMG_NOAF) != 0 ||
grp.renderMode != RenderMode::World)
{
filter = TextureFilter::Linear;
}
int minLOD = 0;
if(grp.renderMode == RenderMode::World &&
(image->flags & IMG_NOPICMIP) == 0)
{
minLOD = Com_ClampInt(0, MaxTextureMips - 1, r_picmip->integer);
}
return GetSamplerIndex(image->wrapClampMode, filter, (uint32_t)minLOD);
}
static bool IsCommutativeBlendState(unsigned int stateBits)
{
const unsigned int blendStates[] =
{
GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE, // additive
GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO, // modulate
GLS_SRCBLEND_ZERO | GLS_DSTBLEND_SRC_COLOR, // modulate
GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE // pre-multiplied alpha blend
};
const unsigned int blendBits = stateBits & GLS_BLEND_BITS;
for(int b = 0; b < ARRAY_LEN(blendStates); ++b)
{
if(blendBits == blendStates[b])
{
return true;
}
}
return false;
}
static cullType_t GetMirrorredCullType(cullType_t cullType)
{
switch(cullType)
{
case CT_BACK_SIDED: return CT_FRONT_SIDED;
case CT_FRONT_SIDED: return CT_BACK_SIDED;
default: return CT_TWO_SIDED;
}
}
void FrameStats::EndFrame()
{
frameCount = min(frameCount + 1, (int)MaxFrames);
frameIndex = (frameIndex + 1) % MaxFrames;
Com_StatsFromArray(p2pMS, frameCount, temp, &p2pStats);
}
void RenderPassStats::EndFrame(uint32_t cpu, uint32_t gpu)
{
static uint32_t tempSamples[MaxStatsFrameCount];
samplesCPU[index] = cpu;
samplesGPU[index] = gpu;
count = min(count + 1, (uint32_t)MaxStatsFrameCount);
index = (index + 1) % MaxStatsFrameCount;
Com_StatsFromArray((const int*)samplesCPU, count, (int*)tempSamples, &statsCPU);
Com_StatsFromArray((const int*)samplesGPU, count, (int*)tempSamples, &statsGPU);
}
void GRP::Init()
{
firstInit = RHI::Init();
if(firstInit)
{
RootSignatureDesc desc("main");
desc.usingVertexBuffers = true;
desc.samplerCount = ARRAY_LEN(samplers);
desc.samplerVisibility = ShaderStages::PixelBit;
desc.genericVisibility = ShaderStages::PixelBit;
desc.AddRange(DescriptorType::Texture, 0, MAX_DRAWIMAGES * 2);
desc.AddRange(DescriptorType::RWBuffer, MAX_DRAWIMAGES * 2, 1);
rootSignatureDesc = desc;
rootSignature = CreateRootSignature(desc);
descriptorTable = CreateDescriptorTable(DescriptorTableDesc("game textures", rootSignature));
desc.name = "world";
desc.usingVertexBuffers = true;
desc.constants[ShaderStage::Vertex].byteCount = sizeof(WorldVertexRC);
desc.constants[ShaderStage::Pixel].byteCount = sizeof(WorldPixelRC);
desc.samplerVisibility = ShaderStages::PixelBit;
desc.genericVisibility = ShaderStages::VertexBit | ShaderStages::PixelBit;
uberRootSignature = CreateRootSignature(desc);
for(uint32_t i = 0; i < uberPixelShaderCacheSize; ++i)
{
if(!ParseUberPixelShaderState(uberPixelShaderStates[i], uberPixelShaderStateStrings[i]))
{
Q_assert(!"ParseUberPixelShaderState failed!");
}
}
}
// we recreate the samplers on every vid_restart to create the right level
// of anisotropy based on the latched CVar
for(uint32_t w = 0; w < TW_COUNT; ++w)
{
for(uint32_t f = 0; f < TextureFilter::Count; ++f)
{
for(uint32_t m = 0; m < MaxTextureMips; ++m)
{
const textureWrap_t wrap = (textureWrap_t)w;
const TextureFilter::Id filter = (TextureFilter::Id)f;
const uint32_t s = GetSamplerIndex(wrap, filter, m);
SamplerDesc desc(wrap, filter, (float)m);
desc.shortLifeTime = true;
samplers[s] = CreateSampler(desc);
}
}
}
// update our descriptor table with the new sampler descriptors
{
DescriptorTableUpdate update;
update.SetSamplers(ARRAY_LEN(samplers), samplers);
UpdateDescriptorTable(descriptorTable, update);
}
textureIndex = 0;
psoCount = 1; // we treat index 0 as invalid
{
switch(r_rtColorFormat->integer)
{
case RTCF_R10G10B10A2:
renderTargetFormat = TextureFormat::R10G10B10A2_UNorm;
break;
case RTCF_R16G16B16A16:
renderTargetFormat = TextureFormat::RGBA64_UNorm;
break;
case RTCF_R8G8B8A8:
default:
renderTargetFormat = TextureFormat::RGBA32_UNorm;
break;
}
TextureDesc desc("render target", glConfig.vidWidth, glConfig.vidHeight);
desc.initialState = ResourceStates::RenderTargetBit;
desc.allowedState = ResourceStates::RenderTargetBit | ResourceStates::PixelShaderAccessBit;
Vector4Clear(desc.clearColor);
desc.usePreferredClearValue = true;
desc.committedResource = true;
desc.format = renderTargetFormat;
desc.shortLifeTime = true;
renderTarget = RHI::CreateTexture(desc);
}
ui.Init();
world.Init();
mipMapGen.Init();
imgui.Init();
post.Init();
post.SetToneMapInput(renderTarget);
smaa.Init(); // must be after post
firstInit = false;
}
void GRP::ShutDown(bool fullShutDown)
{
RHI::ShutDown(fullShutDown);
}
void GRP::BeginFrame()
{
renderPasses[tr.frameCount % FrameCount].count = 0;
R_SetColorMappings();
smaa.Update();
// have it be first to we can use ImGUI in the other components too
grp.imgui.SafeBeginFrame();
RHI::BeginFrame();
ui.BeginFrame();
world.BeginFrame();
const float clearColor[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
const TextureBarrier barrier(renderTarget, ResourceStates::RenderTargetBit);
CmdBarrier(1, &barrier);
CmdClearColorTarget(renderTarget, clearColor);
// nothing is bound to the command list yet!
renderMode = RenderMode::None;
frameSeed = (float)rand() / (float)RAND_MAX;
}
void GRP::EndFrame()
{
DrawGUI();
R_DrawGUI();
imgui.Draw();
post.Draw();
world.EndFrame();
RHI::EndFrame();
if(rhie.presentToPresentUS > 0)
{
frameStats.p2pMS[frameStats.frameIndex] = (float)rhie.presentToPresentUS / 1000.0f;
frameStats.EndFrame();
}
else
{
frameStats.skippedFrames++;
}
if(backEnd.renderFrame)
{
Sys_V_EndFrame();
}
}
void GRP::CreateTexture(image_t* image, int mipCount, int width, int height)
{
TextureDesc desc(image->name, width, height, mipCount);
desc.committedResource = width * height >= (1 << 20);
desc.shortLifeTime = true;
if(mipCount > 1)
{
desc.allowedState |= ResourceStates::UnorderedAccessBit; // for mip-map generation
}
image->texture = ::RHI::CreateTexture(desc);
image->textureIndex = RegisterTexture(image->texture);
}
void GRP::UpoadTextureAndGenerateMipMaps(image_t* image, const byte* data)
{
MappedTexture texture;
RHI::BeginTextureUpload(texture, image->texture);
for(uint32_t r = 0; r < texture.rowCount; ++r)
{
memcpy(texture.mappedData + r * texture.dstRowByteCount, data + r * texture.srcRowByteCount, texture.srcRowByteCount);
}
RHI::EndTextureUpload();
mipMapGen.GenerateMipMaps(image->texture);
}
void GRP::BeginTextureUpload(MappedTexture& mappedTexture, image_t* image)
{
RHI::BeginTextureUpload(mappedTexture, image->texture);
}
void GRP::EndTextureUpload()
{
RHI::EndTextureUpload();
}
void GRP::ProcessWorld(world_t& world_)
{
world.ProcessWorld(world_);
}
void GRP::ProcessModel(model_t& model)
{
// @TODO: !!!
//__debugbreak();
}
void GRP::ProcessShader(shader_t& shader)
{
shader.numPipelines = 0;
if(shader.numStages < 1)
{
return;
}
// @TODO: GLS_POLYMODE_LINE
const bool clampDepth = r_depthClamp->integer != 0 || shader.isSky;
if(shader.isOpaque)
{
Q_assert(IsDepthFadeEnabled(shader) == false);
// @TODO: fix up cache.stageStateBits[0] based on depth state from follow-up states
CachedPSO cache = {};
cache.desc.depthFade = false;
cache.desc.polygonOffset = !!shader.polygonOffset;
cache.desc.clampDepth = clampDepth;
cache.stageStateBits[0] = shader.stages[0]->stateBits & (~GLS_POLYMODE_LINE);
for(int s = 1; s < shader.numStages; ++s)
{
cache.stageStateBits[s] = shader.stages[s]->stateBits & (GLS_BLEND_BITS | GLS_ATEST_BITS);
}
cache.stageCount = shader.numStages;
cache.desc.cullType = shader.cullType;
shader.pipelines[0].pipeline = CreatePSO(cache, shader.name);
cache.desc.cullType = GetMirrorredCullType(shader.cullType);
shader.pipelines[0].mirrorPipeline = CreatePSO(cache, va("%s mirror", shader.name));
shader.pipelines[0].firstStage = 0;
shader.pipelines[0].numStages = shader.numStages;
shader.numPipelines = 1;
}
else
{
CachedPSO cache = {};
cache.desc.depthFade = IsDepthFadeEnabled(shader);
cache.desc.polygonOffset = !!shader.polygonOffset;
cache.desc.clampDepth = clampDepth;
cache.stageCount = 0;
unsigned int prevStateBits = 0xFFFFFFFF;
int firstStage = 0;
for(int s = 0; s < shader.numStages; ++s)
{
const unsigned int currStateBits = shader.stages[s]->stateBits & (~GLS_POLYMODE_LINE);
if(cache.stageCount > 0)
{
// we could combine AT/DW in some circumstances, but we don't care to for now
const bool cantCombine = (shader.stages[s]->stateBits & (GLS_ATEST_BITS | GLS_DEPTHMASK_TRUE)) != 0;
if(currStateBits == prevStateBits &&
!cantCombine &&
IsCommutativeBlendState(currStateBits))
{
cache.stageStateBits[cache.stageCount++] = currStateBits;
}
else
{
pipeline_t& p = shader.pipelines[shader.numPipelines++];
cache.desc.cullType = shader.cullType;
p.pipeline = CreatePSO(cache, va("%s #%d", shader.name, shader.numPipelines));
cache.desc.cullType = GetMirrorredCullType(shader.cullType);
p.mirrorPipeline = CreatePSO(cache, va("%s #%d mirror", shader.name, shader.numPipelines));
p.firstStage = firstStage;
p.numStages = cache.stageCount;
cache.stageStateBits[0] = currStateBits;
cache.stageCount = 1;
firstStage = s;
}
}
else
{
cache.stageStateBits[0] = currStateBits;
cache.stageCount = 1;
}
prevStateBits = currStateBits;
}
if(cache.stageCount > 0)
{
pipeline_t& p = shader.pipelines[shader.numPipelines++];
cache.desc.cullType = shader.cullType;
p.pipeline = CreatePSO(cache, va("%s #%d", shader.name, shader.numPipelines));
cache.desc.cullType = GetMirrorredCullType(shader.cullType);
p.mirrorPipeline = CreatePSO(cache, va("%s #%d mirror", shader.name, shader.numPipelines));
p.firstStage = firstStage;
p.numStages = cache.stageCount;
}
}
}
uint32_t GRP::RegisterTexture(HTexture htexture)
{
const uint32_t index = textureIndex++;
DescriptorTableUpdate update;
update.SetTextures(1, &htexture, index);
UpdateDescriptorTable(descriptorTable, update);
return index;
}
uint32_t GRP::BeginRenderPass(const char* name, float r, float g, float b)
{
RenderPassFrame& f = renderPasses[tr.frameCount % FrameCount];
if(f.count >= ARRAY_LEN(f.passes))
{
Q_assert(0);
return UINT32_MAX;
}
CmdBeginDebugLabel(name, r, g, b);
const uint32_t index = f.count++;
RenderPassQueries& q = f.passes[index];
Q_strncpyz(q.name, name, sizeof(q.name));
q.cpuStartUS = Sys_Microseconds();
q.queryIndex = CmdBeginDurationQuery();
return index;
}
void GRP::EndRenderPass(uint32_t index)
{
RenderPassFrame& f = renderPasses[tr.frameCount % FrameCount];
if(index >= f.count)
{
Q_assert(0);
return;
}
CmdEndDebugLabel();
RenderPassQueries& q = f.passes[index];
q.cpuDurationUS = (uint32_t)(Sys_Microseconds() - q.cpuStartUS);
CmdEndDurationQuery(q.queryIndex);
}
void GRP::DrawGUI()
{
uint32_t durations[MaxDurationQueries];
GetDurations(durations);
wholeFrameStats.EndFrame(rhie.renderToPresentUS, durations[0]);
const RenderPassFrame& currFrame = renderPasses[(tr.frameCount % FrameCount) ^ 1];
RenderPassFrame& tempFrame = tempRenderPasses;
// see if the render pass list is the same as the previous frame's
bool sameRenderPass = true;
if(currFrame.count == tempRenderPasses.count)
{
for(uint32_t p = 0; p < currFrame.count; ++p)
{
if(Q_stricmp(currFrame.passes[p].name, tempRenderPasses.passes[p].name) != 0)
{
sameRenderPass = false;
break;
}
}
}
else
{
sameRenderPass = false;
}
// write out the displayed timings into the temp buffer
tempFrame.count = currFrame.count;
if(sameRenderPass)
{
for(uint32_t p = 0; p < currFrame.count; ++p)
{
const uint32_t index = currFrame.passes[p].queryIndex;
if(index < MaxDurationQueries)
{
renderPassStats[p].EndFrame(currFrame.passes[p].cpuDurationUS, durations[index]);
tempFrame.passes[p].gpuDurationUS = renderPassStats[p].statsGPU.median;
tempFrame.passes[p].cpuDurationUS = renderPassStats[p].statsCPU.median;
}
}
}
else
{
for(uint32_t p = 0; p < currFrame.count; ++p)
{
const uint32_t index = currFrame.passes[p].queryIndex;
if(index < MaxDurationQueries)
{
tempFrame.passes[p].gpuDurationUS = durations[index];
tempFrame.passes[p].cpuDurationUS = currFrame.passes[p].cpuDurationUS;
}
}
}
static bool breakdownActive = false;
ToggleBooleanWithShortcut(breakdownActive, ImGuiKey_F);
GUI_AddMainMenuItem(GUI_MainMenu::Perf, "Frame breakdown", "Ctrl+F", &breakdownActive);
if(breakdownActive)
{
if(ImGui::Begin("Frame breakdown", &breakdownActive, ImGuiWindowFlags_AlwaysAutoResize))
{
if(BeginTable("Frame breakdown", 3))
{
TableHeader(3, "Pass", "GPU [us]", "CPU [us]");
TableRow(3, "Whole frame",
va("%d", (int)wholeFrameStats.statsGPU.median),
va("%d", (int)wholeFrameStats.statsCPU.median));
for(uint32_t p = 0; p < currFrame.count; ++p)
{
const RenderPassQueries& rp = tempFrame.passes[p];
if(rp.queryIndex < MaxDurationQueries)
{
TableRow(3, rp.name,
va("%d", (int)rp.gpuDurationUS),
va("%d", (int)rp.cpuDurationUS));
}
}
ImGui::EndTable();
}
ImGui::Text("PSO count: %d", (int)grp.psoCount);
ImGui::Text("PSO changes: %d", (int)grp.world.psoChangeCount);
}
ImGui::End();
}
// save the current render pass list in the temp buffer
memcpy(&tempFrame, &currFrame, sizeof(tempFrame));
static bool frameTimeActive = false;
GUI_AddMainMenuItem(GUI_MainMenu::Perf, "Frame stats", NULL, &frameTimeActive);
if(frameTimeActive)
{
if(ImGui::Begin("Frame stats", &frameTimeActive, ImGuiWindowFlags_AlwaysAutoResize))
{
if(BeginTable("Frame stats", 2))
{
const FrameStats& fs = frameStats;
const stats_t& s = fs.p2pStats;
TableRow2("Skipped frames", fs.skippedFrames);
TableRow2("Frame time target", rhie.targetFrameDurationMS);
TableRow2("Frame time average", s.average);
TableRow2("Frame time std dev.", s.stdDev);
TableRow2("Input to render", (float)rhie.inputToRenderUS / 1000.0f);
TableRow2("Input to present", (float)rhie.inputToPresentUS / 1000.0f);
ImGui::EndTable();
}
}
ImGui::End();
}
static bool graphsActive = false;
ToggleBooleanWithShortcut(graphsActive, ImGuiKey_G);
GUI_AddMainMenuItem(GUI_MainMenu::Perf, "Frame time graphs", "Ctrl+G", &graphsActive);
if(graphsActive)
{
const int windowFlags =
ImGuiWindowFlags_NoDecoration |
ImGuiWindowFlags_NoBackground |
ImGuiWindowFlags_NoMove;
ImGui::SetNextWindowSize(ImVec2(glConfig.vidWidth, glConfig.vidHeight / 2), ImGuiCond_Always);
ImGui::SetNextWindowPos(ImVec2(0, glConfig.vidHeight / 2), ImGuiCond_Always);
if(ImGui::Begin("Frame time graphs", &graphsActive, windowFlags))
{
const FrameStats& fs = frameStats;
const double target = (double)rhie.targetFrameDurationMS;
static bool autoFit = false;
ImGui::Checkbox("Auto-fit", &autoFit);
if(ImPlot::BeginPlot("Frame Times", ImVec2(-1, -1), ImPlotFlags_NoInputs))
{
const int axisFlags = 0; // ImPlotAxisFlags_NoTickLabels
const int axisFlagsY = axisFlags | (autoFit ? ImPlotAxisFlags_AutoFit : 0);
ImPlot::SetupAxes(NULL, NULL, axisFlags, axisFlagsY);
ImPlot::SetupAxisLimits(ImAxis_X1, 0, FrameStats::MaxFrames, ImGuiCond_Always);
if(!autoFit)
{
ImPlot::SetupAxisLimits(ImAxis_Y1, max(target - 2.0, 0.0), target + 2.0, ImGuiCond_Always);
}
ImPlot::SetNextFillStyle(IMPLOT_AUTO_COL, 1.0f);
ImPlot::SetNextLineStyle(IMPLOT_AUTO_COL, 1.0f);
ImPlot::PlotInfLines("Target", &target, 1, ImPlotInfLinesFlags_Horizontal);
ImPlot::SetNextFillStyle(IMPLOT_AUTO_COL, 1.0f);
ImPlot::SetNextLineStyle(IMPLOT_AUTO_COL, 1.0f);
ImPlot::PlotLineG("Frame Time", &FrameTimeGetter, NULL, fs.frameCount, ImPlotLineFlags_None);
ImPlot::EndPlot();
}
}
ImGui::End();
}
GUI_DrawMainMenu();
}
uint32_t GRP::CreatePSO(CachedPSO& cache, const char* name)
{
Q_assert(cache.stageCount > 0);
const uint32_t pixelShaderStateBits = GLS_BLEND_BITS | GLS_ATEST_BITS;
for(uint32_t p = 1; p < psoCount; ++p)
{
if(cache.stageCount == psos[p].stageCount &&
memcmp(&cache.desc, &psos[p].desc, sizeof(cache.desc)) == 0 &&
memcmp(&cache.stageStateBits, &psos[p].stageStateBits, cache.stageCount * sizeof(cache.stageStateBits[0])) == 0)
{
return p;
}
}
Q_assert(psoCount < ARRAY_LEN(psos));
#if defined(_DEBUG)
Q_strncpyz(cache.name, name, sizeof(cache.name));
#endif
int uberPixelShaderIndex = -1;
for(uint32_t i = 0; i < uberPixelShaderCacheSize; ++i)
{
const UberPixelShaderState& state = uberPixelShaderStates[i];
const int dither = (state.globalState & UBERPS_DITHER_BIT) != 0 ? 1 : 0;
const bool depthFade = (state.globalState & UBERPS_DEPTHFADE_BIT) != 0;
if(cache.stageCount != (uint32_t)state.stageCount ||
r_dither->integer != dither ||
cache.desc.depthFade != depthFade)
{
continue;
}
bool found = true;
for(uint32_t s = 0; s < cache.stageCount; ++s)
{
const uint32_t psoCacheState = cache.stageStateBits[s] & pixelShaderStateBits;
const uint32_t psCacheState = (uint32_t)state.stageStates[s] & pixelShaderStateBits;
if(psoCacheState != psCacheState)
{
found = false;
break;
}
}
if(found)
{
uberPixelShaderIndex = (int)i;
break;
}
}
HShader pixelShader = RHI_MAKE_NULL_HANDLE();
ShaderByteCode pixelShaderByteCode;
if(uberPixelShaderIndex < 0)
{
uint32_t macroCount = 0;
ShaderMacro macros[64];
macros[macroCount].name = "STAGE_COUNT";
macros[macroCount].value = va("%d", cache.stageCount);
macroCount++;
if(r_dither->integer)
{
macros[macroCount].name = "DITHER";
macros[macroCount].value = "1";
macroCount++;
}
if(cache.desc.depthFade)
{
macros[macroCount].name = "DEPTH_FADE";
macros[macroCount].value = "1";
macroCount++;
}
for(int s = 0; s < cache.stageCount; ++s)
{
macros[macroCount].name = va("STAGE%d_BITS", s);
macros[macroCount].value = va("%d", (int)cache.stageStateBits[s] & pixelShaderStateBits);
macroCount++;
}
Q_assert(macroCount <= ARRAY_LEN(macros));
pixelShader = CreateShader(ShaderDesc(ShaderStage::Pixel, sizeof(uber_shader_string), uber_shader_string, "ps", macroCount, macros));
pixelShaderByteCode = GetShaderByteCode(pixelShader);
}
else
{
pixelShaderByteCode = uberPixelShaderByteCodes[uberPixelShaderIndex];
}
// important missing entries can be copy-pasted into UBER_SHADER_PS_LIST
#if 0
if(uberPixelShaderIndex < 0)
{
unsigned int flags = 0;
if(r_dither->integer)
{
flags |= UBERPS_DITHER_BIT;
}
if(cache.desc.depthFade)
{
flags |= UBERPS_DEPTHFADE_BIT;
}
Sys_DebugPrintf("\tshader: %s\n", name);
ri.Printf(PRINT_ALL, "^2 shader: %s\n", name);
Sys_DebugPrintf("\tPS(%d_%X", (int)cache.stageCount, flags);
ri.Printf(PRINT_ALL, " PS(%d_%X", (int)cache.stageCount, flags);
for(int s = 0; s < cache.stageCount; ++s)
{
Sys_DebugPrintf("_%X", (unsigned int)(cache.stageStateBits[s] & pixelShaderStateBits));
ri.Printf(PRINT_ALL, "_%X", (unsigned int)(cache.stageStateBits[s] & pixelShaderStateBits));
}
Sys_DebugPrintf(") \\\n");
ri.Printf(PRINT_ALL, ") \\\n");
}
#endif
uint32_t a = 0;
GraphicsPipelineDesc desc(name, uberRootSignature);
desc.shortLifeTime = true; // the PSO cache is only valid for this map!
desc.vertexShader = vertexShaderByteCodes[cache.stageCount - 1];
desc.pixelShader = pixelShaderByteCode;
desc.vertexLayout.AddAttribute(a++, ShaderSemantic::Position, DataType::Float32, 3, 0);
desc.vertexLayout.AddAttribute(a++, ShaderSemantic::Normal, DataType::Float32, 2, 0);
for(int s = 0; s < cache.stageCount; ++s)
{
desc.vertexLayout.AddAttribute(a++, ShaderSemantic::TexCoord, DataType::Float32, 2, 0);
desc.vertexLayout.AddAttribute(a++, ShaderSemantic::Color, DataType::UNorm8, 4, 0);
}
if(cache.desc.depthFade)
{
desc.depthStencil.DisableDepth();
}
else
{
desc.depthStencil.depthStencilFormat = TextureFormat::Depth32_Float;
desc.depthStencil.depthComparison =
(cache.stageStateBits[0] & GLS_DEPTHFUNC_EQUAL) != 0 ?
ComparisonFunction::Equal :
ComparisonFunction::GreaterEqual;
desc.depthStencil.enableDepthTest = (cache.stageStateBits[0] & GLS_DEPTHTEST_DISABLE) == 0;
desc.depthStencil.enableDepthWrites = (cache.stageStateBits[0] & GLS_DEPTHMASK_TRUE) != 0;
}
desc.rasterizer.cullMode = cache.desc.cullType;
desc.rasterizer.polygonOffset = cache.desc.polygonOffset;
desc.rasterizer.clampDepth = cache.desc.clampDepth;
desc.AddRenderTarget(cache.stageStateBits[0] & GLS_BLEND_BITS, renderTargetFormat);
cache.pipeline = CreateGraphicsPipeline(desc);
if(uberPixelShaderIndex < 0)
{
DestroyShader(pixelShader);
}
const uint32_t index = psoCount++;
psos[index] = cache;
return index;
}
void GRP::ExecuteRenderCommands(const byte* data)
{
for(;;)
{
const int commandId = ((const renderCommandBase_t*)data)->commandId;
if(commandId < 0 || commandId >= RC_COUNT)
{
assert(!"Invalid render command type");
return;
}
if(commandId == RC_END_OF_LIST)
{
return;
}
switch(commandId)
{
case RC_UI_SET_COLOR:
UISetColor(*(const uiSetColorCommand_t*)data);
break;
case RC_UI_DRAW_QUAD:
UIDrawQuad(*(const uiDrawQuadCommand_t*)data);
break;
case RC_UI_DRAW_TRIANGLE:
UIDrawTriangle(*(const uiDrawTriangleCommand_t*)data);
break;
case RC_DRAW_SCENE_VIEW:
DrawSceneView(*(const drawSceneViewCommand_t*)data);
break;
case RC_BEGIN_FRAME:
BeginFrame();
break;
case RC_SWAP_BUFFERS:
EndFrame();
break;
case RC_BEGIN_UI:
ui.Begin();
break;
case RC_END_UI:
ui.End();
break;
case RC_BEGIN_3D:
world.Begin();
break;
case RC_END_3D:
world.End();
break;
case RC_END_SCENE:
smaa.Draw(((const endSceneCommand_t*)data)->viewParms);
break;
case RC_SCREENSHOT:
RB_TakeScreenshotCmd((const screenshotCommand_t*)data);
break;
case RC_VIDEOFRAME:
RB_TakeVideoFrameCmd((const videoFrameCommand_t*)data);
break;
default:
Q_assert(!"Unsupported render command type");
return;
}
data += renderCommandSizes[commandId];
}
}
void GRP::ReadPixels(int w, int h, int alignment, colorSpace_t colorSpace, void* outPixels)
{
const HTexture sourceTexture = GetSwapChainTexture();
MappedTexture mapped;
BeginTextureReadback(mapped, sourceTexture);
byte* const out0 = (byte*)outPixels;
const byte* const in0 = mapped.mappedData;
if(colorSpace == CS_RGBA)
{
const int dstRowSizeNoPadding = w * 4;
mapped.dstRowByteCount = AlignUp(dstRowSizeNoPadding, alignment);
for(int y = 0; y < mapped.rowCount; ++y)
{
byte* out = out0 + (mapped.rowCount - 1 - y) * mapped.dstRowByteCount;
const byte* in = in0 + y * mapped.srcRowByteCount;
memcpy(out, in, dstRowSizeNoPadding);
}
}
else if(colorSpace == CS_BGR)
{
mapped.dstRowByteCount = AlignUp(w * 3, alignment);
for(int y = 0; y < mapped.rowCount; ++y)
{
byte* out = out0 + (mapped.rowCount - 1 - y) * mapped.dstRowByteCount;
const byte* in = in0 + y * mapped.srcRowByteCount;
for(int x = 0; x < mapped.columnCount; ++x)
{
out[2] = in[0];
out[1] = in[1];
out[0] = in[2];
out += 3;
in += 4;
}
}
}
else
{
Q_assert(!"Unsupported color space");
}
EndTextureReadback();
}
// @TODO: move out once the cinematic render pipeline is added
IRenderPipeline* renderPipeline = &grp;