cnq3/code/linux/sdl_snd.cpp

170 lines
3.7 KiB
C++

#include "../qcommon/q_shared.h"
#include "../client/snd_local.h"
#include <SDL2/SDL.h>
// @TODO: cvars for freq and samples?
// @TODO: cvar for the device name? ("alsa", "pulseaudio", etc)
static const int bits = 16;
static const int channels = 2;
static const int freq = 44100; // got issues with 22050 in the VM
static const int samples = 2048;
static const SDL_AudioFormat format = AUDIO_S16SYS;
struct audio_t {
qbool valid;
int q3SamplePos;
int q3Bytes;
SDL_AudioDeviceID device;
};
static audio_t audio;
static void FillAudioBufferCallback( void* userData, Uint8* sdlBuffer, int sdlBytesToWrite )
{
if (sdlBuffer == NULL || sdlBytesToWrite == 0)
return;
if (!audio.valid) {
memset(sdlBuffer, 0, sdlBytesToWrite);
return;
}
// fix up sample offset if needed
const int bytesPerSample = dma.samplebits / 8;
int q3BytePos = audio.q3SamplePos * bytesPerSample;
if (q3BytePos >= audio.q3Bytes) {
q3BytePos = 0;
audio.q3SamplePos = 0;
}
// compute the sizes for the memcpy call(s)
int q3BytesToEnd = audio.q3Bytes - q3BytePos;
int bytes1 = sdlBytesToWrite;
int bytes2 = 0;
if (bytes1 > q3BytesToEnd) {
bytes1 = q3BytesToEnd;
bytes2 = sdlBytesToWrite - q3BytesToEnd;
}
// copy the new mixed data to the device
memcpy(sdlBuffer, dma.buffer + q3BytePos, bytes1);
if (bytes2 > 0) {
memcpy(sdlBuffer + bytes1, dma.buffer, bytes2);
audio.q3SamplePos = bytes2 / bytesPerSample;
} else {
audio.q3SamplePos += bytes1 / bytesPerSample;
}
// fix up sample offset if needed
if (audio.q3SamplePos * bytesPerSample >= audio.q3Bytes)
audio.q3SamplePos = 0;
}
qbool Sys_S_Init()
{
if (audio.valid)
return qtrue;
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
Com_Printf("SDL_Init failed: %s\n", SDL_GetError());
return qfalse;
}
// open the default audio device
SDL_AudioSpec desired;
memset(&desired, 0, sizeof(desired));
desired.freq = freq;
desired.format = format;
desired.samples = samples;
desired.channels = channels;
desired.callback = &FillAudioBufferCallback;
SDL_AudioSpec obtained;
memset(&obtained, 0, sizeof(obtained));
audio.device = SDL_OpenAudioDevice(NULL, 0, &desired, &obtained, 0);
if (audio.device == 0) {
Com_Printf("SDL_OpenAudioDevice failed: %s\n", SDL_GetError());
Sys_S_Shutdown();
return qfalse;
}
// save all the data we need to
const int q3Samples = obtained.samples * 16;
audio.q3SamplePos = 0;
dma.samplebits = obtained.format & 0xFF;
dma.channels = obtained.channels;
dma.samples = q3Samples;
dma.submission_chunk = 1;
dma.speed = obtained.freq;
audio.q3Bytes = dma.samples * (dma.samplebits / 8);
dma.buffer = (byte*)calloc(1, audio.q3Bytes);
audio.valid = qtrue;
// opened devices are always paused by default
SDL_PauseAudioDevice(audio.device, 0);
return qtrue;
}
int Sys_S_GetDMAPos()
{
if (!audio.valid)
return 0;
return audio.q3SamplePos;
}
void Sys_S_Shutdown()
{
if (audio.device != 0) {
SDL_PauseAudioDevice(audio.device, 1);
SDL_CloseAudioDevice(audio.device);
audio.device = 0;
}
SDL_QuitSubSystem(SDL_INIT_AUDIO);
free(dma.buffer);
dma.buffer = NULL;
audio.q3SamplePos = 0;
audio.q3Bytes = 0;
audio.valid = qfalse;
}
void Sys_S_Submit()
{
if (!audio.valid)
return;
// let SDL call our registered callback function again
SDL_UnlockAudioDevice(audio.device);
}
void Sys_S_BeginPainting()
{
if (!audio.valid)
return;
// prevent SDL from calling our registered callback function
SDL_LockAudioDevice(audio.device);
}
void sdl_MuteAudio( qbool mute )
{
if (!audio.valid)
return;
const qbool playing = SDL_GetAudioDeviceStatus(audio.device) == SDL_AUDIO_PLAYING;
if (mute && playing) {
SDL_PauseAudioDevice(audio.device, 1);
} else if (!mute && !playing) {
S_ClearSoundBuffer();
SDL_PauseAudioDevice(audio.device, 0);
}
}