cnq3/code/renderer/tr_backend.cpp
myT 4968bfca6d crash and drawing fixes for r_shownormals, r_showtris and r_debugSurface
- preventing crashes and drops with r_shownormals
- fixed the colors of r_showtris, r_shownormals and r_debugSurface
- simplified the overflow macro
2019-12-26 16:16:30 +01:00

701 lines
21 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
backEndData_t* backEndData;
backEndState_t backEnd;
static int64_t startTime;
static void RB_Set2D()
{
backEnd.projection2D = qtrue;
backEnd.pc = backEnd.pc2D;
// set time for 2D shaders
backEnd.refdef.time = ri.Milliseconds();
backEnd.refdef.floatTime = (double)backEnd.refdef.time / 1000.0;
gal.Begin2D();
}
static const void* RB_SetColor( const void* data )
{
const setColorCommand_t* cmd = (const setColorCommand_t*)data;
backEnd.color2D[0] = (byte)(cmd->color[0] * 255);
backEnd.color2D[1] = (byte)(cmd->color[1] * 255);
backEnd.color2D[2] = (byte)(cmd->color[2] * 255);
backEnd.color2D[3] = (byte)(cmd->color[3] * 255);
return (const void*)(cmd + 1);
}
static const void* RB_StretchPic( const void* data )
{
const stretchPicCommand_t* cmd = (const stretchPicCommand_t*)data;
if ( !backEnd.projection2D )
RB_Set2D();
const shader_t* shader = cmd->shader;
if ( shader != tess.shader ) {
if ( tess.numIndexes ) {
RB_EndSurface();
}
backEnd.currentEntity = &backEnd.entity2D;
RB_BeginSurface( shader, 0 );
}
RB_CHECKOVERFLOW( 4, 6 );
int numVerts = tess.numVertexes;
int numIndexes = tess.numIndexes;
tess.numVertexes += 4;
tess.numIndexes += 6;
tess.indexes[ numIndexes ] = numVerts + 3;
tess.indexes[ numIndexes + 1 ] = numVerts + 0;
tess.indexes[ numIndexes + 2 ] = numVerts + 2;
tess.indexes[ numIndexes + 3 ] = numVerts + 2;
tess.indexes[ numIndexes + 4 ] = numVerts + 0;
tess.indexes[ numIndexes + 5 ] = numVerts + 1;
*(int *)tess.vertexColors[ numVerts ] =
*(int *)tess.vertexColors[ numVerts + 1 ] =
*(int *)tess.vertexColors[ numVerts + 2 ] =
*(int *)tess.vertexColors[ numVerts + 3 ] = *(int *)backEnd.color2D;
tess.xyz[ numVerts ][0] = cmd->x;
tess.xyz[ numVerts ][1] = cmd->y;
tess.xyz[ numVerts ][2] = 0;
tess.texCoords[ numVerts ][0] = cmd->s1;
tess.texCoords[ numVerts ][1] = cmd->t1;
tess.xyz[ numVerts + 1 ][0] = cmd->x + cmd->w;
tess.xyz[ numVerts + 1 ][1] = cmd->y;
tess.xyz[ numVerts + 1 ][2] = 0;
tess.texCoords[ numVerts + 1 ][0] = cmd->s2;
tess.texCoords[ numVerts + 1 ][1] = cmd->t1;
tess.xyz[ numVerts + 2 ][0] = cmd->x + cmd->w;
tess.xyz[ numVerts + 2 ][1] = cmd->y + cmd->h;
tess.xyz[ numVerts + 2 ][2] = 0;
tess.texCoords[ numVerts + 2 ][0] = cmd->s2;
tess.texCoords[ numVerts + 2 ][1] = cmd->t2;
tess.xyz[ numVerts + 3 ][0] = cmd->x;
tess.xyz[ numVerts + 3 ][1] = cmd->y + cmd->h;
tess.xyz[ numVerts + 3 ][2] = 0;
tess.texCoords[ numVerts + 3 ][0] = cmd->s1;
tess.texCoords[ numVerts + 3 ][1] = cmd->t2;
return (const void*)(cmd + 1);
}
static const void* RB_Triangle( const void* data )
{
const triangleCommand_t* cmd = (const triangleCommand_t*)data;
if ( !backEnd.projection2D )
RB_Set2D();
const shader_t* shader = cmd->shader;
if ( shader != tess.shader ) {
if ( tess.numIndexes ) {
RB_EndSurface();
}
backEnd.currentEntity = &backEnd.entity2D;
RB_BeginSurface( shader, 0 );
}
RB_CHECKOVERFLOW( 3, 3 );
int numVerts = tess.numVertexes;
int numIndexes = tess.numIndexes;
tess.numVertexes += 3;
tess.numIndexes += 3;
tess.indexes[ numIndexes + 0 ] = numVerts + 0;
tess.indexes[ numIndexes + 1 ] = numVerts + 1;
tess.indexes[ numIndexes + 2 ] = numVerts + 2;
*(int *)tess.vertexColors[ numVerts ] =
*(int *)tess.vertexColors[ numVerts + 1 ] =
*(int *)tess.vertexColors[ numVerts + 2 ] = *(int *)backEnd.color2D;
tess.xyz[ numVerts ][0] = cmd->x0;
tess.xyz[ numVerts ][1] = cmd->y0;
tess.xyz[ numVerts ][2] = 0;
tess.texCoords[ numVerts ][0] = cmd->s0;
tess.texCoords[ numVerts ][1] = cmd->t0;
tess.xyz[ numVerts + 1 ][0] = cmd->x1;
tess.xyz[ numVerts + 1 ][1] = cmd->y1;
tess.xyz[ numVerts + 1 ][2] = 0;
tess.texCoords[ numVerts + 1 ][0] = cmd->s1;
tess.texCoords[ numVerts + 1 ][1] = cmd->t1;
tess.xyz[ numVerts + 2 ][0] = cmd->x2;
tess.xyz[ numVerts + 2 ][1] = cmd->y2;
tess.xyz[ numVerts + 2 ][2] = 0;
tess.texCoords[ numVerts + 2 ][0] = cmd->s2;
tess.texCoords[ numVerts + 2 ][1] = cmd->t2;
return (const void*)(cmd + 1);
}
static qbool AreShadersStillBatchable( const shader_t* a, const shader_t* b )
{
if ( a->lightmapIndex != b->lightmapIndex ||
a->sort != b->sort ||
a->fogPass != FP_NONE ||
b->fogPass != FP_NONE ||
a->cullType != b->cullType ||
a->polygonOffset != b->polygonOffset ||
a->imgflags != b->imgflags ||
a->numStages != b->numStages ||
a->softSprite != b->softSprite )
return qfalse;
for ( int i = 0; i < a->numStages; ++i ) {
const shaderStage_t* const sa = a->stages[i];
const shaderStage_t* const sb = b->stages[i];
if ( sa->active != sb->active ||
sa->type != ST_DIFFUSE ||
sb->type != ST_DIFFUSE ||
sa->stateBits != sb->stateBits ||
sa->type != sb->type ||
sa->tcGen != sb->tcGen ||
sa->mtStages != sb->mtStages ||
sa->bundle.isVideoMap != qfalse ||
sb->bundle.isVideoMap != qfalse ||
sa->bundle.image[0] != sb->bundle.image[0] )
return qfalse;
}
return qtrue;
}
static void RB_RenderDrawSurfList( const drawSurf_t* drawSurfs, int numDrawSurfs, qbool beginView )
{
int i;
const shader_t* shader = NULL;
unsigned int sort = (unsigned int)-1;
// save original time for entity shader offsets
double originalTime = backEnd.refdef.floatTime;
// we will need to change the projection matrix before drawing 2D images again
backEnd.projection2D = qfalse;
backEnd.pc = backEnd.pc3D;
if ( beginView )
gal.Begin3D();
// draw everything
int oldEntityNum = -1;
backEnd.currentEntity = &tr.worldEntity;
qbool oldDepthRange = qfalse;
qbool depthRange = qfalse;
backEnd.pc[RB_SURFACES] += numDrawSurfs;
const drawSurf_t* drawSurf;
for ( i = 0, drawSurf = drawSurfs; i < numDrawSurfs; ++i, ++drawSurf ) {
if ( drawSurf->sort == sort ) {
// fast path, same as previous sort
const int firstVertex = tess.numVertexes;
const int firstIndex = tess.numIndexes;
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
if ( tess.deformsPreApplied ) {
// across multiple shaders though, so we need to compute all the results now
const int numVertexes = tess.numVertexes - firstVertex;
const int numIndexes = tess.numIndexes - firstIndex;
RB_DeformTessGeometry( firstVertex, numVertexes, firstIndex, numIndexes );
for ( int i = 0; i < shader->numStages; ++i ) {
R_ComputeColors( shader->stages[i], tess.svars[i], firstVertex, numVertexes );
R_ComputeTexCoords( shader->stages[i], tess.svars[i], firstVertex, numVertexes, qfalse );
}
}
continue;
}
int fogNum;
const shader_t* shaderPrev = shader;
int entityNum;
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum );
const qbool softSpriteChange = shader->softSprite != tess.softSprite;
// detect and batch surfaces across different (but sufficiently similar) shaders
if ( !softSpriteChange &&
oldEntityNum == ENTITYNUM_WORLD &&
entityNum == ENTITYNUM_WORLD &&
AreShadersStillBatchable( shaderPrev, shader ) ) {
if ( !tess.deformsPreApplied ) {
// this is the second shader in the sequence,
// so we need to compute everything added with the first one now
tess.shader = shaderPrev;
RB_DeformTessGeometry( 0, tess.numVertexes, 0, tess.numIndexes );
for ( int i = 0; i < shaderPrev->numStages; ++i ) {
R_ComputeColors( shaderPrev->stages[i], tess.svars[i], 0, tess.numVertexes );
R_ComputeTexCoords( shaderPrev->stages[i], tess.svars[i], 0, tess.numVertexes, qfalse );
}
}
tess.shader = shader;
tess.deformsPreApplied = qtrue;
const int firstVertex = tess.numVertexes;
const int firstIndex = tess.numIndexes;
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
const int numVertexes = tess.numVertexes - firstVertex;
const int numIndexes = tess.numIndexes - firstIndex;
RB_DeformTessGeometry( firstVertex, numVertexes, firstIndex, numIndexes );
for ( int i = 0; i < shader->numStages; ++i ) {
R_ComputeColors( shader->stages[i], tess.svars[i], firstVertex, numVertexes );
R_ComputeTexCoords( shader->stages[i], tess.svars[i], firstVertex, numVertexes, qfalse );
}
sort = drawSurf->sort;
oldEntityNum = entityNum;
continue;
}
// "entityMergable" shaders can have surfaces from multiple refentities
// merged into a single batch, like (CONCEPTUALLY) smoke and blood puff sprites
// only legacy code still uses them though, because refents are so heavyweight:
// modern code just billboards in cgame and submits raw polys, all of which are
// ENTITYNUM_WORLD and thus automatically take the "same sort" fast path
if ( !shader->entityMergable || ((sort ^ drawSurf->sort) & ~QSORT_ENTITYNUM_MASK) || softSpriteChange ) {
if (shaderPrev)
RB_EndSurface();
RB_BeginSurface( shader, fogNum );
tess.softSprite = shader->softSprite;
}
sort = drawSurf->sort;
//
// change the modelview matrix if needed
//
if ( entityNum != oldEntityNum ) {
depthRange = qfalse;
if ( entityNum != ENTITYNUM_WORLD ) {
backEnd.currentEntity = &backEnd.refdef.entities[entityNum];
if (backEnd.currentEntity->intShaderTime)
backEnd.refdef.floatTime = originalTime - (double)(backEnd.currentEntity->e.shaderTime.iShaderTime) / 1000.0;
else
backEnd.refdef.floatTime = originalTime - backEnd.currentEntity->e.shaderTime.fShaderTime;
// we have to reset the shaderTime as well otherwise image animations start
// from the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
// set up the transformation matrix
R_RotateForEntity( backEnd.currentEntity, &backEnd.viewParms, &backEnd.orient );
if ( backEnd.currentEntity->e.renderfx & RF_DEPTHHACK ) {
// hack the depth range to prevent view model from poking into walls
depthRange = qtrue;
}
} else {
backEnd.currentEntity = &tr.worldEntity;
backEnd.refdef.floatTime = originalTime;
backEnd.orient = backEnd.viewParms.world;
// we have to reset the shaderTime as well otherwise image animations on
// the world (like water) continue with the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
}
gal.SetModelViewMatrix( backEnd.orient.modelMatrix );
//
// change depthrange if needed
//
if ( oldDepthRange != depthRange ) {
if ( depthRange ) {
gal.SetDepthRange( 0, 0.3 );
} else {
gal.SetDepthRange( 0, 1 );
}
oldDepthRange = depthRange;
}
oldEntityNum = entityNum;
}
// add the triangles for this surface
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
}
backEnd.refdef.floatTime = originalTime;
// draw the contents of the last shader batch
if (shader) {
RB_EndSurface();
}
// go back to the world modelview matrix
gal.SetModelViewMatrix( backEnd.viewParms.world.modelMatrix );
if ( depthRange ) {
gal.SetDepthRange( 0, 1 );
}
}
static void RB_RenderLitSurfList( dlight_t* dl, qbool opaque )
{
if (!dl->head)
return;
const shader_t* shader = NULL;
int entityNum, oldEntityNum;
qbool depthRange, oldDepthRange;
unsigned int sort = (unsigned int)-1;
// save original time for entity shader offsets
double originalTime = backEnd.refdef.floatTime;
// draw everything
oldEntityNum = -1;
backEnd.currentEntity = &tr.worldEntity;
oldDepthRange = qfalse;
depthRange = qfalse;
tess.light = dl;
for ( litSurf_t* litSurf = dl->head; litSurf; litSurf = litSurf->next ) {
++backEnd.pc[RB_LIT_SURFACES];
if ( litSurf->sort == sort ) {
// fast path, same as previous sort
rb_surfaceTable[ *litSurf->surface ]( litSurf->surface );
continue;
}
int fogNum;
const shader_t* shaderPrev = shader;
R_DecomposeSort( litSurf->sort, &entityNum, &shader, &fogNum );
if (opaque && shader->sort > SS_OPAQUE)
continue;
if (!opaque && shader->sort <= SS_OPAQUE)
continue;
if (shaderPrev)
RB_EndSurface();
RB_BeginSurface( shader, fogNum );
sort = litSurf->sort;
//
// change the modelview matrix if needed
//
if ( entityNum != oldEntityNum ) {
depthRange = qfalse;
if ( entityNum != ENTITYNUM_WORLD ) {
backEnd.currentEntity = &backEnd.refdef.entities[entityNum];
if (backEnd.currentEntity->intShaderTime)
backEnd.refdef.floatTime = originalTime - (double)backEnd.currentEntity->e.shaderTime.iShaderTime;
else
backEnd.refdef.floatTime = originalTime - backEnd.currentEntity->e.shaderTime.fShaderTime;
// we have to reset the shaderTime as well otherwise image animations start
// from the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
// set up the transformation matrix
R_RotateForEntity( backEnd.currentEntity, &backEnd.viewParms, &backEnd.orient );
if ( backEnd.currentEntity->e.renderfx & RF_DEPTHHACK ) {
// hack the depth range to prevent view model from poking into walls
depthRange = qtrue;
}
} else {
backEnd.currentEntity = &tr.worldEntity;
backEnd.refdef.floatTime = originalTime;
backEnd.orient = backEnd.viewParms.world;
// we have to reset the shaderTime as well otherwise image animations on
// the world (like water) continue with the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
R_TransformDlights( 1, dl, &backEnd.orient );
}
R_TransformDlights( 1, dl, &backEnd.orient );
gal.BeginDynamicLight();
gal.SetModelViewMatrix( backEnd.orient.modelMatrix );
//
// change depthrange if needed
//
if ( oldDepthRange != depthRange ) {
if ( depthRange ) {
gal.SetDepthRange( 0, 0.3 );
} else {
gal.SetDepthRange( 0, 1 );
}
oldDepthRange = depthRange;
}
oldEntityNum = entityNum;
}
// add the triangles for this surface
rb_surfaceTable[ *litSurf->surface ]( litSurf->surface );
}
backEnd.refdef.floatTime = originalTime;
// draw the contents of the last shader batch
if (shader) {
RB_EndSurface();
}
// go back to the world modelview matrix
gal.SetModelViewMatrix( backEnd.viewParms.world.modelMatrix );
if ( depthRange ) {
gal.SetDepthRange( 0, 1 );
}
}
static void R_DebugPolygon( int colorMask, int numPoints, const float* points )
{
RB_PushSingleStageShader( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE, CT_FRONT_SIDED );
shaderStage_t& stage = *tess.shader->stages[0];
// solid
for ( int i = 0; i < numPoints; ++i ) {
tess.xyz[i][0] = points[i * 3 + 0];
tess.xyz[i][1] = points[i * 3 + 1];
tess.xyz[i][2] = points[i * 3 + 2];
tess.xyz[i][3] = 1.0f;
}
for ( int i = 1, n = 0; i < numPoints - 1; ++i ) {
tess.indexes[n++] = 0;
tess.indexes[n++] = i + 0;
tess.indexes[n++] = i + 1;
}
tess.numVertexes = numPoints;
tess.numIndexes = (numPoints - 2) * 3;
stage.rgbGen = CGEN_CONST;
stage.constantColor[0] = (colorMask & 1) ? 255 : 0;
stage.constantColor[1] = ((colorMask >> 1) & 1) ? 255 : 0;
stage.constantColor[2] = ((colorMask >> 2) & 1) ? 255 : 0;
stage.constantColor[3] = 255;
R_ComputeColors( &stage, tess.svars[0], 0, numPoints );
gal.Draw( DT_GENERIC );
// wireframe
for ( int i = 0, n = 0; i < numPoints; ++i ) {
tess.indexes[n++] = i;
tess.indexes[n++] = i;
tess.indexes[n++] = (i + 1) % numPoints;
}
tess.numIndexes = numPoints * 3;
stage.stateBits |= GLS_POLYMODE_LINE;
stage.rgbGen = CGEN_IDENTITY;
R_ComputeColors( &stage, tess.svars[0], 0, numPoints );
gal.SetDepthRange( 0, 0 );
gal.Draw( DT_GENERIC );
gal.SetDepthRange( 0, 1 );
RB_PopShader();
tess.numVertexes = 0;
tess.numIndexes = 0;
}
static const void* RB_DrawSurfs( const void* data )
{
const drawSurfsCommand_t* cmd = (const drawSurfsCommand_t*)data;
// finish any 2D drawing if needed
if ( tess.numIndexes )
RB_EndSurface();
backEnd.refdef = cmd->refdef;
backEnd.viewParms = cmd->viewParms;
const int opaqueCount = cmd->numDrawSurfs - cmd->numTranspSurfs;
const int transpCount = cmd->numTranspSurfs;
tess.pass = shaderCommands_t::TP_BASE;
RB_RenderDrawSurfList( cmd->drawSurfs, opaqueCount, qtrue );
tess.pass = shaderCommands_t::TP_LIGHT;
for ( int i = 0; i < backEnd.refdef.num_dlights; ++i ) {
RB_RenderLitSurfList( &backEnd.refdef.dlights[i], qtrue );
}
tess.pass = shaderCommands_t::TP_BASE;
RB_RenderDrawSurfList( cmd->drawSurfs + opaqueCount, transpCount, qfalse );
tess.pass = shaderCommands_t::TP_LIGHT;
for ( int i = 0; i < backEnd.refdef.num_dlights; ++i ) {
RB_RenderLitSurfList( &backEnd.refdef.dlights[i], qfalse );
}
tess.pass = shaderCommands_t::TP_BASE;
// draw main system development information (surface outlines, etc)
if ( r_debugSurface->integer )
ri.CM_DrawDebugSurface( R_DebugPolygon );
return (const void*)(cmd + 1);
}
static const void* RB_BeginFrame( const void* data )
{
const beginFrameCommand_t* cmd = (const beginFrameCommand_t*)data;
R_SetColorMappings();
gal.BeginFrame();
return (const void*)(cmd + 1);
}
static const void* RB_SwapBuffers( const void* data )
{
// finish any 2D drawing if needed
if ( tess.numIndexes ) {
RB_EndSurface();
}
// This has been moved here to make sure the Present/SwapBuffer
// call gets ignored for CPU timing as V-Sync would mess it all up.
// We can't really "charge" 2D/3D properly, so it all counts as 3D.
const int64_t endTime = ri.Microseconds();
backEnd.pc3D[RB_USEC] = (int)( endTime - startTime );
const swapBuffersCommand_t* cmd = (const swapBuffersCommand_t*)data;
gal.EndFrame();
Sys_V_EndFrame();
const int64_t swapTime = ri.Microseconds();
backEnd.pc3D[RB_USEC_END] = (int)( swapTime - endTime );
backEnd.projection2D = qfalse;
backEnd.pc = backEnd.pc3D;
return (const void*)(cmd + 1);
}
void RB_ExecuteRenderCommands( const void *data )
{
startTime = ri.Microseconds();
while ( 1 ) {
data = PADP(data, sizeof(void *));
switch ( *(const int *)data ) {
case RC_SET_COLOR:
data = RB_SetColor( data );
break;
case RC_STRETCH_PIC:
data = RB_StretchPic( data );
break;
case RC_TRIANGLE:
data = RB_Triangle( data );
break;
case RC_DRAW_SURFS:
data = RB_DrawSurfs( data );
break;
case RC_BEGIN_FRAME:
data = RB_BeginFrame( data );
break;
case RC_SWAP_BUFFERS:
data = RB_SwapBuffers( data );
break;
case RC_SCREENSHOT:
data = RB_TakeScreenshotCmd( (const screenshotCommand_t*)data );
break;
case RC_VIDEOFRAME:
data = RB_TakeVideoFrameCmd( data );
break;
case RC_END_OF_LIST:
default:
return;
}
}
}
static const shader_t* prevShader = NULL;
static const shaderStage_t** prevStages = NULL;
static shader_t shader;
static shaderStage_t stage;
static const shaderStage_t* stagePtr = &stage;
void RB_PushSingleStageShader( int stateBits, cullType_t cullType )
{
prevShader = tess.shader;
prevStages = tess.xstages;
tess.xstages = &stagePtr;
tess.shader = &shader;
memset(&stage, 0, sizeof(stage));
stage.active = qtrue;
stage.bundle.image[0] = tr.whiteImage;
stage.stateBits = stateBits;
stage.rgbGen = CGEN_IDENTITY;
stage.alphaGen = AGEN_IDENTITY;
stage.tcGen = TCGEN_TEXTURE;
memset(&shader, 0, sizeof(shader));
shader.cullType = cullType;
shader.numStages = 1;
shader.stages[0] = &stage;
}
void RB_PopShader()
{
tess.shader = prevShader;
tess.xstages = prevStages;
}
// used when a player has predicted a teleport, but hasn't arrived yet
float RB_HyperspaceColor()
{
const float c = 0.25f + 0.5f * sinf(M_PI * (backEnd.refdef.time & 0x01FF) / 0x0200);
return c;
}