cnq3/code/renderer/tr_shade_calc.cpp

1292 lines
35 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade_calc.c
#include "tr_local.h"
static double WaveValue( const float* table, double base, double amplitude, double phase, double freq )
{
// the original code did a double to 32-bit int conversion of x
const double x = (phase + tess.shaderTime * freq) * FUNCTABLE_SIZE;
const int i = (int)((int64_t)x & (int64_t)FUNCTABLE_MASK);
const double r = base + table[i] * amplitude;
return r;
}
static const float* TableForFunc( genFunc_t func )
{
switch ( func )
{
case GF_SIN:
return tr.sinTable;
case GF_TRIANGLE:
return tr.triangleTable;
case GF_SQUARE:
return tr.squareTable;
case GF_SAWTOOTH:
return tr.sawToothTable;
case GF_INVERSE_SAWTOOTH:
return tr.inverseSawToothTable;
case GF_NONE:
default:
break;
}
ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name );
return NULL;
}
// Evaluates a given waveForm_t, referencing backEnd.refdef.time directly
static float EvalWaveForm( const waveForm_t *wf )
{
return WaveValue( TableForFunc( wf->func ), wf->base, wf->amplitude, wf->phase, wf->frequency );
}
static float EvalWaveFormClamped( const waveForm_t *wf )
{
float glow = EvalWaveForm( wf );
if ( glow < 0 )
{
return 0;
}
if ( glow > 1 )
{
return 1;
}
return glow;
}
static void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st, int numVertexes )
{
int i;
for ( i = 0; i < numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
}
}
static void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st, int numVertexes )
{
float p;
texModInfo_t tmi;
p = 1.0f / EvalWaveForm( wf );
tmi.matrix[0][0] = p;
tmi.matrix[1][0] = 0;
tmi.translate[0] = 0.5f - 0.5f * p;
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = p;
tmi.translate[1] = 0.5f - 0.5f * p;
RB_CalcTransformTexCoords( &tmi, st, numVertexes );
}
static void RB_CalcDeformVertexes( const deformStage_t* ds, int firstVertex, int numVertexes )
{
float* xyz = (float*)&tess.xyz[firstVertex];
float* normal = (float*)&tess.normal[firstVertex];
vec3_t offset;
if ( ds->deformationWave.frequency == 0 )
{
const float scale = EvalWaveForm( &ds->deformationWave );
for ( int i = 0; i < numVertexes; i++, xyz += 4, normal += 4 )
{
VectorScale( normal, scale, offset );
xyz[0] += offset[0];
xyz[1] += offset[1];
xyz[2] += offset[2];
}
}
else
{
const float* table = TableForFunc(ds->deformationWave.func);
for ( int i = 0; i < numVertexes; i++, xyz += 4, normal += 4 )
{
const float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread;
const float scale = WaveValue( table, ds->deformationWave.base,
ds->deformationWave.amplitude,
ds->deformationWave.phase + off,
ds->deformationWave.frequency );
VectorScale( normal, scale, offset );
xyz[0] += offset[0];
xyz[1] += offset[1];
xyz[2] += offset[2];
}
}
}
// wiggle the normals for wavy environment mapping
static void RB_CalcDeformNormals( const deformStage_t* ds, int firstVertex, int numVertexes )
{
int i;
float scale;
const float *xyz = ( const float * ) &tess.xyz[firstVertex];
float *normal = ( float * ) &tess.normal[firstVertex];
for ( i = 0; i < numVertexes; i++, xyz += 4, normal += 4 ) {
scale = 0.98f;
scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 0 ] += ds->deformationWave.amplitude * scale;
scale = 0.98f;
scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 1 ] += ds->deformationWave.amplitude * scale;
scale = 0.98f;
scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 2 ] += ds->deformationWave.amplitude * scale;
VectorNormalizeFast( normal );
}
}
static void RB_CalcBulgeVertexes( const deformStage_t* ds, int firstVertex, int numVertexes )
{
int i;
const float *st = ( const float * ) &tess.texCoords[firstVertex];
float *xyz = ( float * ) &tess.xyz[firstVertex];
float *normal = ( float * ) &tess.normal[firstVertex];
float now;
now = backEnd.refdef.time * ds->bulgeSpeed / 1000.0f;
for ( i = 0; i < numVertexes; i++, xyz += 4, st += 2, normal += 4 ) {
int off;
float scale;
off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );
scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
xyz[0] += normal[0] * scale;
xyz[1] += normal[1] * scale;
xyz[2] += normal[2] * scale;
}
}
// a deformation that can move an entire surface along a wave path
static void RB_CalcMoveVertexes( const deformStage_t* ds, int firstVertex, int numVertexes )
{
const float* table = TableForFunc( ds->deformationWave.func );
const double scale = WaveValue( table, ds->deformationWave.base,
ds->deformationWave.amplitude,
ds->deformationWave.phase,
ds->deformationWave.frequency );
vec3_t offset;
VectorScale( ds->moveVector, scale, offset );
float* xyz = (float*)&tess.xyz[firstVertex];
for ( int i = 0; i < numVertexes; i++, xyz += 4 ) {
VectorAdd( xyz, offset, xyz );
}
}
// @TODO:
// Change a polygon into a bunch of text polygons
static void DeformText( const char *text ) {
int i;
vec3_t origin, width, height;
int len;
int ch;
byte color[4];
float bottom, top;
vec3_t mid;
height[0] = 0;
height[1] = 0;
height[2] = -1;
CrossProduct( tess.normal[0], height, width );
// find the midpoint of the box
VectorClear( mid );
bottom = 999999;
top = -999999;
for ( i = 0 ; i < 4 ; i++ ) {
VectorAdd( tess.xyz[i], mid, mid );
if ( tess.xyz[i][2] < bottom ) {
bottom = tess.xyz[i][2];
}
if ( tess.xyz[i][2] > top ) {
top = tess.xyz[i][2];
}
}
VectorScale( mid, 0.25f, origin );
// determine the individual character size
height[0] = 0;
height[1] = 0;
height[2] = ( top - bottom ) * 0.5f;
VectorScale( width, height[2] * -0.75f, width );
// determine the starting position
len = strlen( text );
VectorMA( origin, (len-1), width, origin );
// clear the shader indexes
tess.numIndexes = 0;
tess.numVertexes = 0;
color[0] = color[1] = color[2] = color[3] = 255;
// draw each character
for ( i = 0 ; i < len ; i++ ) {
ch = text[i];
ch &= 255;
if ( ch != ' ' ) {
int row, col;
float frow, fcol, size;
row = ch>>4;
col = ch&15;
frow = row*0.0625f;
fcol = col*0.0625f;
size = 0.0625f;
RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size );
}
VectorMA( origin, -2, width, origin );
}
}
static void GlobalVectorToLocal( const vec3_t in, vec3_t out )
{
out[0] = DotProduct( in, backEnd.orient.axis[0] );
out[1] = DotProduct( in, backEnd.orient.axis[1] );
out[2] = DotProduct( in, backEnd.orient.axis[2] );
}
// assuming all the triangles for this shader are independant quads,
// rebuild them as forward facing sprites
static void AutospriteDeform( int firstVertex, int numVertexes, int firstIndex, int numIndexes )
{
int i;
float *xyz;
vec3_t mid, delta;
float radius;
vec3_t left, up;
vec3_t leftDir, upDir;
if ( numVertexes & 3 ) {
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name );
}
if ( numIndexes != ( numVertexes >> 2 ) * 6 ) {
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name );
}
tess.numVertexes = firstVertex;
tess.numIndexes = firstIndex;
if ( backEnd.currentEntity != &tr.worldEntity ) {
GlobalVectorToLocal( backEnd.viewParms.orient.axis[1], leftDir );
GlobalVectorToLocal( backEnd.viewParms.orient.axis[2], upDir );
} else {
VectorCopy( backEnd.viewParms.orient.axis[1], leftDir );
VectorCopy( backEnd.viewParms.orient.axis[2], upDir );
}
for ( i = firstVertex ; i < firstVertex + numVertexes ; i+=4 ) {
// find the midpoint
xyz = tess.xyz[i];
mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]);
mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]);
mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]);
VectorSubtract( xyz, mid, delta );
radius = VectorLength( delta ) * 0.707f; // / sqrt(2)
VectorScale( leftDir, radius, left );
VectorScale( upDir, radius, up );
if ( backEnd.viewParms.isMirror ) {
VectorSubtract( vec3_origin, left, left );
}
// compensate for scale in the axes if necessary
if ( backEnd.currentEntity->e.nonNormalizedAxes ) {
float axisLength = VectorLength( backEnd.currentEntity->e.axis[0] );
axisLength = axisLength ? (1.0f / axisLength) : 1.0f;
VectorScale(left, axisLength, left);
VectorScale(up, axisLength, up);
}
RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] );
}
}
// Autosprite2 will pivot a rectangular quad along the center of its long axis
static void Autosprite2Deform( int firstVertex, int numVertexes, int firstIndex, int numIndexes ) {
int i, j, k;
int indexes;
float *xyz;
vec3_t forward;
const int edgeVerts[6][2] = {
{ 0, 1 },
{ 0, 2 },
{ 0, 3 },
{ 1, 2 },
{ 1, 3 },
{ 2, 3 }
};
if ( numVertexes & 3 ) {
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name );
}
if ( numIndexes != ( numVertexes >> 2 ) * 6 ) {
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name );
}
if ( backEnd.currentEntity != &tr.worldEntity ) {
GlobalVectorToLocal( backEnd.viewParms.orient.axis[0], forward );
} else {
VectorCopy( backEnd.viewParms.orient.axis[0], forward );
}
// this is a lot of work for two triangles...
// we could precalculate a lot of it is an issue, but it would mess up
// the shader abstraction
for ( i = firstVertex, indexes = firstIndex ; i < firstVertex + numVertexes ; i+=4, indexes+=6 ) {
float lengths[2];
int nums[2];
vec3_t mid[2];
vec3_t major, minor;
float *v1, *v2;
// find the midpoint
xyz = tess.xyz[i];
// identify the two shortest edges
nums[0] = nums[1] = 0;
lengths[0] = lengths[1] = 999999;
for ( j = 0 ; j < 6 ; j++ ) {
float l;
vec3_t temp;
v1 = xyz + 4 * edgeVerts[j][0];
v2 = xyz + 4 * edgeVerts[j][1];
VectorSubtract( v1, v2, temp );
l = DotProduct( temp, temp );
if ( l < lengths[0] ) {
nums[1] = nums[0];
lengths[1] = lengths[0];
nums[0] = j;
lengths[0] = l;
} else if ( l < lengths[1] ) {
nums[1] = j;
lengths[1] = l;
}
}
for ( j = 0 ; j < 2 ; j++ ) {
v1 = xyz + 4 * edgeVerts[nums[j]][0];
v2 = xyz + 4 * edgeVerts[nums[j]][1];
mid[j][0] = 0.5f * (v1[0] + v2[0]);
mid[j][1] = 0.5f * (v1[1] + v2[1]);
mid[j][2] = 0.5f * (v1[2] + v2[2]);
}
// find the vector of the major axis
VectorSubtract( mid[1], mid[0], major );
// cross this with the view direction to get minor axis
CrossProduct( major, forward, minor );
VectorNormalize( minor );
// re-project the points
for ( j = 0 ; j < 2 ; j++ ) {
float l;
v1 = xyz + 4 * edgeVerts[nums[j]][0];
v2 = xyz + 4 * edgeVerts[nums[j]][1];
l = 0.5 * sqrt( lengths[j] );
// we need to see which direction this edge
// is used to determine direction of projection
for ( k = 0 ; k < 5 ; k++ ) {
if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0]
&& tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) {
break;
}
}
if ( k == 5 ) {
VectorMA( mid[j], l, minor, v1 );
VectorMA( mid[j], -l, minor, v2 );
} else {
VectorMA( mid[j], -l, minor, v1 );
VectorMA( mid[j], l, minor, v2 );
}
}
}
}
void RB_DeformTessGeometry( int firstVertex, int numVertexes, int firstIndex, int numIndexes )
{
int i;
const deformStage_t* ds;
for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) {
ds = &tess.shader->deforms[ i ];
switch ( ds->deformation ) {
case DEFORM_NONE:
break;
case DEFORM_NORMALS:
RB_CalcDeformNormals( ds, firstVertex, numVertexes );
break;
case DEFORM_WAVE:
RB_CalcDeformVertexes( ds, firstVertex, numVertexes );
break;
case DEFORM_BULGE:
RB_CalcBulgeVertexes( ds, firstVertex, numVertexes );
break;
case DEFORM_MOVE:
RB_CalcMoveVertexes( ds, firstVertex, numVertexes );
break;
case DEFORM_PROJECTION_SHADOW:
//RB_ProjectionShadowDeform();
break;
case DEFORM_AUTOSPRITE:
AutospriteDeform( firstVertex, numVertexes, firstIndex, numIndexes );
break;
case DEFORM_AUTOSPRITE2:
Autosprite2Deform( firstVertex, numVertexes, firstIndex, numIndexes );
break;
case DEFORM_TEXT0:
case DEFORM_TEXT1:
case DEFORM_TEXT2:
case DEFORM_TEXT3:
case DEFORM_TEXT4:
case DEFORM_TEXT5:
case DEFORM_TEXT6:
case DEFORM_TEXT7:
// @TODO:
DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] );
break;
}
}
}
static void RB_CalcColorFromEntity( unsigned char *dstColors, int numVertexes )
{
int i;
int *pColors = ( int * ) dstColors;
int c;
if ( !backEnd.currentEntity )
return;
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
for ( i = 0; i < numVertexes; i++, pColors++ )
{
*pColors = c;
}
}
static void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors, int numVertexes )
{
int i;
int *pColors = ( int * ) dstColors;
unsigned char invModulate[4];
int c;
if ( !backEnd.currentEntity )
return;
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
c = * ( int * ) invModulate;
for ( i = 0; i < numVertexes; i++, pColors++ )
{
*pColors = * ( int * ) invModulate;
}
}
static void RB_CalcAlphaFromEntity( unsigned char *dstColors, int numVertexes )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < numVertexes; i++, dstColors += 4 )
{
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
}
}
static void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors, int numVertexes )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < numVertexes; i++, dstColors += 4 )
{
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
}
}
static void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors, int numVertexes )
{
int i;
int v;
float glow;
int *colors = ( int * ) dstColors;
byte color[4];
if ( wf->func == GF_NOISE ) {
glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude;
} else {
glow = EvalWaveForm( wf ) * tr.identityLight;
}
if ( glow < 0 ) {
glow = 0;
}
else if ( glow > 1 ) {
glow = 1;
}
v = myftol( 255 * glow );
color[0] = color[1] = color[2] = v;
color[3] = 255;
v = *(int *)color;
for ( i = 0; i < numVertexes; i++, colors++ ) {
*colors = v;
}
}
static void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors, int numVertexes )
{
int i;
int v;
float glow;
glow = EvalWaveFormClamped( wf );
v = 255 * glow;
for ( i = 0; i < numVertexes; i++, dstColors += 4 )
{
dstColors[3] = v;
}
}
/*
========================
RB_CalcFogTexCoords
To do the clipped fog plane really correctly, we should use
projected textures, but I don't trust the drivers and it
doesn't fit our shader data.
========================
*/
void RB_CalcFogTexCoords( float *st, int firstVertex, int numVertexes ) {
int i;
float *v;
float s, t;
float eyeT;
qbool eyeOutside;
fog_t *fog;
vec3_t local;
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
fog = tr.world->fogs + tess.fogNum;
// all fogging distance is based on world Z units
VectorSubtract( backEnd.orient.origin, backEnd.viewParms.orient.origin, local );
fogDistanceVector[0] = -backEnd.orient.modelMatrix[2];
fogDistanceVector[1] = -backEnd.orient.modelMatrix[6];
fogDistanceVector[2] = -backEnd.orient.modelMatrix[10];
fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.orient.axis[0] );
// scale the fog vectors based on the fog's thickness
fogDistanceVector[0] *= fog->tcScale;
fogDistanceVector[1] *= fog->tcScale;
fogDistanceVector[2] *= fog->tcScale;
fogDistanceVector[3] *= fog->tcScale;
// rotate the gradient vector for this orientation
if ( fog->hasSurface ) {
fogDepthVector[0] = fog->surface[0] * backEnd.orient.axis[0][0] +
fog->surface[1] * backEnd.orient.axis[0][1] + fog->surface[2] * backEnd.orient.axis[0][2];
fogDepthVector[1] = fog->surface[0] * backEnd.orient.axis[1][0] +
fog->surface[1] * backEnd.orient.axis[1][1] + fog->surface[2] * backEnd.orient.axis[1][2];
fogDepthVector[2] = fog->surface[0] * backEnd.orient.axis[2][0] +
fog->surface[1] * backEnd.orient.axis[2][1] + fog->surface[2] * backEnd.orient.axis[2][2];
fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.orient.origin, fog->surface );
eyeT = DotProduct( backEnd.orient.viewOrigin, fogDepthVector ) + fogDepthVector[3];
} else {
eyeT = 1; // non-surface fog always has eye inside
}
// see if the viewpoint is outside
// this is needed for clipping distance even for constant fog
if ( eyeT < 0 ) {
eyeOutside = qtrue;
} else {
eyeOutside = qfalse;
}
fogDistanceVector[3] += 1.0/512;
v = tess.xyz[firstVertex];
st += firstVertex * 2;
// calculate density for each point
for (i = 0 ; i < numVertexes ; i++, v += 4) {
// calculate the length in fog
s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3];
t = DotProduct( v, fogDepthVector ) + fogDepthVector[3];
// partially clipped fogs use the T axis
if ( eyeOutside ) {
if ( t < 1.0 ) {
t = 1.0/32; // point is outside, so no fogging
} else {
t = 1.0/32 + 30.0/32 * t / ( t - eyeT ); // cut the distance at the fog plane
}
} else {
if ( t < 0 ) {
t = 1.0/32; // point is outside, so no fogging
} else {
t = 31.0/32;
}
}
st[0] = s;
st[1] = t;
st += 2;
}
}
static void RB_CalcModulateColorsByFog( unsigned char *colors, int firstVertex, int numVertexes ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes );
colors += firstVertex * 4;
for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[0] *= f;
colors[1] *= f;
colors[2] *= f;
}
}
static void RB_CalcModulateAlphasByFog( unsigned char *colors, int firstVertex, int numVertexes ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes );
colors += firstVertex * 4;
for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[3] *= f;
}
}
static void RB_CalcModulateRGBAsByFog( unsigned char *colors, int firstVertex, int numVertexes ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes );
colors += firstVertex * 4;
for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[0] *= f;
colors[1] *= f;
colors[2] *= f;
colors[3] *= f;
}
}
static void RB_CalcEnvironmentTexCoords( float *st, int firstVertex, int numVertexes )
{
int i;
float *v, *normal;
vec3_t viewer, reflected;
float d;
v = tess.xyz[firstVertex];
normal = tess.normal[firstVertex];
st += firstVertex * 2;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.orient.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
static void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st, int firstVertex, int numVertexes )
{
int i;
double now;
vec4_t* const v = &tess.xyz[firstVertex];
now = ( wf->phase + tess.shaderTime * wf->frequency );
for ( i = 0; i < numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( v[i][0] + v[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
st[1] = t + tr.sinTable[ ( ( int ) ( ( v[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
}
}
static void RB_CalcScaleTexCoords( const float scale[2], float *st, int numVertexes )
{
int i;
for ( i = 0; i < numVertexes; i++, st += 2 )
{
st[0] *= scale[0];
st[1] *= scale[1];
}
}
static void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st, int numVertexes )
{
int i;
double timeScale = tess.shaderTime;
double adjustedScrollS, adjustedScrollT;
adjustedScrollS = (double)scrollSpeed[0] * timeScale;
adjustedScrollT = (double)scrollSpeed[1] * timeScale;
// clamp so coordinates don't continuously get larger, causing problems
// with hardware limits
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
for ( i = 0; i < numVertexes; i++, st += 2 )
{
st[0] += adjustedScrollS;
st[1] += adjustedScrollT;
}
}
static void RB_CalcRotateTexCoords( float degsPerSecond, float *st, int numVertexes )
{
double timeScale = tess.shaderTime;
double degs = -degsPerSecond * timeScale;
int index = degs * ( FUNCTABLE_SIZE / 360.0f );
float sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
float cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
texModInfo_t tmi;
tmi.matrix[0][0] = cosValue;
tmi.matrix[1][0] = -sinValue;
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
tmi.matrix[0][1] = sinValue;
tmi.matrix[1][1] = cosValue;
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
RB_CalcTransformTexCoords( &tmi, st, numVertexes );
}
/*
** RB_CalcSpecularAlpha
**
** Calculates specular coefficient and places it in the alpha channel
*/
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
void RB_CalcSpecularAlpha( unsigned char *alphas, int firstVertex, int numVertexes ) {
int i;
float *v, *normal;
vec3_t viewer, reflected;
float l, d;
int b;
vec3_t lightDir;
v = tess.xyz[firstVertex];
normal = tess.normal[firstVertex];
alphas += (firstVertex * 4) + 3;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
float ilength;
VectorSubtract( lightOrigin, v, lightDir );
VectorNormalizeFast( lightDir );
// calculate the specular color
d = DotProduct (normal, lightDir);
// we don't optimize for the d < 0 case since this tends to
// cause visual artifacts such as faceted "snapping"
reflected[0] = normal[0]*2*d - lightDir[0];
reflected[1] = normal[1]*2*d - lightDir[1];
reflected[2] = normal[2]*2*d - lightDir[2];
VectorSubtract (backEnd.orient.viewOrigin, v, viewer);
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
l = DotProduct (reflected, viewer);
l *= ilength;
if (l < 0) {
b = 0;
} else {
l = l*l;
l = l*l;
b = l * 255;
if (b > 255) {
b = 255;
}
}
*alphas = b;
}
}
static void RB_CalcDiffuseColor( unsigned char *colors, int firstVertex, int numVertexes )
{
trRefEntity_t* const ent = backEnd.currentEntity;
if (!ent || !numVertexes)
return;
int ambientLightInt = ent->ambientLightInt;
vec3_t ambientLight, lightDir, directedLight;
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
float* v = tess.xyz[firstVertex];
float* normal = tess.normal[firstVertex];
colors += firstVertex * 4;
const float t = r_mapGreyscale->value;
const float ti = 1.0f - t;
// fix up ambientLightInt for the case where the dot product is 0 or negative
vec3_t ambientLightMixed;
const float ambientGrey = 0.299f * ambientLight[0] + 0.587f * ambientLight[1] + 0.114f * ambientLight[2];
const float ambientGrey_t = ambientGrey * t;
ambientLightMixed[0] = ambientLight[0] * ti + ambientGrey_t;
ambientLightMixed[1] = ambientLight[1] * ti + ambientGrey_t;
ambientLightMixed[2] = ambientLight[2] * ti + ambientGrey_t;
((byte*)&ambientLightInt)[0] = ambientLightMixed[0];
((byte*)&ambientLightInt)[1] = ambientLightMixed[1];
((byte*)&ambientLightInt)[2] = ambientLightMixed[2];
((byte*)&ambientLightInt)[3] = 0xFF;
for (int i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
const float incoming = DotProduct( normal, lightDir );
if ( incoming <= 0 ) {
*(int*)&colors[i * 4] = ambientLightInt;
continue;
}
const float inR = ambientLight[0] + incoming * directedLight[0];
const float inG = ambientLight[1] + incoming * directedLight[1];
const float inB = ambientLight[2] + incoming * directedLight[2];
const float grey = 0.299f * inR + 0.587f * inG + 0.114f * inB;
const float grey_t = grey * t;
const float outR = inR * ti + grey_t;
const float outG = inG * ti + grey_t;
const float outB = inB * ti + grey_t;
colors[i * 4 + 0] = (byte)min( outR, 255.0f );
colors[i * 4 + 1] = (byte)min( outG, 255.0f );
colors[i * 4 + 2] = (byte)min( outB, 255.0f );
colors[i * 4 + 3] = 255;
}
}
void R_ComputeColors( const shaderStage_t* pStage, stageVars_t& svars, int firstVertex, int numVertexes )
{
//
// rgbGen
//
switch ( pStage->rgbGen )
{
case CGEN_IDENTITY:
Com_Memset( &svars.colors[firstVertex], 0xff, numVertexes * 4 );
break;
default:
case CGEN_IDENTITY_LIGHTING:
Com_Memset( &svars.colors[firstVertex], tr.identityLightByte, numVertexes * 4 );
break;
case CGEN_LIGHTING_DIFFUSE:
RB_CalcDiffuseColor( ( unsigned char * ) &svars.colors[firstVertex], firstVertex, numVertexes );
break;
case CGEN_CONST:
for (int i = firstVertex; i < firstVertex + numVertexes; i++) {
*(int *)svars.colors[i] = *(int *)pStage->constantColor;
}
break;
case CGEN_VERTEX:
if ( tr.identityLight == 1 )
{
Com_Memcpy( &svars.colors[firstVertex], &tess.vertexColors[firstVertex], numVertexes * sizeof( tess.vertexColors[0] ) );
}
else
{
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
{
svars.colors[i][0] = tess.vertexColors[i][0] * tr.identityLight;
svars.colors[i][1] = tess.vertexColors[i][1] * tr.identityLight;
svars.colors[i][2] = tess.vertexColors[i][2] * tr.identityLight;
svars.colors[i][3] = tess.vertexColors[i][3];
}
}
break;
case CGEN_EXACT_VERTEX:
Com_Memcpy( &svars.colors[firstVertex], &tess.vertexColors[firstVertex], numVertexes * sizeof( tess.vertexColors[0] ) );
break;
case CGEN_ONE_MINUS_VERTEX:
if ( tr.identityLight == 1 )
{
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
{
svars.colors[i][0] = 255 - tess.vertexColors[i][0];
svars.colors[i][1] = 255 - tess.vertexColors[i][1];
svars.colors[i][2] = 255 - tess.vertexColors[i][2];
}
}
else
{
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
{
svars.colors[i][0] = ( 255 - tess.vertexColors[i][0] ) * tr.identityLight;
svars.colors[i][1] = ( 255 - tess.vertexColors[i][1] ) * tr.identityLight;
svars.colors[i][2] = ( 255 - tess.vertexColors[i][2] ) * tr.identityLight;
}
}
break;
case CGEN_FOG:
{
const fog_t* fog = tr.world->fogs + tess.fogNum;
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
*(int*)&svars.colors[i] = fog->colorInt;
}
}
break;
case CGEN_WAVEFORM:
RB_CalcWaveColor( &pStage->rgbWave, ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
break;
case CGEN_ENTITY:
RB_CalcColorFromEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
break;
case CGEN_ONE_MINUS_ENTITY:
RB_CalcColorFromOneMinusEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
break;
case CGEN_DEBUG_ALPHA:
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
{
const byte alpha = tess.vertexColors[i][3];
svars.colors[i][0] = alpha;
svars.colors[i][1] = alpha;
svars.colors[i][2] = alpha;
svars.colors[i][3] = 255;
}
break;
}
//
// alphaGen
//
switch ( pStage->alphaGen )
{
case AGEN_SKIP:
break;
case AGEN_IDENTITY:
if ( pStage->rgbGen != CGEN_IDENTITY ) {
if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) ||
pStage->rgbGen != CGEN_VERTEX ) {
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
svars.colors[i][3] = 0xff;
}
}
}
break;
case AGEN_CONST:
if ( pStage->rgbGen != CGEN_CONST ) {
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
svars.colors[i][3] = pStage->constantColor[3];
}
}
break;
case AGEN_WAVEFORM:
RB_CalcWaveAlpha( &pStage->alphaWave, ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
break;
case AGEN_LIGHTING_SPECULAR:
RB_CalcSpecularAlpha( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
break;
case AGEN_ENTITY:
RB_CalcAlphaFromEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
break;
case AGEN_ONE_MINUS_ENTITY:
RB_CalcAlphaFromOneMinusEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
break;
case AGEN_VERTEX:
if ( pStage->rgbGen != CGEN_VERTEX ) {
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
svars.colors[i][3] = tess.vertexColors[i][3];
}
}
break;
case AGEN_ONE_MINUS_VERTEX:
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
svars.colors[i][3] = 255 - tess.vertexColors[i][3];
}
break;
case AGEN_PORTAL:
{
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
vec3_t v;
VectorSubtract( tess.xyz[i], backEnd.viewParms.orient.origin, v );
float len = VectorLength( v ) / tess.shader->portalRange;
svars.colors[i][3] = (byte)Com_Clamp( 0, 255, len * 255 );
}
}
break;
}
//
// fog adjustment for colors to fade out as fog increases
//
if ( tess.fogNum )
{
switch ( pStage->adjustColorsForFog )
{
case ACFF_MODULATE_RGB:
RB_CalcModulateColorsByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
break;
case ACFF_MODULATE_ALPHA:
RB_CalcModulateAlphasByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
break;
case ACFF_MODULATE_RGBA:
RB_CalcModulateRGBAsByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
break;
case ACFF_NONE:
break;
}
}
}
void R_ComputeTexCoords( const shaderStage_t* pStage, stageVars_t& svars, int firstVertex, int numVertexes, qbool ptrOpt )
{
svars.texcoordsptr = svars.texcoords;
// generate the base texture coordinates
switch ( pStage->tcGen )
{
case TCGEN_IDENTITY:
Com_Memset( svars.texcoords + firstVertex, 0, sizeof( float ) * 2 * numVertexes );
break;
case TCGEN_TEXTURE:
if ( !ptrOpt || pStage->numTexMods > 0 || pStage->type == ST_LIGHTMAP )
Com_Memcpy( svars.texcoords[firstVertex], tess.texCoords[firstVertex], numVertexes * sizeof(vec2_t) );
else
svars.texcoordsptr = tess.texCoords;
break;
case TCGEN_LIGHTMAP:
if ( !ptrOpt || pStage->numTexMods > 0 )
Com_Memcpy( svars.texcoords[firstVertex], tess.texCoords2[firstVertex], numVertexes * sizeof(vec2_t) );
else
svars.texcoordsptr = tess.texCoords2;
break;
case TCGEN_VECTOR:
for ( int i = firstVertex ; i < firstVertex + numVertexes ; i++ ) {
svars.texcoords[i][0] = DotProduct( tess.xyz[i], pStage->tcGenVectors[0] );
svars.texcoords[i][1] = DotProduct( tess.xyz[i], pStage->tcGenVectors[1] );
}
break;
case TCGEN_FOG:
RB_CalcFogTexCoords( ( float * ) svars.texcoords, firstVertex, numVertexes );
break;
case TCGEN_ENVIRONMENT_MAPPED:
RB_CalcEnvironmentTexCoords( ( float * ) svars.texcoords, firstVertex, numVertexes );
break;
case TCGEN_BAD:
return;
}
// then alter for any tcmods
for ( int i = 0; i < pStage->numTexMods; ++i ) {
switch ( pStage->texMods[i].type )
{
case TMOD_NONE:
i = TR_MAX_TEXMODS; // break out of for loop
break;
case TMOD_TURBULENT:
RB_CalcTurbulentTexCoords( &pStage->texMods[i].wave, (float*)&svars.texcoords[firstVertex], firstVertex, numVertexes );
break;
case TMOD_ENTITY_TRANSLATE:
RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, (float*)&svars.texcoords[firstVertex], numVertexes );
break;
case TMOD_SCROLL:
RB_CalcScrollTexCoords( pStage->texMods[i].scroll, (float*)&svars.texcoords[firstVertex], numVertexes );
break;
case TMOD_SCALE:
RB_CalcScaleTexCoords( pStage->texMods[i].scale, (float*)&svars.texcoords[firstVertex], numVertexes );
break;
case TMOD_STRETCH:
RB_CalcStretchTexCoords( &pStage->texMods[i].wave, (float*)&svars.texcoords[firstVertex], numVertexes );
break;
case TMOD_TRANSFORM:
RB_CalcTransformTexCoords( &pStage->texMods[i], (float*)&svars.texcoords[firstVertex], numVertexes );
break;
case TMOD_ROTATE:
RB_CalcRotateTexCoords( pStage->texMods[i].rotateSpeed, (float*)&svars.texcoords[firstVertex], numVertexes );
break;
default:
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'\n", pStage->texMods[i].type, tess.shader->name );
break;
}
}
// fix up uncorrected lightmap texture coordinates
if ( pStage->type == ST_LIGHTMAP && pStage->tcGen != TCGEN_LIGHTMAP )
{
const shader_t* const shader = tess.shader;
for ( int i = firstVertex; i < firstVertex + numVertexes; ++i )
{
svars.texcoords[i][0] = svars.texcoords[i][0] * shader->lmScale[0] + shader->lmBias[0];
svars.texcoords[i][1] = svars.texcoords[i][1] * shader->lmScale[1] + shader->lmBias[1];
}
}
}