cnq3/code/renderer/rhi_d3d12.cpp

5960 lines
185 KiB
C++

/*
===========================================================================
Copyright (C) 2022-2024 Gian 'myT' Schellenbaum
This file is part of Challenge Quake 3 (CNQ3).
Challenge Quake 3 is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Challenge Quake 3 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
===========================================================================
*/
// Direct3D 12 Rendering Hardware Interface
#if defined(_DEBUG)
#define D3D_DEBUG
#endif
#define D3D_AGILITY_SDK
//#define D3D_GPU_BASED_VALIDATION
//#define RHI_DEBUG_FENCE
//#define RHI_ENABLE_NVAPI
//#define RHI_ENABLE_NVAPI_RT_VALIDATION
//#define RHI_ENABLE_AFTERMATH
#if defined(D3D_DEBUG) && defined(RHI_ENABLE_AFTERMATH)
#error You can't enable NVIDIA Aftermath when the Direct3D Debug Layer is active.
#endif
#include "rhi_local.h"
#include <Windows.h>
#include "d3d12/d3d12.h"
#include <dxgi1_6.h>
#if defined(D3D_DEBUG)
#include <dxgidebug.h>
#endif
#include "d3d12/dxcapi.h"
#include <dwmapi.h> // for DwmGetCompositionTimingInfo
#define D3D12MA_D3D12_HEADERS_ALREADY_INCLUDED
#include "D3D12MemAlloc.h"
#if defined(RHI_ENABLE_NVAPI)
#include <nvapi.h>
#pragma comment(lib, "nvapi64.lib")
#endif
#if defined(RHI_ENABLE_AFTERMATH)
#include <GFSDK_Aftermath.h>
#pragma comment(lib, "GFSDK_Aftermath_Lib.x64.lib")
#endif
#include "../pix/pix3.h"
#include "../client/cl_imgui.h"
// @TODO: grab from ri.GetNextTargetTimeUS instead
extern int64_t com_nextTargetTimeUS;
#if defined(D3D_DEBUG) || defined(D3D_AGILITY_SDK)
extern "C" { __declspec(dllexport) extern const UINT D3D12SDKVersion = D3D12_SDK_VERSION; }
extern "C" { __declspec(dllexport) extern const char* D3D12SDKPath = u8".\\cnq3\\"; }
#endif
RHIExport rhie;
RHIInfo rhiInfo;
#define VENDORID_INVALID 0xDEAD
#define VENDORID_NVIDIA 0x10DE
#define VENDORID_INTEL 0x8086
#define VENDORID_AMD 0x1002
#define DXGI_FORMAT_LIST(X) \
X(UNKNOWN) \
X(R32G32B32A32_TYPELESS) \
X(R32G32B32A32_FLOAT) \
X(R32G32B32A32_UINT) \
X(R32G32B32A32_SINT) \
X(R32G32B32_TYPELESS) \
X(R32G32B32_FLOAT) \
X(R32G32B32_UINT) \
X(R32G32B32_SINT) \
X(R16G16B16A16_TYPELESS) \
X(R16G16B16A16_FLOAT) \
X(R16G16B16A16_UNORM) \
X(R16G16B16A16_UINT) \
X(R16G16B16A16_SNORM) \
X(R16G16B16A16_SINT) \
X(R32G32_TYPELESS) \
X(R32G32_FLOAT) \
X(R32G32_UINT) \
X(R32G32_SINT) \
X(R32G8X24_TYPELESS) \
X(D32_FLOAT_S8X24_UINT) \
X(R32_FLOAT_X8X24_TYPELESS) \
X(X32_TYPELESS_G8X24_UINT) \
X(R10G10B10A2_TYPELESS) \
X(R10G10B10A2_UNORM) \
X(R10G10B10A2_UINT) \
X(R11G11B10_FLOAT) \
X(R8G8B8A8_TYPELESS) \
X(R8G8B8A8_UNORM) \
X(R8G8B8A8_UNORM_SRGB) \
X(R8G8B8A8_UINT) \
X(R8G8B8A8_SNORM) \
X(R8G8B8A8_SINT) \
X(R16G16_TYPELESS) \
X(R16G16_FLOAT) \
X(R16G16_UNORM) \
X(R16G16_UINT) \
X(R16G16_SNORM) \
X(R16G16_SINT) \
X(R32_TYPELESS) \
X(D32_FLOAT) \
X(R32_FLOAT) \
X(R32_UINT) \
X(R32_SINT) \
X(R24G8_TYPELESS) \
X(D24_UNORM_S8_UINT) \
X(R24_UNORM_X8_TYPELESS) \
X(X24_TYPELESS_G8_UINT) \
X(R8G8_TYPELESS) \
X(R8G8_UNORM) \
X(R8G8_UINT) \
X(R8G8_SNORM) \
X(R8G8_SINT) \
X(R16_TYPELESS) \
X(R16_FLOAT) \
X(D16_UNORM) \
X(R16_UNORM) \
X(R16_UINT) \
X(R16_SNORM) \
X(R16_SINT) \
X(R8_TYPELESS) \
X(R8_UNORM) \
X(R8_UINT) \
X(R8_SNORM) \
X(R8_SINT) \
X(A8_UNORM) \
X(R1_UNORM) \
X(R9G9B9E5_SHAREDEXP) \
X(R8G8_B8G8_UNORM) \
X(G8R8_G8B8_UNORM) \
X(BC1_TYPELESS) \
X(BC1_UNORM) \
X(BC1_UNORM_SRGB) \
X(BC2_TYPELESS) \
X(BC2_UNORM) \
X(BC2_UNORM_SRGB) \
X(BC3_TYPELESS) \
X(BC3_UNORM) \
X(BC3_UNORM_SRGB) \
X(BC4_TYPELESS) \
X(BC4_UNORM) \
X(BC4_SNORM) \
X(BC5_TYPELESS) \
X(BC5_UNORM) \
X(BC5_SNORM) \
X(B5G6R5_UNORM) \
X(B5G5R5A1_UNORM) \
X(B8G8R8A8_UNORM) \
X(B8G8R8X8_UNORM) \
X(R10G10B10_XR_BIAS_A2_UNORM) \
X(B8G8R8A8_TYPELESS) \
X(B8G8R8A8_UNORM_SRGB) \
X(B8G8R8X8_TYPELESS) \
X(B8G8R8X8_UNORM_SRGB) \
X(BC6H_TYPELESS) \
X(BC6H_UF16) \
X(BC6H_SF16) \
X(BC7_TYPELESS) \
X(BC7_UNORM) \
X(BC7_UNORM_SRGB) \
X(AYUV) \
X(Y410) \
X(Y416) \
X(NV12) \
X(P010) \
X(P016) \
X(420_OPAQUE) \
X(YUY2) \
X(Y210) \
X(Y216) \
X(NV11) \
X(AI44) \
X(IA44) \
X(P8) \
X(A8P8) \
X(B4G4R4A4_UNORM) \
X(P208) \
X(V208) \
X(V408) \
X(SAMPLER_FEEDBACK_MIN_MIP_OPAQUE) \
X(SAMPLER_FEEDBACK_MIP_REGION_USED_OPAQUE)
namespace RHI
{
// D3D_FEATURE_LEVEL_12_0 is the minimum to ensure at least Resource Binding Tier 2:
// - unlimited SRVs
// - 14 CBVs
// - 64 UAVs
// - 2048 samplers
static const D3D_FEATURE_LEVEL FeatureLevel = D3D_FEATURE_LEVEL_12_0;
struct ResourceType
{
enum Id
{
// @NOTE: a valid type never being 0 means we can discard 0 handles right away
Invalid,
Buffer,
Texture,
Sampler,
RootSignature,
DescriptorTable,
Pipeline,
DurationQuery,
Shader,
Count
};
};
#define D3D_RESOURCE_LIST(R) \
R(CommandQueue, "command queue") \
R(CommandAllocator, "command allocator") \
R(PipelineState, "pipeline state") \
R(CommandList, "command list") \
R(Fence, "fence") \
R(RootSignature, "root signature") \
R(DescriptorHeap, "descriptor heap") \
R(Heap, "heap") \
R(QueryHeap, "query heap") \
R(Texture, "texture") \
R(Buffer, "buffer") \
R(Sampler, "samplers")
#define R(Enum, Name) Enum,
struct D3DResourceType
{
enum Id
{
D3D_RESOURCE_LIST(R)
Count
};
};
#undef R
#define R(Enum, Name) Name,
static const char* D3DResourceNames[] =
{
D3D_RESOURCE_LIST(R)
""
};
#undef R
#undef D3D_RESOURCE_LIST
struct Buffer
{
BufferDesc desc;
D3D12MA::Allocation* allocation;
ID3D12Resource* buffer;
D3D12_GPU_VIRTUAL_ADDRESS gpuAddress;
D3D12_RESOURCE_STATES currentState;
uint32_t cbvIndex;
uint32_t srvIndex;
uint32_t uavIndex;
bool mapped;
bool uploading;
UINT64 uploadSrcByteOffset;
UINT64 uploadDestByteOffset;
UINT64 uploadByteCount;
bool shortLifeTime = false;
};
struct Texture
{
TextureDesc desc;
D3D12MA::Allocation* allocation;
ID3D12Resource* texture;
uint32_t srvIndex;
uint32_t rtvIndex;
uint32_t dsvIndex;
D3D12_RESOURCE_STATES currentState;
struct Mip
{
uint32_t uavIndex;
}
mips[MaxTextureMips];
bool uploading;
uint32_t uploadByteOffset;
bool shortLifeTime = false;
};
struct RootSignature
{
struct PerStageConstants
{
UINT parameterIndex;
};
RootSignatureDesc desc;
ID3D12RootSignature* signature;
PerStageConstants constants[ShaderStage::Count];
UINT genericTableIndex;
UINT samplerTableIndex;
UINT genericDescCount;
UINT samplerDescCount;
bool shortLifeTime = false;
};
struct DescriptorTable
{
ID3D12DescriptorHeap* genericHeap; // SRV, CBV, UAV
ID3D12DescriptorHeap* samplerHeap;
bool shortLifeTime = false;
};
struct Pipeline
{
GraphicsPipelineDesc graphicsDesc;
ComputePipelineDesc computeDesc;
ID3D12PipelineState* pso = NULL;
PipelineType::Id type = PipelineType::Graphics;
bool shortLifeTime = false;
};
struct Shader
{
IDxcBlob* blob = NULL;
bool shortLifeTime = false;
};
struct Sampler
{
SamplerDesc desc;
uint32_t heapIndex = UINT32_MAX;
bool shortLifeTime = true;
};
struct QueryState
{
enum Id
{
Free, // ready to be (re-)used
Begun, // first call done, not resolved yet
Ended, // second call done, not resolved yet
Count
};
};
struct Fence
{
void Create(UINT64 value, const char* name);
void Signal(ID3D12CommandQueue* queue, UINT64 value);
void WaitOnCPU(UINT64 value);
void WaitOnGPU(ID3D12CommandQueue* queue, UINT64 value);
bool HasCompleted(UINT64 value);
void Release();
ID3D12Fence* fence;
HANDLE event;
};
struct UploadManager
{
void Create();
void Release();
uint8_t* BeginBufferUpload(HBuffer buffer, uint32_t destByteOffset, uint32_t byteCount);
void EndBufferUpload(HBuffer buffer);
void BeginTextureUpload(MappedTexture& mappedTexture, HTexture texture);
void EndTextureUpload();
void WaitToStartDrawing(ID3D12CommandQueue* commandQueue);
ID3D12CommandQueue* commandQueue;
ID3D12CommandAllocator* commandAllocator;
ID3D12GraphicsCommandList* commandList;
HBuffer uploadHBuffer;
uint32_t bufferByteCount;
uint32_t bufferByteOffset;
uint8_t* mappedBuffer;
Fence fence;
UINT64 fenceValue;
HTexture currentTexture;
int bufferUploadCounter;
bool multiBufferUpload;
bool needsRewind;
int batchTextureCount;
int batchBufferCount;
private:
void WaitToStartUploading(uint32_t uploadByteCount);
void EndOfBufferReached();
};
struct ReadbackManager
{
void Create();
void Release();
void ResizeIfNeeded();
void BeginTextureReadback(MappedTexture& mappedTexture, HTexture texture);
void EndTextureReadback();
ID3D12CommandAllocator* readbackCommandAllocator;
ID3D12GraphicsCommandList* readbackCommandList;
HBuffer readbackBuffer;
Fence readbackFence;
UINT64 readbackFenceValue;
uint32_t bufferByteCount;
};
struct DescriptorHeap
{
void Create(D3D12_DESCRIPTOR_HEAP_TYPE type, uint32_t size, uint16_t* freeListItems, const char* name);
void Release();
uint32_t Allocate();
void Free(uint32_t index);
D3D12_CPU_DESCRIPTOR_HANDLE GetCPUHandle(uint32_t index);
uint32_t CreateSRV(ID3D12Resource* resource, D3D12_SHADER_RESOURCE_VIEW_DESC& desc);
uint32_t CreateUAV(ID3D12Resource* resource, D3D12_UNORDERED_ACCESS_VIEW_DESC& desc);
uint32_t CreateRTV(ID3D12Resource* resource, D3D12_RENDER_TARGET_VIEW_DESC& desc);
uint32_t CreateDSV(ID3D12Resource* resource, D3D12_DEPTH_STENCIL_VIEW_DESC& desc);
uint32_t CreateCBV(D3D12_CONSTANT_BUFFER_VIEW_DESC& desc);
uint32_t CreateSampler(D3D12_SAMPLER_DESC& desc);
StaticFreeList<uint16_t, InvalidDescriptorIndex> freeList;
ID3D12DescriptorHeap* heap;
D3D12_CPU_DESCRIPTOR_HANDLE startAddress;
UINT descriptorSize;
D3D12_DESCRIPTOR_HEAP_TYPE type;
};
struct DurationQuery
{
QueryState::Id state;
};
struct FrameQueries
{
DurationQuery durationQueries[MaxDurationQueries];
uint32_t durationQueryCount;
};
struct ResolvedQueries
{
uint32_t gpuMicroSeconds[MaxDurationQueries];
uint32_t durationQueryCount;
};
struct PIX
{
typedef void(WINAPI* BeginEventOnCommandListPtr)(ID3D12GraphicsCommandList* commandList, UINT64 color, _In_ PCSTR formatString);
typedef void(WINAPI* EndEventOnCommandListPtr)(ID3D12GraphicsCommandList* commandList);
typedef void(WINAPI* SetMarkerOnCommandListPtr)(ID3D12GraphicsCommandList* commandList, UINT64 color, _In_ PCSTR formatString);
BeginEventOnCommandListPtr BeginEventOnCommandList;
EndEventOnCommandListPtr EndEventOnCommandList;
SetMarkerOnCommandListPtr SetMarkerOnCommandList;
HMODULE module;
bool canBeginAndEnd;
};
struct DynamicResources
{
struct DescriptorRange
{
void Init(D3D12_DESCRIPTOR_RANGE_TYPE type, uint32_t start, uint32_t count);
uint32_t Allocate(bool slotAtIndex0 = false);
D3D12_DESCRIPTOR_RANGE_TYPE type;
uint32_t start;
uint32_t count;
uint32_t index;
bool reservedSlotUsed;
};
static const uint32_t MaxDescriptorsSRV = 65536;
static const uint32_t MaxDescriptorsUAV = 65536;
static const uint32_t MaxDescriptorsCBV = 65536;
static const uint32_t MaxDescriptorsSamplers = 1024;
static const uint32_t MaxDescriptorsGeneric = MaxDescriptorsSRV + MaxDescriptorsUAV + MaxDescriptorsCBV;
ID3D12RootSignature* rootSignature;
ID3D12DescriptorHeap* genericDescriptorHeap; // CPU write, GPU read
ID3D12DescriptorHeap* samplerDescriptorHeap; // CPU write, GPU read
ID3D12DescriptorHeap* genericCPUDescriptorHeap; // CPU read/write, for UAV clears and the like
DescriptorRange srvIndex;
DescriptorRange uavIndex;
DescriptorRange cbvIndex;
DescriptorRange samplerIndex;
};
struct BufferBarrier
{
BufferBarrier() = default;
BufferBarrier(HBuffer buffer_, ResourceStates::Flags newState_)
{
buffer = buffer_;
newState = newState_;
}
HBuffer buffer = RHI_MAKE_NULL_HANDLE();
ResourceStates::Flags newState = ResourceStates::Common;
};
struct TextureBarrier
{
TextureBarrier() = default;
TextureBarrier(HTexture texture_, ResourceStates::Flags newState_)
{
texture = texture_;
newState = newState_;
}
HTexture texture = RHI_MAKE_NULL_HANDLE();
ResourceStates::Flags newState = ResourceStates::Common;
};
struct GPU
{
char name[256];
LUID uniqueId;
};
struct BufferToDelete
{
HBuffer buffer;
uint32_t beginFrameCounter;
};
struct RHIPrivate
{
bool initialized;
ID3D12Debug* debug; // can be NULL
ID3D12InfoQueue* infoQueue; // can be NULL
#if defined(D3D_DEBUG)
IDXGIInfoQueue* dxgiInfoQueue; // can be NULL
IDXGIFactory2* factory;
#else
IDXGIFactory1* factory;
#endif
IDXGIAdapter1* adapter;
ID3D12Device5* device;
D3D12MA::Allocator* allocator;
D3D12MA::Pool* umaPool; // only non-NULL when using a cache-coherent UMA adapter
ID3D12CommandQueue* mainCommandQueue;
ID3D12CommandQueue* computeCommandQueue;
IDXGISwapChain3* swapChain;
HTexture renderTargets[FrameCount];
ID3D12CommandAllocator* mainCommandAllocators[FrameCount];
ID3D12GraphicsCommandList6* mainCommandList;
ID3D12CommandAllocator* tempCommandAllocator;
ID3D12GraphicsCommandList6* tempCommandList;
bool tempCommandListOpen;
ID3D12GraphicsCommandList6* commandList; // not owned, don't release it!
uint32_t swapChainBufferCount;
uint32_t renderFrameCount;
HANDLE frameLatencyWaitableObject;
bool frameLatencyWaitNeeded;
UINT frameIndex;
UINT swapChainBufferIndex;
Fence mainFence;
UINT64 mainFenceValues[FrameCount];
Fence tempFence;
UINT64 tempFenceValue;
ID3D12QueryHeap* timeStampHeaps[FrameCount];
HBuffer timeStampBuffers[FrameCount];
uint32_t frameDurationQueryIndex;
HRootSignature currentRootSignature;
bool isTearingSupported;
bool vsync;
bool frameBegun;
bool baseVRSSupport;
bool extendedVRSSupport;
bool useDynamicResources;
DynamicResources dynamicResources;
ID3D12CommandSignature* indirectDispatchSignature;
UINT vendorId;
char umdVersionString[64];
uint16_t umdVersionSplit[4];
uint64_t umdVersion;
HMODULE dxcModule;
HMODULE dxilModule;
IDxcUtils* dxcUtils;
IDxcCompiler3* dxcCompiler;
uint16_t descriptorFreeListData[MaxCPUDescriptors];
DescriptorHeap descHeapGeneric;
DescriptorHeap descHeapSamplers;
DescriptorHeap descHeapRTVs;
DescriptorHeap descHeapDSVs;
#define POOL(Type, Size) StaticPool<Type, H##Type, ResourceType::Type, Size>
POOL(Buffer, 128) buffers;
POOL(Texture, MAX_DRAWIMAGES * 2) textures;
POOL(RootSignature, 64) rootSignatures;
POOL(DescriptorTable, 64) descriptorTables;
POOL(Pipeline, 256) pipelines;
POOL(Shader, 16) shaders;
POOL(Sampler, 128) samplers;
#undef POOL
#define DESTROY_POOL_LIST(POOL) \
POOL(buffers, DestroyBuffer) \
POOL(textures, DestroyTexture) \
POOL(rootSignatures, DestroyRootSignature) \
POOL(descriptorTables, DestroyDescriptorTable) \
POOL(pipelines, DestroyPipeline) \
POOL(shaders, DestroyShader) \
POOL(samplers, DestroySampler)
// null resources, no manual clean-up needed
HTexture nullTexture; // SRV
HTexture nullRWTexture; // UAV
HBuffer nullBuffer; // CBV
HBuffer nullRWBuffer; // UAV
HSampler nullSampler;
byte persStringData[64 << 10];
byte tempStringData[64 << 10];
char adapterName[256];
LinearAllocator persStringAllocator;
LinearAllocator tempStringAllocator;
UploadManager upload;
ReadbackManager readback;
StaticArray<HTexture, MAX_DRAWIMAGES> texturesToTransition;
StaticArray<HBuffer, 64> buffersToTransition;
StaticArray<BufferToDelete, 64> buffersToDelete;
FrameQueries frameQueries[FrameCount];
ResolvedQueries resolvedQueries;
PIX pix;
int64_t beforeInputSamplingUS;
int64_t beforeRenderingUS;
GPU gpus[16];
uint32_t gpuCount;
HBuffer raytracingScratchBuffer;
HBuffer raytracingInstanceBuffer;
uint32_t beginFrameCounter;
D3D12_RAYTRACING_GEOMETRY_DESC* rtGeoDescs;
uint32_t rtGeoDescCount;
// immediate-mode barrier API
TextureBarrier textureBarriers[64];
BufferBarrier bufferBarriers[64];
uint32_t textureBarrierCount;
uint32_t bufferBarrierCount;
ID3D12GraphicsCommandList* barrierCommandList;
bool barrierOpen;
// NVIDIA NVAPI
#if defined(RHI_ENABLE_NVAPI)
bool nvapiActive;
#endif
// NVIDIA Aftermath
#if defined(RHI_ENABLE_AFTERMATH)
struct AftermathMarker
{
char string[64];
};
AftermathMarker aftermathMarkers[64]; // stack: markers can be nested
uint32_t aftermathMarkerDepth = 0;
GFSDK_Aftermath_ContextHandle aftermathMainCommandList;
GFSDK_Aftermath_ContextHandle aftermathTempCommandList;
GFSDK_Aftermath_ContextHandle aftermathUploadCommandList;
GFSDK_Aftermath_ContextHandle aftermathCommandList; // active command list
bool aftermathActive;
#endif
};
static RHIPrivate rhi;
#define COM_RELEASE(p) do { if(p) { p->Release(); p = NULL; } } while((void)0,0)
#define COM_RELEASE_ARRAY(a) do { for(int i = 0; i < ARRAY_LEN(a); ++i) { COM_RELEASE(a[i]); } } while((void)0,0)
#define D3D(Exp) Check((Exp), #Exp)
#if defined(near)
# undef near
#endif
#if defined(far)
# undef far
#endif
#if !defined(D3DDDIERR_DEVICEREMOVED)
# define D3DDDIERR_DEVICEREMOVED ((HRESULT)0x88760870L)
#endif
#define ASSERT_DR_ENABLED() ASSERT_OR_DIE(rhi.useDynamicResources, "RHI API requires DR on")
#define ASSERT_DR_DISABLED() ASSERT_OR_DIE(!rhi.useDynamicResources, "RHI API requires DR off")
static const char* GetSystemErrorString(HRESULT hr)
{
// FormatMessage might not always give us the string we want but that's ok,
// we always print the original error code anyhow
static char systemErrorStr[1024];
const DWORD written = FormatMessageA(
FORMAT_MESSAGE_FROM_SYSTEM, NULL, (DWORD)hr, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
systemErrorStr, sizeof(systemErrorStr) - 1, NULL);
if(written == 0)
{
// we have nothing valid
Q_strncpyz(systemErrorStr, "???", sizeof(systemErrorStr));
}
else
{
// remove the trailing whitespace
char* s = systemErrorStr + strlen(systemErrorStr) - 1;
while(s >= systemErrorStr)
{
if(*s == '\r' || *s == '\n' || *s == '\t' || *s == ' ')
{
*s-- = '\0';
}
else
{
break;
}
}
}
return systemErrorStr;
}
static bool Check(HRESULT hr, const char* function)
{
if(SUCCEEDED(hr))
{
return true;
}
// fatal error mode always on for now
const char* const errorMessage = GetSystemErrorString(hr);
if(IsDebuggerPresent())
{
__debugbreak();
}
ri.Error(ERR_FATAL, "'%s' failed with code 0x%08X (%s)\n", function, (unsigned int)hr, errorMessage);
return false;
}
static const char* GetUTF8String(const WCHAR* wideStr, const char* defaultUTF8Str)
{
static char utf8Str[256];
const char* utf8StrPtr = defaultUTF8Str;
if(WideCharToMultiByte(CP_UTF8, 0, wideStr, -1, utf8Str, sizeof(utf8Str), NULL, NULL) > 0)
{
utf8StrPtr = utf8Str;
}
return utf8StrPtr;
}
static const WCHAR* GetWideString(const char* utf8Str, const WCHAR* defaultWideStr)
{
static WCHAR wideStr[256];
const WCHAR* wideStrPtr = defaultWideStr;
if(MultiByteToWideChar(CP_UTF8, 0, utf8Str, -1, wideStr, ARRAY_LEN(wideStr)) > 0)
{
wideStrPtr = wideStr;
}
return wideStrPtr;
}
static void SetDebugName(ID3D12DeviceChild* resource, const char* resourceName, D3DResourceType::Id resourceType)
{
if(resourceName == NULL || (uint32_t)resourceType >= D3DResourceType::Count)
{
return;
}
const char* const name = va("%s %s", resourceName, D3DResourceNames[resourceType]);
// ID3D12Object::SetName is a Unicode wrapper for
// ID3D12Object::SetPrivateData with WKPDID_D3DDebugObjectNameW
// it was good enough for RenderDoc and PIX, but not Nsight
//resource->SetPrivateData(WKPDID_D3DDebugObjectName, strlen(name), name);
resource->SetName(GetWideString(name, L"???"));
}
static uint32_t GetBytesPerPixel(TextureFormat::Id format)
{
switch(format)
{
case TextureFormat::R32G32B32A32_Float:
return 16;
case TextureFormat::R16G16B16A16_UNorm:
case TextureFormat::R16G16B16A16_Float:
case TextureFormat::R32G32_Float:
case TextureFormat::R32G32_UInt:
return 8;
case TextureFormat::R8G8B8A8_UNorm:
case TextureFormat::Depth32_Float:
case TextureFormat::Depth24_Stencil8:
case TextureFormat::R10G10B10A2_UNorm:
case TextureFormat::R32_UInt:
case TextureFormat::R16G16_SNorm:
case TextureFormat::R16G16_Float:
return 4;
case TextureFormat::R16_UInt:
case TextureFormat::R16_Float:
case TextureFormat::R8G8_UNorm:
return 2;
case TextureFormat::R8_UNorm:
return 1;
default:
Q_assert(!"Unsupported texture format");
return 4;
}
}
static ID3D12DescriptorHeap* CreateDescriptorHeap(D3D12_DESCRIPTOR_HEAP_TYPE type, UINT size, bool shaderVisible, const char* name)
{
if(size == 0)
{
return NULL;
}
ID3D12DescriptorHeap* heap;
D3D12_DESCRIPTOR_HEAP_DESC heapDesc = { 0 };
heapDesc.Type = type;
heapDesc.Flags = shaderVisible ? D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE : D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
heapDesc.NumDescriptors = size;
heapDesc.NodeMask = 0;
D3D(rhi.device->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&heap)));
SetDebugName(heap, name, D3DResourceType::DescriptorHeap);
return heap;
}
static uint32_t GetReadbackTextureByteCount()
{
// we base the resolution on the render targets, not the swap chain images
// this allows us to e.g. capture videos at 4K while displaying a 720p window
D3D12_RESOURCE_DESC textureDesc = {};
textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
textureDesc.Alignment = D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT;
textureDesc.Width = glConfig.vidWidth;
textureDesc.Height = glConfig.vidHeight;
textureDesc.DepthOrArraySize = 1;
textureDesc.MipLevels = 1;
textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
textureDesc.SampleDesc.Count = 1;
textureDesc.SampleDesc.Quality = 0;
textureDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
textureDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET;
D3D12_PLACED_SUBRESOURCE_FOOTPRINT layout;
rhi.device->GetCopyableFootprints(&textureDesc, 0, 1, 0, &layout, NULL, NULL, NULL);
const uint32_t byteCount = (uint32_t)(layout.Footprint.RowPitch * layout.Footprint.Height);
return byteCount;
}
void Fence::Create(UINT64 value, const char* name)
{
D3D(rhi.device->CreateFence(value, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&fence)));
SetDebugName(fence, name, D3DResourceType::Fence);
event = CreateEvent(NULL, FALSE, FALSE, NULL);
if(event == NULL)
{
Check(HRESULT_FROM_WIN32(GetLastError()), "CreateEvent");
}
}
void Fence::Signal(ID3D12CommandQueue* queue, UINT64 value)
{
D3D(queue->Signal(fence, value));
}
void Fence::WaitOnCPU(UINT64 value)
{
if(fence->GetCompletedValue() < value)
{
D3D(fence->SetEventOnCompletion(value, event));
WaitForSingleObjectEx(event, INFINITE, FALSE);
}
}
void Fence::WaitOnGPU(ID3D12CommandQueue* queue, UINT64 value)
{
D3D(queue->Wait(fence, value));
}
bool Fence::HasCompleted(UINT64 value)
{
return fence->GetCompletedValue() >= value;
}
void Fence::Release()
{
CloseHandle(event);
event = NULL;
COM_RELEASE(fence);
}
void UploadManager::Create()
{
BufferDesc bufferDesc("upload", 128 << 20, ResourceStates::CopyDestinationBit);
bufferDesc.memoryUsage = MemoryUsage::Upload;
uploadHBuffer = CreateBuffer(bufferDesc);
bufferByteCount = bufferDesc.byteCount;
bufferByteOffset = 0;
mappedBuffer = MapBuffer(uploadHBuffer);
D3D12_COMMAND_QUEUE_DESC queueDesc = { 0 };
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_COPY;
queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
queueDesc.Priority = D3D12_COMMAND_QUEUE_PRIORITY_NORMAL;
queueDesc.NodeMask = 0;
D3D(rhi.device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&commandQueue)));
SetDebugName(commandQueue, "upload", D3DResourceType::CommandQueue);
D3D(rhi.device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COPY, IID_PPV_ARGS(&commandAllocator)));
SetDebugName(commandAllocator, "upload", D3DResourceType::CommandAllocator);
D3D(rhi.device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COPY, commandAllocator, NULL, IID_PPV_ARGS(&commandList)));
SetDebugName(commandList, "upload", D3DResourceType::CommandList);
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
// @NOTE: Aftermath context creation must happen on an opened command list
Q_assert(commandList != NULL);
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_DX12_CreateContextHandle(commandList, &rhi.aftermathUploadCommandList);
Q_assert(result == GFSDK_Aftermath_Result_Success);
}
#endif
D3D(commandList->Close());
fence.Create(0, "upload");
fenceValue = 0;
currentTexture = RHI_MAKE_NULL_HANDLE();
bufferUploadCounter = 0;
multiBufferUpload = false;
needsRewind = false;
batchTextureCount = 0;
batchBufferCount = 0;
}
void UploadManager::Release()
{
UnmapBuffer(uploadHBuffer);
fence.Release();
COM_RELEASE(commandQueue);
COM_RELEASE(commandList);
COM_RELEASE(commandAllocator);
}
uint8_t* UploadManager::BeginBufferUpload(HBuffer userHBuffer, uint32_t destByteOffset, uint32_t byteCount)
{
Q_assert(bufferUploadCounter >= 0);
bufferUploadCounter++;
if(bufferUploadCounter > 1)
{
multiBufferUpload = true;
}
Buffer& userBuffer = rhi.buffers.Get(userHBuffer);
Buffer& uploadBuffer = rhi.buffers.Get(uploadHBuffer);
Q_assert(!userBuffer.uploading);
if(byteCount == 0)
{
Q_assert(destByteOffset == 0);
destByteOffset = 0;
byteCount = min(userBuffer.desc.byteCount, uploadBuffer.desc.byteCount);
}
Q_assert(destByteOffset + byteCount <= userBuffer.desc.byteCount);
uint8_t* mapped = NULL;
Q_assert(userBuffer.desc.memoryUsage != MemoryUsage::Readback);
if(userBuffer.desc.memoryUsage == MemoryUsage::GPU &&
rhi.umaPool == NULL)
{
WaitToStartUploading(byteCount);
mapped = mappedBuffer + bufferByteOffset;
userBuffer.uploadSrcByteOffset = bufferByteOffset;
userBuffer.uploadDestByteOffset = destByteOffset;
userBuffer.uploadByteCount = byteCount;
bufferByteOffset = AlignUp<uint32_t>(bufferByteOffset + byteCount, D3D12_CONSTANT_BUFFER_DATA_PLACEMENT_ALIGNMENT);
if(multiBufferUpload)
{
needsRewind = true;
}
batchBufferCount++;
}
else
{
mapped = (uint8_t*)MapBuffer(userHBuffer);
Q_assert(mapped != NULL);
}
userBuffer.uploading = true;
return mapped;
}
void UploadManager::EndBufferUpload(HBuffer userHBuffer)
{
bufferUploadCounter--;
Q_assert(bufferUploadCounter >= 0);
Buffer& userBuffer = rhi.buffers.Get(userHBuffer);
Q_assert(userBuffer.uploading);
if(!userBuffer.mapped)
{
D3D(commandList->Reset(commandAllocator, NULL));
#if defined(RHI_ENABLE_AFTERMATH)
const uint64_t byteCount = (uint64_t)userBuffer.uploadByteCount;
const char* const marker = va("Upload: CopyBufferRegion -> %s (%s)", userBuffer.desc.name, Com_FormatBytes(byteCount));
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_SetEventMarker(rhi.aftermathUploadCommandList, marker, strlen(marker) + 1);
Q_assert(result == GFSDK_Aftermath_Result_Success);
#endif
const Buffer& uploadBuffer = rhi.buffers.Get(uploadHBuffer);
commandList->CopyBufferRegion(
userBuffer.buffer, userBuffer.uploadDestByteOffset,
uploadBuffer.buffer, userBuffer.uploadSrcByteOffset,
userBuffer.uploadByteCount);
ID3D12CommandList* commandLists[] = { commandList };
D3D(commandList->Close());
commandQueue->ExecuteCommandLists(ARRAY_LEN(commandLists), commandLists);
fenceValue++;
commandQueue->Signal(fence.fence, fenceValue);
}
else
{
UnmapBuffer(userHBuffer);
}
userBuffer.uploading = false;
if(bufferUploadCounter == 0 && multiBufferUpload)
{
if(needsRewind)
{
EndOfBufferReached();
needsRewind = false;
}
multiBufferUpload = false;
}
}
void UploadManager::BeginTextureUpload(MappedTexture& mappedTexture, HTexture htexture)
{
Q_assert(IsNullHandle(currentTexture));
Texture& texture = rhi.textures.Get(htexture);
Q_assert(!texture.uploading);
const D3D12_RESOURCE_DESC textureDesc = texture.texture->GetDesc();
D3D12_PLACED_SUBRESOURCE_FOOTPRINT layout;
UINT64 uploadByteCount;
rhi.device->GetCopyableFootprints(&textureDesc, 0, 1, 0, &layout, NULL, NULL, &uploadByteCount);
WaitToStartUploading(uploadByteCount);
const UINT sourcePitch = (UINT)(texture.desc.width * GetBytesPerPixel(texture.desc.format));
mappedTexture.mappedData = mappedBuffer + bufferByteOffset;
mappedTexture.columnCount = texture.desc.width;
mappedTexture.rowCount = texture.desc.height;
mappedTexture.sliceCount = texture.desc.depth;
mappedTexture.srcRowByteCount = sourcePitch;
mappedTexture.dstRowByteCount = AlignUp<uint32_t>(layout.Footprint.RowPitch, D3D12_TEXTURE_DATA_PITCH_ALIGNMENT);
texture.uploadByteOffset = bufferByteOffset;
texture.uploading = true;
bufferByteOffset = AlignUp<uint32_t>(bufferByteOffset + uploadByteCount, D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT);
currentTexture = htexture;
batchTextureCount++;
}
void UploadManager::EndTextureUpload()
{
Q_assert(!IsNullHandle(currentTexture));
const HTexture htexture = currentTexture;
Texture& texture = rhi.textures.Get(htexture);
Q_assert(texture.uploading);
const D3D12_RESOURCE_DESC textureDesc = texture.texture->GetDesc();
D3D12_PLACED_SUBRESOURCE_FOOTPRINT layout;
rhi.device->GetCopyableFootprints(&textureDesc, 0, 1, 0, &layout, NULL, NULL, NULL);
Buffer& buffer = rhi.buffers.Get(uploadHBuffer);
D3D12_TEXTURE_COPY_LOCATION dstLoc = { 0 };
D3D12_TEXTURE_COPY_LOCATION srcLoc = { 0 };
dstLoc.Type = D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX;
dstLoc.pResource = texture.texture;
dstLoc.SubresourceIndex = 0;
srcLoc.Type = D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT;
srcLoc.pResource = buffer.buffer;
srcLoc.PlacedFootprint = layout;
srcLoc.PlacedFootprint.Offset = texture.uploadByteOffset;
D3D12_BOX srcBox = { 0 };
srcBox.left = 0;
srcBox.top = 0;
srcBox.front = 0;
srcBox.right = textureDesc.Width;
srcBox.bottom = textureDesc.Height;
srcBox.back = textureDesc.DepthOrArraySize;
D3D(commandList->Reset(commandAllocator, NULL));
#if defined(RHI_ENABLE_AFTERMATH)
const char* const marker = va("Upload: CopyTextureRegion -> %s", texture.desc.name);
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_SetEventMarker(rhi.aftermathUploadCommandList, marker, strlen(marker) + 1);
Q_assert(result == GFSDK_Aftermath_Result_Success);
#endif
commandList->CopyTextureRegion(&dstLoc, 0, 0, 0, &srcLoc, &srcBox);
ID3D12CommandList* commandLists[] = { commandList };
D3D(commandList->Close());
commandQueue->ExecuteCommandLists(ARRAY_LEN(commandLists), commandLists);
fenceValue++;
commandQueue->Signal(fence.fence, fenceValue);
texture.uploading = false;
currentTexture = RHI_MAKE_NULL_HANDLE();
}
void UploadManager::WaitToStartDrawing(ID3D12CommandQueue* commandQueue_)
{
fence.WaitOnGPU(commandQueue_, fenceValue);
}
void UploadManager::WaitToStartUploading(uint32_t uploadByteCount)
{
if(uploadByteCount > bufferByteCount)
{
ri.Error(ERR_FATAL, "Upload request too large!\n");
}
if(bufferByteOffset + uploadByteCount > bufferByteCount)
{
EndOfBufferReached();
}
}
void UploadManager::EndOfBufferReached()
{
ri.Printf(PRINT_DEVELOPER, "Waiting for GPU upload: %s (%d T, %d B)\n",
Com_FormatBytes(bufferByteOffset),
batchTextureCount,
batchBufferCount);
fence.WaitOnCPU(fenceValue);
D3D(commandAllocator->Reset());
bufferByteOffset = 0;
batchTextureCount = 0;
batchBufferCount = 0;
}
void ReadbackManager::Create()
{
D3D(rhi.device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&readbackCommandAllocator)));
SetDebugName(readbackCommandAllocator, "readback", D3DResourceType::CommandAllocator);
D3D(rhi.device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, readbackCommandAllocator, NULL, IID_PPV_ARGS(&readbackCommandList)));
SetDebugName(readbackCommandList, "readback", D3DResourceType::CommandList);
D3D(readbackCommandList->Close());
const uint32_t byteCount = GetReadbackTextureByteCount();
BufferDesc desc("readback", byteCount, ResourceStates::CopyDestinationBit);
desc.memoryUsage = MemoryUsage::Readback;
readbackBuffer = CreateBuffer(desc);
bufferByteCount = byteCount;
readbackFence.Create(readbackFenceValue, "readback");
}
void ReadbackManager::Release()
{
readbackFence.Release();
COM_RELEASE(readbackCommandList);
COM_RELEASE(readbackCommandAllocator);
}
void ReadbackManager::ResizeIfNeeded()
{
const uint32_t byteCount = GetReadbackTextureByteCount();
if(byteCount <= bufferByteCount)
{
return;
}
// @NOTE: this is called after the device has become idle
DestroyBuffer(readbackBuffer);
BufferDesc desc("readback", byteCount, ResourceStates::CopyDestinationBit);
desc.memoryUsage = MemoryUsage::Readback;
readbackBuffer = CreateBuffer(desc);
bufferByteCount = byteCount;
}
void ReadbackManager::BeginTextureReadback(MappedTexture& mappedTexture, HTexture htexture)
{
D3D(readbackCommandAllocator->Reset());
D3D(readbackCommandList->Reset(readbackCommandAllocator, NULL));
Texture& texture = rhi.textures.Get(htexture);
Q_assert(texture.desc.format == TextureFormat::R8G8B8A8_UNorm);
const D3D12_RESOURCE_DESC textureDesc = texture.texture->GetDesc();
D3D12_PLACED_SUBRESOURCE_FOOTPRINT layout;
rhi.device->GetCopyableFootprints(&textureDesc, 0, 1, 0, &layout, NULL, NULL, NULL);
Q_assert(layout.Footprint.Format == DXGI_FORMAT_R8G8B8A8_UNORM);
Q_assert(layout.Footprint.Width == texture.desc.width);
Q_assert(layout.Footprint.Height == texture.desc.height);
Buffer& buffer = rhi.buffers.Get(readbackBuffer);
D3D12_TEXTURE_COPY_LOCATION dstLoc = { 0 };
D3D12_TEXTURE_COPY_LOCATION srcLoc = { 0 };
dstLoc.Type = D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT;
dstLoc.pResource = buffer.buffer;
dstLoc.PlacedFootprint = layout;
dstLoc.PlacedFootprint.Offset = 0;
srcLoc.Type = D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX;
srcLoc.pResource = texture.texture;
srcLoc.SubresourceIndex = 0;
D3D12_BOX srcBox = { 0 };
srcBox.left = 0;
srcBox.top = 0;
srcBox.front = 0;
srcBox.right = textureDesc.Width;
srcBox.bottom = textureDesc.Height;
srcBox.back = 1;
const D3D12_RESOURCE_STATES prevState = texture.currentState;
// @TODO: use CmdBarrier
D3D12_RESOURCE_BARRIER barrier = {};
barrier.Type = D3D12_RESOURCE_BARRIER_TYPE_TRANSITION;
barrier.Transition.pResource = texture.texture;
barrier.Transition.StateBefore = prevState;
barrier.Transition.StateAfter = D3D12_RESOURCE_STATE_COPY_SOURCE;
if(texture.currentState != D3D12_RESOURCE_STATE_COPY_SOURCE)
{
readbackCommandList->ResourceBarrier(1, &barrier);
texture.currentState = D3D12_RESOURCE_STATE_COPY_SOURCE;
}
readbackCommandList->CopyTextureRegion(&dstLoc, 0, 0, 0, &srcLoc, &srcBox);
barrier.Transition.StateBefore = D3D12_RESOURCE_STATE_COPY_SOURCE;
barrier.Transition.StateAfter = prevState;
if(texture.currentState != prevState)
{
readbackCommandList->ResourceBarrier(1, &barrier);
texture.currentState = prevState;
}
D3D(readbackCommandList->Close());
ID3D12CommandList* commandListArray[] = { readbackCommandList };
rhi.mainCommandQueue->ExecuteCommandLists(ARRAY_LEN(commandListArray), commandListArray);
readbackFenceValue++;
readbackFence.Signal(rhi.mainCommandQueue, readbackFenceValue);
readbackFence.WaitOnCPU(readbackFenceValue);
mappedTexture.mappedData = MapBuffer(readbackBuffer);
mappedTexture.rowCount = layout.Footprint.Height;
mappedTexture.columnCount = layout.Footprint.Width;
mappedTexture.srcRowByteCount = layout.Footprint.RowPitch;
mappedTexture.dstRowByteCount = 0;
}
void ReadbackManager::EndTextureReadback()
{
UnmapBuffer(readbackBuffer);
}
void DescriptorHeap::Create(D3D12_DESCRIPTOR_HEAP_TYPE heapType, uint32_t size, uint16_t* freeListItems, const char* name)
{
heap = CreateDescriptorHeap(heapType, size, false, name);
freeList.Init(freeListItems, size);
startAddress = heap->GetCPUDescriptorHandleForHeapStart();
descriptorSize = rhi.device->GetDescriptorHandleIncrementSize(heapType);
type = heapType;
}
void DescriptorHeap::Release()
{
COM_RELEASE(heap);
}
uint32_t DescriptorHeap::Allocate()
{
return freeList.Allocate();
}
void DescriptorHeap::Free(uint32_t index)
{
freeList.Free(index);
}
D3D12_CPU_DESCRIPTOR_HANDLE DescriptorHeap::GetCPUHandle(uint32_t index)
{
D3D12_CPU_DESCRIPTOR_HANDLE handle = startAddress;
handle.ptr += index * descriptorSize;
return handle;
}
uint32_t DescriptorHeap::CreateSRV(ID3D12Resource* resource, D3D12_SHADER_RESOURCE_VIEW_DESC& desc)
{
Q_assert(resource);
Q_assert(type == D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
const uint32_t index = freeList.Allocate();
rhi.device->CreateShaderResourceView(resource, &desc, GetCPUHandle(index));
return index;
}
uint32_t DescriptorHeap::CreateUAV(ID3D12Resource* resource, D3D12_UNORDERED_ACCESS_VIEW_DESC& desc)
{
Q_assert(resource);
Q_assert(type == D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
const uint32_t index = freeList.Allocate();
rhi.device->CreateUnorderedAccessView(resource, NULL, &desc, GetCPUHandle(index));
return index;
}
uint32_t DescriptorHeap::CreateRTV(ID3D12Resource* resource, D3D12_RENDER_TARGET_VIEW_DESC& desc)
{
Q_assert(resource);
Q_assert(type == D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
const uint32_t index = freeList.Allocate();
rhi.device->CreateRenderTargetView(resource, &desc, GetCPUHandle(index));
return index;
}
uint32_t DescriptorHeap::CreateDSV(ID3D12Resource* resource, D3D12_DEPTH_STENCIL_VIEW_DESC& desc)
{
Q_assert(resource);
Q_assert(type == D3D12_DESCRIPTOR_HEAP_TYPE_DSV);
const uint32_t index = freeList.Allocate();
rhi.device->CreateDepthStencilView(resource, &desc, GetCPUHandle(index));
return index;
}
uint32_t DescriptorHeap::CreateCBV(D3D12_CONSTANT_BUFFER_VIEW_DESC& desc)
{
Q_assert(type == D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
const uint32_t index = freeList.Allocate();
rhi.device->CreateConstantBufferView(&desc, GetCPUHandle(index));
return index;
}
uint32_t DescriptorHeap::CreateSampler(D3D12_SAMPLER_DESC& desc)
{
Q_assert(type == D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);
const uint32_t index = freeList.Allocate();
rhi.device->CreateSampler(&desc, GetCPUHandle(index));
return index;
}
void DynamicResources::DescriptorRange::Init(D3D12_DESCRIPTOR_RANGE_TYPE type_, uint32_t start_, uint32_t count_)
{
Q_assert(count_ > 0);
type = type_;
start = start_;
count = count_;
index = start_ + 1;
reservedSlotUsed = false;
}
uint32_t DynamicResources::DescriptorRange::Allocate(bool slotAtIndex0)
{
if(slotAtIndex0)
{
ASSERT_OR_DIE(!reservedSlotUsed, "Can only use 1 reserved slot");
reservedSlotUsed = true;
return start;
}
ASSERT_OR_DIE(index + 1 < start + count, "Not enough descriptors");
return index++;
}
static const char* GetDeviceRemovedReasonString(HRESULT reason)
{
switch(reason)
{
case DXGI_ERROR_DEVICE_HUNG: return "device hung";
case DXGI_ERROR_DEVICE_REMOVED: return "device removed";
case DXGI_ERROR_DEVICE_RESET: return "device reset";
case DXGI_ERROR_DRIVER_INTERNAL_ERROR: return "internal driver error";
case DXGI_ERROR_INVALID_CALL: return "invalid call";
case S_OK: return "no error";
default: return va("unknown error code 0x%08X", (unsigned int)reason);
}
}
static DXGI_GPU_PREFERENCE GetGPUPreference(int preference)
{
switch(preference)
{
case GPUPREF_HIGHPERF: return DXGI_GPU_PREFERENCE_HIGH_PERFORMANCE;
case GPUPREF_LOWPOWER: return DXGI_GPU_PREFERENCE_MINIMUM_POWER;
default: return DXGI_GPU_PREFERENCE_UNSPECIFIED;
}
}
static bool IsSuitableAdapter(IDXGIAdapter1* adapter)
{
HRESULT hr = S_OK;
DXGI_ADAPTER_DESC1 desc;
hr = adapter->GetDesc1(&desc);
if(FAILED(hr))
{
ri.Printf(PRINT_WARNING, "D3D12: IDXGIAdapter1::GetDesc1 failed with code 0x%08X (%s)\n",
(unsigned int)hr, GetSystemErrorString(hr));
return false;
}
if(desc.Flags & DXGI_ADAPTER_FLAG_SOFTWARE)
{
//ri.Printf(PRINT_WARNING, "D3D12: '%s' is not real hardware\n",
//GetUTF8Name(desc.Description, "unknown adapter"));
return false;
}
hr = D3D12CreateDevice(adapter, FeatureLevel, __uuidof(ID3D12Device), NULL);
if(FAILED(hr))
{
ri.Printf(PRINT_WARNING, "D3D12: can't create device for '%s' with code 0x%08X (%s)\n",
GetUTF8String(desc.Description, "unknown adapter"), (unsigned int)hr, GetSystemErrorString(hr));
return false;
}
return true;
}
static void CreateAdapterList()
{
IDXGIAdapter1* adapter = NULL;
UINT enumIndex = 0;
rhi.gpuCount = 0;
while(rhi.gpuCount < ARRAY_LEN(rhi.gpus) &&
SUCCEEDED(rhi.factory->EnumAdapters1(enumIndex++, &adapter)))
{
DXGI_ADAPTER_DESC1 desc;
if(IsSuitableAdapter(adapter) && SUCCEEDED(adapter->GetDesc1(&desc)))
{
GPU& gpu = rhi.gpus[rhi.gpuCount++];
gpu.uniqueId = desc.AdapterLuid;
Q_strncpyz(gpu.name, GetUTF8String(desc.Description, "???"), sizeof(gpu.name));
}
COM_RELEASE(adapter);
}
}
static IDXGIAdapter1* GetAdapterAtIndex(int gpuIndex)
{
if(gpuIndex < 0 || gpuIndex >= ARRAY_LEN(rhi.gpus))
{
ri.Printf(PRINT_WARNING, "GPU index %d is invalid", gpuIndex + 1);
return NULL;
}
const LUID uniqueId = rhi.gpus[gpuIndex].uniqueId;
IDXGIAdapter1* adapter = NULL;
UINT enumIndex = 0;
while(SUCCEEDED(rhi.factory->EnumAdapters1(enumIndex++, &adapter)))
{
DXGI_ADAPTER_DESC1 desc;
if(SUCCEEDED(adapter->GetDesc1(&desc)) &&
desc.AdapterLuid.LowPart == uniqueId.LowPart &&
desc.AdapterLuid.HighPart == uniqueId.HighPart)
{
return adapter;
}
COM_RELEASE(adapter);
}
ri.Printf(PRINT_WARNING, "GPU at index %d (%s) is no longer available", gpuIndex + 1, rhi.gpus[gpuIndex].name);
return NULL;
}
static IDXGIAdapter1* FindMostSuitableAdapter(IDXGIFactory1* factory, int enginePreference)
{
IDXGIAdapter1* adapter = NULL;
IDXGIFactory6* factory6 = NULL;
if(SUCCEEDED(factory->QueryInterface(IID_PPV_ARGS(&factory6))))
{
const DXGI_GPU_PREFERENCE dxgiPreference = GetGPUPreference(enginePreference);
UINT i = 0;
while(SUCCEEDED(factory6->EnumAdapterByGpuPreference(i++, dxgiPreference, IID_PPV_ARGS(&adapter))))
{
if(IsSuitableAdapter(adapter))
{
COM_RELEASE(factory6);
return adapter;
}
COM_RELEASE(adapter);
}
}
COM_RELEASE(factory6);
UINT i = 0;
while(SUCCEEDED(rhi.factory->EnumAdapters1(i++, &adapter)))
{
if(IsSuitableAdapter(adapter))
{
return adapter;
}
COM_RELEASE(adapter);
}
ri.Error(ERR_FATAL, "No suitable DXGI adapter was found!\n");
return NULL;
}
static void Present()
{
UINT flags;
UINT swapInterval;
if(r_vsync->integer)
{
swapInterval = 1;
flags = 0;
}
else
{
swapInterval = 0;
flags = rhi.isTearingSupported ? DXGI_PRESENT_ALLOW_TEARING : 0;
}
const HRESULT hr = rhi.swapChain->Present(swapInterval, flags);
rhi.frameLatencyWaitNeeded = true;
#if defined(RHI_ENABLE_NVAPI) && defined(RHI_ENABLE_NVAPI_RT_VALIDATION)
if(rhi.nvapiActive &&
(hr == DXGI_ERROR_DEVICE_REMOVED ||
hr == D3DDDIERR_DEVICEREMOVED ||
hr == DXGI_ERROR_DEVICE_RESET))
{
NvAPI_D3D12_FlushRaytracingValidationMessages(rhi.device);
}
#endif
enum PresentError
{
PE_NONE,
PE_DEVICE_REMOVED,
PE_DEVICE_RESET
};
PresentError presentError = PE_NONE;
HRESULT deviceRemovedReason = S_OK;
if(hr == DXGI_ERROR_DEVICE_REMOVED || hr == D3DDDIERR_DEVICEREMOVED)
{
deviceRemovedReason = rhi.device->GetDeviceRemovedReason();
if(deviceRemovedReason == DXGI_ERROR_DEVICE_RESET)
{
presentError = PE_DEVICE_RESET;
}
else
{
presentError = PE_DEVICE_REMOVED;
}
}
else if(hr == DXGI_ERROR_DEVICE_RESET)
{
presentError = PE_DEVICE_RESET;
}
#if defined(D3D_DEBUG)
else if(hr != S_OK)
{
Sys_DebugPrintf("Present error: 0x%08X (%s)\n", (unsigned int)hr, GetSystemErrorString(hr));
}
#endif
if(presentError == PE_DEVICE_REMOVED)
{
ri.Error(ERR_FATAL, "Direct3D device was removed! Reason: %s\n", GetDeviceRemovedReasonString(deviceRemovedReason));
}
else if(presentError == PE_DEVICE_RESET)
{
ri.Printf(PRINT_ERROR, "Direct3D device was reset! Restarting the video system...\n");
Cbuf_AddText("vid_restart\n");
}
}
#if defined(_DEBUG)
static bool CanWriteCommands()
{
// @TODO: check that the command list is open
return rhi.commandList != NULL;
}
#endif
template<typename T, typename HT, Handle RT, int N>
static void DestroyPool(StaticPool<T, HT, RT, N>& pool, void (*DestroyResource)(HT), bool fullShutDown)
{
T* resource;
HT handle;
for(int i = 0; pool.FindNext(&resource, &handle, &i);)
{
if(fullShutDown || resource->shortLifeTime)
{
(*DestroyResource)(handle);
}
}
if(fullShutDown)
{
pool.Clear();
}
}
static const char* AllocateName(const char* name, bool shortLifeTime)
{
LinearAllocator& allocator = shortLifeTime ? rhi.tempStringAllocator : rhi.persStringAllocator;
return allocator.Allocate(name);
}
template<typename T>
static void AllocateAndFixName(const T& desc)
{
((BufferDesc&)desc).name = AllocateName(desc.name, desc.shortLifeTime);
}
static DXGI_FORMAT GetD3DIndexFormat(IndexType::Id type)
{
return type == IndexType::UInt16 ? DXGI_FORMAT_R16_UINT : DXGI_FORMAT_R32_UINT;
}
static D3D12_SHADER_VISIBILITY GetD3DVisibility(ShaderStage::Id shaderType)
{
switch(shaderType)
{
case ShaderStage::Vertex: return D3D12_SHADER_VISIBILITY_VERTEX;
case ShaderStage::Pixel: return D3D12_SHADER_VISIBILITY_PIXEL;
case ShaderStage::Compute: return D3D12_SHADER_VISIBILITY_ALL;
default: Q_assert(!"Unsupported shader type"); return D3D12_SHADER_VISIBILITY_ALL;
}
}
static D3D12_SHADER_VISIBILITY GetD3DVisibility(ShaderStages::Flags flags)
{
if(__popcnt(flags & ShaderStages::AllGraphicsBits) > 1)
{
return D3D12_SHADER_VISIBILITY_ALL;
}
if(flags & ShaderStages::VertexBit)
{
return D3D12_SHADER_VISIBILITY_VERTEX;
}
if(flags & ShaderStages::PixelBit)
{
return D3D12_SHADER_VISIBILITY_PIXEL;
}
return D3D12_SHADER_VISIBILITY_ALL;
}
static D3D12_DESCRIPTOR_RANGE_TYPE GetD3DDescriptorRangeType(DescriptorType::Id descType)
{
switch(descType)
{
case DescriptorType::Texture: return D3D12_DESCRIPTOR_RANGE_TYPE_SRV;
case DescriptorType::Buffer: return D3D12_DESCRIPTOR_RANGE_TYPE_SRV;
case DescriptorType::RWTexture: return D3D12_DESCRIPTOR_RANGE_TYPE_UAV;
case DescriptorType::RWBuffer: return D3D12_DESCRIPTOR_RANGE_TYPE_UAV;
case DescriptorType::Sampler: return D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER;
default: Q_assert(!"Unsupported descriptor type"); return D3D12_DESCRIPTOR_RANGE_TYPE_SRV;
}
}
static const char* GetD3DSemanticName(ShaderSemantic::Id semantic)
{
switch(semantic)
{
case ShaderSemantic::Position: return "POSITION";
case ShaderSemantic::Normal: return "NORMAL";
case ShaderSemantic::TexCoord: return "TEXCOORD";
case ShaderSemantic::Color: return "COLOR";
default: Q_assert(!"Unsupported shader semantic"); return "";
}
}
static DXGI_FORMAT GetD3DFormat(DataType::Id dataType, uint32_t vectorLength)
{
if(vectorLength < 1 || vectorLength > 4)
{
Q_assert(!"Invalid vector length");
return DXGI_FORMAT_UNKNOWN;
}
switch(dataType)
{
case DataType::Float32:
switch(vectorLength)
{
case 1: return DXGI_FORMAT_R32_FLOAT;
case 2: return DXGI_FORMAT_R32G32_FLOAT;
case 3: return DXGI_FORMAT_R32G32B32_FLOAT;
case 4: return DXGI_FORMAT_R32G32B32A32_FLOAT;
}
case DataType::UInt32:
switch(vectorLength)
{
case 1: return DXGI_FORMAT_R32_UINT;
case 2: return DXGI_FORMAT_R32G32_UINT;
case 3: return DXGI_FORMAT_R32G32B32_UINT;
case 4: return DXGI_FORMAT_R32G32B32A32_UINT;
}
case DataType::UNorm8:
switch(vectorLength)
{
case 1: return DXGI_FORMAT_R8_UNORM;
case 2: return DXGI_FORMAT_R8G8_UNORM;
case 3: Q_assert(!"Unsupported format"); return DXGI_FORMAT_UNKNOWN;
case 4: return DXGI_FORMAT_R8G8B8A8_UNORM;
}
default: Q_assert(!"Unsupported data type"); return DXGI_FORMAT_UNKNOWN;
}
}
static D3D12_COMPARISON_FUNC GetD3DComparisonFunction(ComparisonFunction::Id function)
{
switch(function)
{
case ComparisonFunction::Always: return D3D12_COMPARISON_FUNC_ALWAYS;
case ComparisonFunction::Equal: return D3D12_COMPARISON_FUNC_EQUAL;
case ComparisonFunction::Greater: return D3D12_COMPARISON_FUNC_GREATER;
case ComparisonFunction::GreaterEqual: return D3D12_COMPARISON_FUNC_GREATER_EQUAL;
case ComparisonFunction::Less: return D3D12_COMPARISON_FUNC_LESS;
case ComparisonFunction::LessEqual: return D3D12_COMPARISON_FUNC_LESS_EQUAL;
case ComparisonFunction::Never: return D3D12_COMPARISON_FUNC_NEVER;
case ComparisonFunction::NotEqual: return D3D12_COMPARISON_FUNC_NOT_EQUAL;
default: Q_assert(!"Unsupported comparison function"); return D3D12_COMPARISON_FUNC_ALWAYS;
}
}
static DXGI_FORMAT GetD3DFormat(TextureFormat::Id format)
{
switch(format)
{
case TextureFormat::R8G8B8A8_UNorm: return DXGI_FORMAT_R8G8B8A8_UNORM;
case TextureFormat::R16G16B16A16_UNorm: return DXGI_FORMAT_R16G16B16A16_UNORM;
case TextureFormat::R32G32_Float: return DXGI_FORMAT_R32G32_FLOAT;
case TextureFormat::R16G16B16A16_Float: return DXGI_FORMAT_R16G16B16A16_FLOAT;
case TextureFormat::R32G32B32A32_Float: return DXGI_FORMAT_R32G32B32A32_FLOAT;
case TextureFormat::Depth32_Float: return DXGI_FORMAT_D32_FLOAT;
case TextureFormat::Depth24_Stencil8: return DXGI_FORMAT_D24_UNORM_S8_UINT;
case TextureFormat::R8G8_UNorm: return DXGI_FORMAT_R8G8_UNORM;
case TextureFormat::R8_UNorm: return DXGI_FORMAT_R8_UNORM;
case TextureFormat::R10G10B10A2_UNorm: return DXGI_FORMAT_R10G10B10A2_UNORM;
case TextureFormat::R16_UInt: return DXGI_FORMAT_R16_UINT;
case TextureFormat::R32_UInt: return DXGI_FORMAT_R32_UINT;
case TextureFormat::R32G32_UInt: return DXGI_FORMAT_R32G32_UINT;
case TextureFormat::R16G16_SNorm: return DXGI_FORMAT_R16G16_SNORM;
case TextureFormat::R16G16_Float: return DXGI_FORMAT_R16G16_FLOAT;
case TextureFormat::R16_Float: return DXGI_FORMAT_R16_FLOAT;
default: Q_assert(!"Unsupported texture format"); return DXGI_FORMAT_R8G8B8A8_UNORM;
}
}
static D3D12_CULL_MODE GetD3DCullMode(cullType_t cullMode)
{
switch(cullMode)
{
case CT_TWO_SIDED: return D3D12_CULL_MODE_NONE;
case CT_BACK_SIDED: return D3D12_CULL_MODE_BACK;
case CT_FRONT_SIDED: return D3D12_CULL_MODE_FRONT;
default: Q_assert(!"Unsupported cull mode"); return D3D12_CULL_MODE_NONE;
}
}
static D3D12_TEXTURE_ADDRESS_MODE GetD3DTextureAddressMode(textureWrap_t wrap)
{
switch(wrap)
{
case TW_REPEAT: return D3D12_TEXTURE_ADDRESS_MODE_WRAP;
case TW_CLAMP_TO_EDGE: return D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
default: Q_assert(!"Unsupported texture wrap mode"); return D3D12_TEXTURE_ADDRESS_MODE_WRAP;
}
}
static D3D12_FILTER GetD3DFilter(TextureFilter::Id filter)
{
switch(filter)
{
case TextureFilter::Point: return D3D12_FILTER_MIN_MAG_POINT_MIP_LINEAR;
case TextureFilter::Linear: return D3D12_FILTER_MIN_MAG_MIP_LINEAR;
case TextureFilter::Anisotropic: return D3D12_FILTER_ANISOTROPIC;
default: Q_assert(!"Unsupported texture filter mode"); return D3D12_FILTER_MIN_MAG_MIP_LINEAR;
}
}
static D3D12_STENCIL_OP GetD3DStencilOp(StencilOp::Id stencilOp)
{
switch(stencilOp)
{
case StencilOp::Keep: return D3D12_STENCIL_OP_KEEP;
case StencilOp::Zero: return D3D12_STENCIL_OP_ZERO;
case StencilOp::Replace: return D3D12_STENCIL_OP_REPLACE;
case StencilOp::SaturatedIncrement: return D3D12_STENCIL_OP_INCR_SAT;
case StencilOp::SaturatedDecrement: return D3D12_STENCIL_OP_DECR_SAT;
case StencilOp::Invert: return D3D12_STENCIL_OP_INVERT;
case StencilOp::WrappedIncrement: return D3D12_STENCIL_OP_INCR;
case StencilOp::WrappedDecrement: return D3D12_STENCIL_OP_DECR;
default: Q_assert(!"Unsupported stencop operation"); return D3D12_STENCIL_OP_REPLACE;
}
}
static D3D12_RESOURCE_STATES GetD3DResourceStates(ResourceStates::Flags flags)
{
#define ADD_BITS(RHIBit, D3DBits) \
if(flags & ResourceStates::RHIBit) \
{ \
states |= D3DBits; \
}
D3D12_RESOURCE_STATES states = D3D12_RESOURCE_STATE_COMMON;
ADD_BITS(VertexBufferBit, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER);
ADD_BITS(IndexBufferBit, D3D12_RESOURCE_STATE_INDEX_BUFFER);
ADD_BITS(ConstantBufferBit, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER);
ADD_BITS(RenderTargetBit, D3D12_RESOURCE_STATE_RENDER_TARGET);
ADD_BITS(VertexShaderAccessBit, D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE);
ADD_BITS(PixelShaderAccessBit, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE);
ADD_BITS(ComputeShaderAccessBit, D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE);
ADD_BITS(CopySourceBit, D3D12_RESOURCE_STATE_COPY_SOURCE);
ADD_BITS(CopyDestinationBit, D3D12_RESOURCE_STATE_COPY_DEST);
ADD_BITS(DepthReadBit, D3D12_RESOURCE_STATE_DEPTH_READ);
ADD_BITS(DepthWriteBit, D3D12_RESOURCE_STATE_DEPTH_WRITE);
ADD_BITS(UnorderedAccessBit, D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
ADD_BITS(PresentBit, D3D12_RESOURCE_STATE_PRESENT);
ADD_BITS(RaytracingASBit, D3D12_RESOURCE_STATE_RAYTRACING_ACCELERATION_STRUCTURE);
ADD_BITS(IndirectDispatchBit, D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT);
return states;
#undef ADD_BITS
}
static D3D12_BLEND GetD3DSourceBlend(uint32_t stateBits)
{
switch(stateBits & GLS_SRCBLEND_BITS)
{
case 0: return D3D12_BLEND_ONE;
case GLS_SRCBLEND_ZERO: return D3D12_BLEND_ZERO;
case GLS_SRCBLEND_ONE: return D3D12_BLEND_ONE;
case GLS_SRCBLEND_DST_COLOR: return D3D12_BLEND_DEST_COLOR;
case GLS_SRCBLEND_ONE_MINUS_DST_COLOR: return D3D12_BLEND_INV_DEST_COLOR;
case GLS_SRCBLEND_SRC_ALPHA: return D3D12_BLEND_SRC_ALPHA;
case GLS_SRCBLEND_ONE_MINUS_SRC_ALPHA: return D3D12_BLEND_INV_SRC_ALPHA;
case GLS_SRCBLEND_DST_ALPHA: return D3D12_BLEND_DEST_ALPHA;
case GLS_SRCBLEND_ONE_MINUS_DST_ALPHA: return D3D12_BLEND_INV_DEST_ALPHA;
case GLS_SRCBLEND_ALPHA_SATURATE: return D3D12_BLEND_SRC_ALPHA_SAT;
default: Q_assert(!"Unsupported source blend mode"); return D3D12_BLEND_ONE;
}
}
static D3D12_BLEND GetD3DDestBlend(uint32_t stateBits)
{
switch(stateBits & GLS_DSTBLEND_BITS)
{
case 0: return D3D12_BLEND_ZERO;
case GLS_DSTBLEND_ZERO: return D3D12_BLEND_ZERO;
case GLS_DSTBLEND_ONE: return D3D12_BLEND_ONE;
case GLS_DSTBLEND_SRC_COLOR: return D3D12_BLEND_SRC_COLOR;
case GLS_DSTBLEND_ONE_MINUS_SRC_COLOR: return D3D12_BLEND_INV_SRC_COLOR;
case GLS_DSTBLEND_SRC_ALPHA: return D3D12_BLEND_SRC_ALPHA;
case GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA: return D3D12_BLEND_INV_SRC_ALPHA;
case GLS_DSTBLEND_DST_ALPHA: return D3D12_BLEND_DEST_ALPHA;
case GLS_DSTBLEND_ONE_MINUS_DST_ALPHA: return D3D12_BLEND_INV_DEST_ALPHA;
default: Q_assert(!"Unsupported dest blend mode"); return D3D12_BLEND_ONE;
}
}
D3D12_SHADING_RATE GetD3DShadingRate(ShadingRate::Id shadingRate)
{
switch(shadingRate)
{
case ShadingRate::SR_1x1: return D3D12_SHADING_RATE_1X1;
case ShadingRate::SR_1x2: return D3D12_SHADING_RATE_1X2;
case ShadingRate::SR_2x1: return D3D12_SHADING_RATE_2X1;
case ShadingRate::SR_2x2: return D3D12_SHADING_RATE_2X2;
case ShadingRate::SR_2x4: return D3D12_SHADING_RATE_2X4;
case ShadingRate::SR_4x2: return D3D12_SHADING_RATE_4X2;
case ShadingRate::SR_4x4: return D3D12_SHADING_RATE_4X4;
default: Q_assert(!"Unsupported shading rate"); return D3D12_SHADING_RATE_1X1;
}
}
static D3D12_BLEND GetAlphaBlendFromColorBlend(D3D12_BLEND colorBlend)
{
switch(colorBlend)
{
case D3D12_BLEND_SRC_COLOR: return D3D12_BLEND_SRC_ALPHA;
case D3D12_BLEND_INV_SRC_COLOR: return D3D12_BLEND_INV_SRC_ALPHA;
case D3D12_BLEND_DEST_COLOR: return D3D12_BLEND_DEST_ALPHA;
case D3D12_BLEND_INV_DEST_COLOR: return D3D12_BLEND_INV_DEST_ALPHA;
default: return colorBlend;
}
}
static bool IsD3DDepthFormat(DXGI_FORMAT format)
{
switch(format)
{
case DXGI_FORMAT_D16_UNORM:
case DXGI_FORMAT_D24_UNORM_S8_UINT:
case DXGI_FORMAT_D32_FLOAT:
case DXGI_FORMAT_D32_FLOAT_S8X24_UINT:
return true;
default:
return false;
}
}
static const char* GetNameForD3DResourceStates(D3D12_RESOURCE_STATES states)
{
switch(states)
{
case D3D12_RESOURCE_STATE_COMMON: return "common/present";
case D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER: return "vertex/constant buffer";
case D3D12_RESOURCE_STATE_INDEX_BUFFER: return "index buffer";
case D3D12_RESOURCE_STATE_RENDER_TARGET: return "render target";
case D3D12_RESOURCE_STATE_UNORDERED_ACCESS: return "UAV";
case D3D12_RESOURCE_STATE_DEPTH_WRITE: return "depth write";
case D3D12_RESOURCE_STATE_DEPTH_READ: return "depth read";
case D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE: return "non-pixel shader resource";
case D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE: return "pixel shader resource";
case D3D12_RESOURCE_STATE_COPY_DEST: return "copy destination";
case D3D12_RESOURCE_STATE_COPY_SOURCE: return "copy source";
case D3D12_RESOURCE_STATE_GENERIC_READ: return "generic read";
case D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE: return "generic shader resource";
case D3D12_RESOURCE_STATE_RAYTRACING_ACCELERATION_STRUCTURE: return "raytracing acceleration structure";
default: return "???";
}
}
static const char* GetNameForD3DFormat(DXGI_FORMAT format)
{
switch(format)
{
#define FORMAT(Enum) case DXGI_FORMAT_##Enum: return #Enum;
DXGI_FORMAT_LIST(FORMAT)
default: return "???";
#undef FORMAT
}
}
static const char* GetHeapTypeName(D3D12_HEAP_TYPE type)
{
switch(type)
{
case D3D12_HEAP_TYPE_DEFAULT: return "GPU";
case D3D12_HEAP_TYPE_UPLOAD: return "upload";
case D3D12_HEAP_TYPE_READBACK: return "readback";
case D3D12_HEAP_TYPE_CUSTOM: return "UMA";
default: Q_assert(!"Unsupported heap type"); return "unknown";
}
}
static const char* GetResourceHeapName(ID3D12Resource* resource)
{
D3D12_HEAP_PROPERTIES props;
D3D12_HEAP_FLAGS flags;
if(SUCCEEDED(resource->GetHeapProperties(&props, &flags)))
{
return GetHeapTypeName(props.Type);
}
return "unknown";
}
static void ValidateResourceStateForBarrier(D3D12_RESOURCE_STATES state)
{
if(state == D3D12_RESOURCE_STATE_UNORDERED_ACCESS ||
state == D3D12_RESOURCE_STATE_DEPTH_WRITE)
{
return;
}
const D3D12_RESOURCE_STATES readOnly[] =
{
D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER,
D3D12_RESOURCE_STATE_INDEX_BUFFER,
D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE,
D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE,
D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT,
D3D12_RESOURCE_STATE_COPY_SOURCE,
D3D12_RESOURCE_STATE_DEPTH_READ
};
const D3D12_RESOURCE_STATES readWrite[] =
{
D3D12_RESOURCE_STATE_UNORDERED_ACCESS,
D3D12_RESOURCE_STATE_DEPTH_WRITE
};
const D3D12_RESOURCE_STATES writeOnly[] =
{
D3D12_RESOURCE_STATE_COPY_DEST,
D3D12_RESOURCE_STATE_RENDER_TARGET,
D3D12_RESOURCE_STATE_STREAM_OUT
};
int rBits = 0;
int wBits = 0;
for(auto bit : readOnly)
{
if(state & bit)
{
rBits++;
}
}
for(auto bit : readWrite)
{
if(state & bit)
{
rBits++;
wBits++;
}
}
for(auto bit : writeOnly)
{
if(state & bit)
{
wBits++;
}
}
// MS: "At most one write bit can be set."
Q_assert(wBits == 0 || wBits == 1);
if(wBits == 1)
{
// MS: "If any write bit is set, then no read bit may be set."
Q_assert(rBits == 0);
}
}
// returns true if the barrier should be used
static bool SetBarrier(
D3D12_RESOURCE_STATES& currentState, D3D12_RESOURCE_BARRIER& barrier,
ResourceStates::Flags newState, ID3D12Resource* resource)
{
const D3D12_RESOURCE_STATES before = currentState;
const D3D12_RESOURCE_STATES after = GetD3DResourceStates(newState);
ValidateResourceStateForBarrier(before);
ValidateResourceStateForBarrier(after);
if((before & after & D3D12_RESOURCE_STATE_UNORDERED_ACCESS) != 0 ||
((before & D3D12_RESOURCE_STATE_RAYTRACING_ACCELERATION_STRUCTURE) != 0 &&
(after & D3D12_RESOURCE_STATE_UNORDERED_ACCESS) != 0))
{
// note that UAV barriers are unnecessary in a bunch of cases:
// - before/after access is read-only
// - before/after access is write-only, but to different ranges
barrier.Type = D3D12_RESOURCE_BARRIER_TYPE_UAV;
barrier.UAV.pResource = resource;
}
else
{
if(before == after)
{
return false;
}
barrier.Type = D3D12_RESOURCE_BARRIER_TYPE_TRANSITION;
barrier.Transition.pResource = resource;
barrier.Transition.StateBefore = before;
barrier.Transition.StateAfter = after;
barrier.Transition.Subresource = D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES;
currentState = after;
}
return true;
}
static void ResolveDurationQueries()
{
const uint32_t frameIndex = (rhi.frameIndex + 1) % rhi.renderFrameCount;
const HBuffer hbuffer = rhi.timeStampBuffers[frameIndex];
const Buffer& buffer = rhi.buffers.Get(hbuffer);
#if defined(D3D_DEBUG)
if(r_vsync->integer)
{
Q_assert(rhi.frameIndex == 0);
Q_assert(frameIndex == 0);
}
#endif
FrameQueries& fq = rhi.frameQueries[frameIndex];
if(fq.durationQueryCount == 0)
{
rhi.resolvedQueries.durationQueryCount = 0;
return;
}
UINT64 gpuFrequencyU64;
if(FAILED(rhi.mainCommandQueue->GetTimestampFrequency(&gpuFrequencyU64)))
{
for(uint32_t q = 0; q < fq.durationQueryCount; ++q)
{
DurationQuery& dq = fq.durationQueries[q];
dq.state = QueryState::Free;
}
fq.durationQueryCount = 0;
rhi.resolvedQueries.durationQueryCount = 0;
}
const double gpuFrequencyF64 = (double)gpuFrequencyU64;
const UINT timestampQueryCount = fq.durationQueryCount * 2;
rhi.commandList->ResolveQueryData(rhi.timeStampHeaps[frameIndex], D3D12_QUERY_TYPE_TIMESTAMP, 0, timestampQueryCount, buffer.buffer, 0);
const UINT64* const timeStamps = (const UINT64*)MapBuffer(hbuffer);
uint32_t* const gpuMicroSeconds = rhi.resolvedQueries.gpuMicroSeconds;
for(uint32_t q = 0; q < fq.durationQueryCount; ++q)
{
DurationQuery& dq = fq.durationQueries[q];
Q_assert(dq.state == QueryState::Ended);
if(dq.state != QueryState::Ended)
{
gpuMicroSeconds[q] = 0;
dq.state = QueryState::Free;
continue;
}
const UINT timeStampBeginIndex = q * 2;
const UINT timeStampEndIndex = timeStampBeginIndex + 1;
const UINT64 beginTime = timeStamps[timeStampBeginIndex];
const UINT64 endTime = timeStamps[timeStampEndIndex];
if(endTime > beginTime)
{
const UINT64 elapsed = endTime - beginTime;
gpuMicroSeconds[q] = (uint32_t)((elapsed / gpuFrequencyF64) * 1000000.0);
}
else
{
gpuMicroSeconds[q] = 0;
}
dq.state = QueryState::Free;
}
rhi.resolvedQueries.durationQueryCount = fq.durationQueryCount;
fq.durationQueryCount = 0;
UnmapBuffer(hbuffer);
}
static void GrabSwapChainTextures()
{
for(uint32_t b = 0; b < rhi.swapChainBufferCount; ++b)
{
ID3D12Resource* renderTarget;
D3D(rhi.swapChain->GetBuffer(b, IID_PPV_ARGS(&renderTarget)));
TextureDesc desc(va("swap chain #%d", b + 1), glConfig.vidWidth, glConfig.vidHeight);
desc.nativeResource = renderTarget;
desc.initialState = ResourceStates::PresentBit;
desc.allowedState = ResourceStates::PresentBit | ResourceStates::RenderTargetBit;
rhi.renderTargets[b] = CreateTexture(desc);
}
}
static void GetMonitorRefreshRate()
{
DWM_TIMING_INFO info = {};
info.cbSize = sizeof(info);
if(SUCCEEDED(DwmGetCompositionTimingInfo(NULL, &info)))
{
rhie.monitorFrameDurationMS = 1000.0f * ((float)(info.rateRefresh.uiDenominator) / (float)info.rateRefresh.uiNumerator);
}
else
{
rhie.monitorFrameDurationMS = 0.0f;
}
if(r_vsync->integer == 0)
{
const float maxFPS = ri.Cvar_Get("com_maxfps", "125", CVAR_ARCHIVE)->value;
rhie.targetFrameDurationMS = 1000.0f / maxFPS;
}
else if(rhie.monitorFrameDurationMS > 0.0f)
{
rhie.targetFrameDurationMS = rhie.monitorFrameDurationMS;
}
else
{
rhie.targetFrameDurationMS = 1.0f / 120.0f; // 120 Hz by default
}
}
static void CreateNullResources()
{
{
TextureDesc desc("null", 1, 1);
rhi.nullTexture = CreateTexture(desc);
}
{
TextureDesc desc("null RW", 1, 1);
desc.format = TextureFormat::R8G8B8A8_UNorm;
desc.initialState = ResourceStates::UnorderedAccessBit;
desc.allowedState = ResourceStates::UnorderedAccessBit | ResourceStates::PixelShaderAccessBit;
rhi.nullRWTexture = CreateTexture(desc);
}
{
BufferDesc desc("null", 256, ResourceStates::ShaderAccessBits);
desc.memoryUsage = MemoryUsage::GPU;
rhi.nullBuffer = CreateBuffer(desc);
}
{
BufferDesc desc("null RW", 256, ResourceStates::UnorderedAccessBit);
desc.memoryUsage = MemoryUsage::GPU;
rhi.nullRWBuffer = CreateBuffer(desc);
}
rhi.nullSampler = CreateSampler(SamplerDesc());
}
static void CopyDescriptor(ID3D12DescriptorHeap* dstHeap, uint32_t dstIndex, DescriptorHeap& srcHeap, uint32_t srcIndex)
{
Q_assert(srcIndex != InvalidDescriptorIndex);
D3D12_CPU_DESCRIPTOR_HANDLE dstHandle = dstHeap->GetCPUDescriptorHandleForHeapStart();
dstHandle.ptr += dstIndex * srcHeap.descriptorSize;
rhi.device->CopyDescriptorsSimple(1, dstHandle, srcHeap.GetCPUHandle(srcIndex), srcHeap.type);
}
static UINT BGRAUIntFromFloat(float r, float g, float b)
{
const BYTE br = (BYTE)(Com_Clamp(0.0f, 1.0f, r) * 255.0f);
const BYTE bg = (BYTE)(Com_Clamp(0.0f, 1.0f, g) * 255.0f);
const BYTE bb = (BYTE)(Com_Clamp(0.0f, 1.0f, b) * 255.0f);
return PIX_COLOR(br, bg, bb);
}
static bool IsTearingSupported()
{
HMODULE library = LoadLibraryA("DXGI.dll");
if(library == NULL)
{
ri.Printf(PRINT_WARNING, "D3D12: DXGI.dll couldn't be found or opened\n");
return false;
}
typedef HRESULT(WINAPI* PFN_CreateDXGIFactory)(REFIID riid, _Out_ void** ppFactory);
PFN_CreateDXGIFactory pCreateDXGIFactory = (PFN_CreateDXGIFactory)GetProcAddress(library, "CreateDXGIFactory");
if(pCreateDXGIFactory == NULL)
{
FreeLibrary(library);
ri.Printf(PRINT_WARNING, "D3D12: Failed to locate CreateDXGIFactory in DXGI.dll\n");
return false;
}
HRESULT hr;
BOOL enabled = FALSE;
IDXGIFactory5* pFactory;
hr = (*pCreateDXGIFactory)(__uuidof(IDXGIFactory5), (void**)&pFactory);
if(FAILED(hr))
{
FreeLibrary(library);
ri.Printf(PRINT_WARNING, "D3D12: 'CreateDXGIFactory' failed with code 0x%08X (%s)\n", (unsigned int)hr, GetSystemErrorString(hr));
return false;
}
hr = pFactory->CheckFeatureSupport(DXGI_FEATURE_PRESENT_ALLOW_TEARING, &enabled, sizeof(enabled));
pFactory->Release();
FreeLibrary(library);
if(FAILED(hr))
{
ri.Printf(PRINT_WARNING, "D3D12: 'IDXGIFactory5::CheckFeatureSupport' failed with code 0x%08X (%s)\n", (unsigned int)hr, GetSystemErrorString(hr));
return false;
}
return enabled != 0;
}
static UINT GetSwapChainFlags()
{
UINT flags = 0;
if(r_vsync->integer)
{
flags = DXGI_SWAP_CHAIN_FLAG_FRAME_LATENCY_WAITABLE_OBJECT;
}
else
{
flags = rhi.isTearingSupported ? DXGI_SWAP_CHAIN_FLAG_ALLOW_TEARING : 0;
}
return flags;
}
static void WaitForSwapChain()
{
if(rhi.frameLatencyWaitableObject != NULL && rhi.frameLatencyWaitNeeded)
{
Q_assert(r_vsync->integer != 0);
WaitForSingleObjectEx(rhi.frameLatencyWaitableObject, INFINITE, TRUE);
rhi.frameLatencyWaitNeeded = false;
}
}
static uint32_t CreateSRV(ID3D12Resource* resource, D3D12_SHADER_RESOURCE_VIEW_DESC& desc, bool slotAtIndex0)
{
Q_assert(resource);
if(desc.Format == DXGI_FORMAT_D32_FLOAT)
{
desc.Format = DXGI_FORMAT_R32_FLOAT;
}
if(!rhi.useDynamicResources)
{
return rhi.descHeapGeneric.CreateSRV(resource, desc);
}
if(desc.ViewDimension == D3D12_SRV_DIMENSION_RAYTRACING_ACCELERATION_STRUCTURE)
{
resource = NULL;
}
DynamicResources& dr = rhi.dynamicResources;
const uint32_t index = dr.srvIndex.Allocate(slotAtIndex0);
D3D12_CPU_DESCRIPTOR_HANDLE handle = dr.genericDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
handle.ptr += index * rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
rhi.device->CreateShaderResourceView(resource, &desc, handle);
return index;
}
static uint32_t CreateUAV(ID3D12Resource* resource, D3D12_UNORDERED_ACCESS_VIEW_DESC& desc)
{
Q_assert(resource);
if(!rhi.useDynamicResources)
{
return rhi.descHeapGeneric.CreateUAV(resource, desc);
}
DynamicResources& dr = rhi.dynamicResources;
const uint32_t index = dr.uavIndex.Allocate();
D3D12_CPU_DESCRIPTOR_HANDLE handleGPU = dr.genericDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
handleGPU.ptr += index * rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
rhi.device->CreateUnorderedAccessView(resource, NULL, &desc, handleGPU);
// make a CPU-visible copy at the same offset in another heap to enable UAV clears
D3D12_CPU_DESCRIPTOR_HANDLE handleCPU = dr.genericCPUDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
handleCPU.ptr += index * rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
rhi.device->CreateUnorderedAccessView(resource, NULL, &desc, handleCPU);
return index;
}
static uint32_t CreateCBV(D3D12_CONSTANT_BUFFER_VIEW_DESC& desc)
{
if(!rhi.useDynamicResources)
{
return rhi.descHeapGeneric.CreateCBV(desc);
}
DynamicResources& dr = rhi.dynamicResources;
const uint32_t index = dr.cbvIndex.Allocate();
D3D12_CPU_DESCRIPTOR_HANDLE handle = dr.genericDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
handle.ptr += index * rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
rhi.device->CreateConstantBufferView(&desc, handle);
return index;
}
static uint32_t CreateSampler(D3D12_SAMPLER_DESC& desc)
{
if(!rhi.useDynamicResources)
{
return rhi.descHeapSamplers.CreateSampler(desc);
}
DynamicResources& dr = rhi.dynamicResources;
const uint32_t index = dr.samplerIndex.Allocate();
D3D12_CPU_DESCRIPTOR_HANDLE handle = dr.samplerDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
handle.ptr += index * rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);
rhi.device->CreateSampler(&desc, handle);
return index;
}
static void CreateBufferDescriptors(Buffer& buffer)
{
const BufferDesc& rhiDesc = buffer.desc;
ID3D12Resource* const resource = buffer.buffer;
uint32_t srvIndex = InvalidDescriptorIndex;
if(rhiDesc.initialState & ResourceStates::ShaderAccessBits)
{
D3D12_SHADER_RESOURCE_VIEW_DESC srv = {};
srv.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
srv.Buffer.FirstElement = 0;
if(rhiDesc.structureByteCount > 0)
{
srv.Format = DXGI_FORMAT_UNKNOWN;
srv.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srv.Buffer.NumElements = rhiDesc.byteCount / rhiDesc.structureByteCount;
srv.Buffer.StructureByteStride = rhiDesc.structureByteCount;
srv.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;
}
else
{
srv.Format = DXGI_FORMAT_R32_TYPELESS;
srv.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srv.Buffer.NumElements = rhiDesc.byteCount / 4;
srv.Buffer.StructureByteStride = 0;
srv.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_RAW;
}
srvIndex = CreateSRV(resource, srv, rhiDesc.useSrvIndex0);
}
else if(rhiDesc.initialState & ResourceStates::RaytracingASBit)
{
D3D12_SHADER_RESOURCE_VIEW_DESC srv = {};
srv.ViewDimension = D3D12_SRV_DIMENSION_RAYTRACING_ACCELERATION_STRUCTURE;
srv.Format = DXGI_FORMAT_UNKNOWN;
srv.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srv.RaytracingAccelerationStructure.Location = buffer.gpuAddress;
srvIndex = CreateSRV(resource, srv, false);
}
uint32_t cbvIndex = InvalidDescriptorIndex;
if(rhiDesc.initialState & ResourceStates::ConstantBufferBit)
{
D3D12_CONSTANT_BUFFER_VIEW_DESC cbv = {};
cbv.BufferLocation = resource->GetGPUVirtualAddress();
cbv.SizeInBytes = rhiDesc.byteCount;
cbvIndex = CreateCBV(cbv);
}
uint32_t uavIndex = InvalidDescriptorIndex;
if(rhiDesc.initialState & ResourceStates::UnorderedAccessBit)
{
D3D12_UNORDERED_ACCESS_VIEW_DESC uav = {};
uav.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
uav.Buffer.CounterOffsetInBytes = 0;
uav.Buffer.FirstElement = 0;
if(rhiDesc.structureByteCount > 0)
{
uav.Format = DXGI_FORMAT_UNKNOWN;
uav.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;
uav.Buffer.NumElements = rhiDesc.byteCount / rhiDesc.structureByteCount;
uav.Buffer.StructureByteStride = rhiDesc.structureByteCount;
}
else
{
uav.Format = DXGI_FORMAT_R32_TYPELESS;
uav.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW;
uav.Buffer.NumElements = rhiDesc.byteCount / 4;
uav.Buffer.StructureByteStride = 0;
}
uavIndex = CreateUAV(resource, uav);
}
buffer.cbvIndex = cbvIndex;
buffer.uavIndex = uavIndex;
buffer.srvIndex = srvIndex;
}
static void CreateTextureDescriptors(Texture& texture)
{
const TextureDesc& rhiDesc = texture.desc;
ID3D12Resource* const resource = texture.texture;
if(rhiDesc.allowedState & ResourceStates::ShaderAccessBits)
{
D3D12_SHADER_RESOURCE_VIEW_DESC srv = {};
srv.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
srv.Format = GetD3DFormat(rhiDesc.format);
srv.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srv.Texture2D.MipLevels = rhiDesc.mipCount;
srv.Texture2D.MostDetailedMip = 0;
srv.Texture2D.PlaneSlice = 0;
srv.Texture2D.ResourceMinLODClamp = 0.0f;
if(rhiDesc.format == TextureFormat::Depth24_Stencil8)
{
srv.Format = DXGI_FORMAT_R24_UNORM_X8_TYPELESS;
}
if(rhiDesc.depth > 1)
{
srv.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE3D;
srv.Texture3D.MipLevels = rhiDesc.mipCount;
srv.Texture3D.MostDetailedMip = 0;
srv.Texture3D.ResourceMinLODClamp = 0.0f;
}
texture.srvIndex = CreateSRV(resource, srv, false);
}
else
{
texture.srvIndex = InvalidDescriptorIndex;
}
if(rhiDesc.allowedState & ResourceStates::UnorderedAccessBit)
{
for(uint32_t m = 0; m < rhiDesc.mipCount; ++m)
{
D3D12_UNORDERED_ACCESS_VIEW_DESC uav = {};
uav.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2D;
uav.Format = GetD3DFormat(rhiDesc.format);
uav.Texture2D.MipSlice = m;
uav.Texture2D.PlaneSlice = 0;
if(rhiDesc.depth > 1)
{
uav.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE3D;
uav.Texture3D.MipSlice = m;
uav.Texture3D.FirstWSlice = 0;
uav.Texture3D.WSize = UINT(~0); // get access to all slices
}
texture.mips[m].uavIndex = CreateUAV(resource, uav);
}
}
else
{
for(uint32_t m = 0; m < rhiDesc.mipCount; ++m)
{
texture.mips[m].uavIndex = InvalidDescriptorIndex;
}
}
}
static void InitDynamicResourceDescriptorRanges()
{
const uint32_t uavStart = DynamicResources::MaxDescriptorsSRV;
const uint32_t cbvStart = uavStart + DynamicResources::MaxDescriptorsUAV;
DynamicResources& dr = rhi.dynamicResources;
dr.srvIndex.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 0, DynamicResources::MaxDescriptorsSRV);
dr.uavIndex.Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, uavStart, DynamicResources::MaxDescriptorsUAV);
dr.cbvIndex.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, cbvStart, DynamicResources::MaxDescriptorsCBV);
dr.samplerIndex.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 0, 1024);
}
static void CreateDynamicResources()
{
if(!rhi.useDynamicResources)
{
return;
}
const uint32_t genericDescriptorCount = DynamicResources::MaxDescriptorsGeneric;
const uint32_t samplerDescriptorCount = DynamicResources::MaxDescriptorsSamplers;
DynamicResources& dr = rhi.dynamicResources;
InitDynamicResourceDescriptorRanges();
{
// keep 1.0 behavior for max. flexibility,
// effectively disabling optimizations
const D3D12_DESCRIPTOR_RANGE_FLAGS genericRangeFlags =
D3D12_DESCRIPTOR_RANGE_FLAG_DESCRIPTORS_VOLATILE |
D3D12_DESCRIPTOR_RANGE_FLAG_DATA_VOLATILE;
const D3D12_DESCRIPTOR_RANGE_FLAGS samplerRangeFlags =
D3D12_DESCRIPTOR_RANGE_FLAG_DESCRIPTORS_VOLATILE;
const DynamicResources::DescriptorRange generic[3] =
{
dr.srvIndex,
dr.uavIndex,
dr.cbvIndex
};
D3D12_DESCRIPTOR_RANGE1 mainRanges[3] = {};
for(uint32_t i = 0; i < ARRAY_LEN(generic); ++i)
{
mainRanges[i].RangeType = generic[i].type;
mainRanges[i].BaseShaderRegister = generic[i].start;
mainRanges[i].NumDescriptors = generic[i].count;
mainRanges[i].RegisterSpace = 0;
mainRanges[i].OffsetInDescriptorsFromTableStart = generic[i].start;
mainRanges[i].Flags = genericRangeFlags;
}
D3D12_DESCRIPTOR_RANGE1 samplerRange = {};
samplerRange.RangeType = D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER;
samplerRange.BaseShaderRegister = 0;
samplerRange.NumDescriptors = samplerDescriptorCount;
samplerRange.RegisterSpace = 0;
samplerRange.OffsetInDescriptorsFromTableStart = 0;
samplerRange.Flags = samplerRangeFlags;
D3D12_ROOT_PARAMETER1 rootParameters[3] = {};
rootParameters[0].ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
rootParameters[0].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;
rootParameters[0].DescriptorTable.NumDescriptorRanges = ARRAY_LEN(mainRanges);
rootParameters[0].DescriptorTable.pDescriptorRanges = mainRanges;
rootParameters[1].ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
rootParameters[1].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;
rootParameters[1].DescriptorTable.NumDescriptorRanges = 1;
rootParameters[1].DescriptorTable.pDescriptorRanges = &samplerRange;
rootParameters[2].ParameterType = D3D12_ROOT_PARAMETER_TYPE_32BIT_CONSTANTS;
rootParameters[2].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;
rootParameters[2].Constants.Num32BitValues = 64 - 2; // all the available space minus the 2 tables
rootParameters[2].Constants.ShaderRegister = 0; // access the RC at register b0
D3D12_VERSIONED_ROOT_SIGNATURE_DESC desc;
desc.Version = D3D_ROOT_SIGNATURE_VERSION_1_1;
desc.Desc_1_1.Flags =
D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
D3D12_ROOT_SIGNATURE_FLAG_CBV_SRV_UAV_HEAP_DIRECTLY_INDEXED |
D3D12_ROOT_SIGNATURE_FLAG_SAMPLER_HEAP_DIRECTLY_INDEXED |
D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_AMPLIFICATION_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_MESH_SHADER_ROOT_ACCESS;
desc.Desc_1_1.NumParameters = ARRAY_LEN(rootParameters);
desc.Desc_1_1.pParameters = rootParameters;
desc.Desc_1_1.NumStaticSamplers = 0;
desc.Desc_1_1.pStaticSamplers = NULL;
ID3DBlob* blob;
ID3DBlob* errorBlob;
if(FAILED(D3D12SerializeVersionedRootSignature(&desc, &blob, &errorBlob)))
{
ri.Error(ERR_FATAL, "Root signature creation failed!\n%s\n", (const char*)errorBlob->GetBufferPointer());
}
COM_RELEASE(errorBlob);
ID3D12RootSignature* signature;
D3D(rhi.device->CreateRootSignature(0, blob->GetBufferPointer(), blob->GetBufferSize(), IID_PPV_ARGS(&signature)));
COM_RELEASE(blob);
SetDebugName(signature, "Uber", D3DResourceType::RootSignature);
dr.rootSignature = signature;
}
{
ID3D12DescriptorHeap* heap;
D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {};
heapDesc.NumDescriptors = genericDescriptorCount;
heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
D3D(rhi.device->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&heap)));
SetDebugName(heap, "Uber GPU generic", D3DResourceType::DescriptorHeap);
dr.genericDescriptorHeap = heap;
heapDesc.NumDescriptors = samplerDescriptorCount;
heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER;
D3D(rhi.device->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&heap)));
SetDebugName(heap, "Uber GPU sampler", D3DResourceType::DescriptorHeap);
dr.samplerDescriptorHeap = heap;
heapDesc.NumDescriptors = genericDescriptorCount;
heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
D3D(rhi.device->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&heap)));
SetDebugName(heap, "Uber CPU generic", D3DResourceType::DescriptorHeap);
dr.genericCPUDescriptorHeap = heap;
}
}
static void DestroyDynamicResources()
{
DynamicResources& dr = rhi.dynamicResources;
COM_RELEASE(dr.rootSignature);
COM_RELEASE(dr.genericDescriptorHeap);
COM_RELEASE(dr.samplerDescriptorHeap);
COM_RELEASE(dr.genericCPUDescriptorHeap);
}
static void BindDynamicResources()
{
if(!rhi.useDynamicResources)
{
return;
}
// @NOTE: Set*RootSignature must be called after SetDescriptorHeaps
DynamicResources& dr = rhi.dynamicResources;
ID3D12DescriptorHeap* heaps[] = { dr.genericDescriptorHeap, dr.samplerDescriptorHeap };
rhi.commandList->SetDescriptorHeaps(ARRAY_LEN(heaps), heaps);
if(rhi.commandList->GetType() == D3D12_COMMAND_LIST_TYPE_DIRECT)
{
rhi.commandList->SetGraphicsRootSignature(dr.rootSignature);
rhi.commandList->SetGraphicsRootDescriptorTable(0, dr.genericDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
rhi.commandList->SetGraphicsRootDescriptorTable(1, dr.samplerDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
}
rhi.commandList->SetComputeRootSignature(dr.rootSignature);
rhi.commandList->SetComputeRootDescriptorTable(0, dr.genericDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
rhi.commandList->SetComputeRootDescriptorTable(1, dr.samplerDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
}
static void UpdateDynamicResources()
{
if(!rhi.useDynamicResources)
{
return;
}
InitDynamicResourceDescriptorRanges();
Texture* texture;
HTexture htexture;
for(int i = 0; rhi.textures.FindNext(&texture, &htexture, &i);)
{
CreateTextureDescriptors(*texture);
}
Buffer* buffer;
HBuffer hbuffer;
for(int i = 0; rhi.buffers.FindNext(&buffer, &hbuffer, &i);)
{
CreateBufferDescriptors(*buffer);
}
}
static void SetRootConstants(uint32_t byteOffset, uint32_t byteCount, const void* constants, bool graphics)
{
Q_assert(CanWriteCommands());
Q_assert(byteCount > 0);
Q_assert(byteCount % 4 == 0);
Q_assert(byteOffset % 4 == 0);
Q_assert(byteOffset + byteCount <= 256 - 2 * 4); // 8 bytes are used for the 2 descriptor tables
Q_assert(constants);
// parameter index is 2 because the 2 descriptor tables come first
if(graphics)
{
rhi.commandList->SetGraphicsRoot32BitConstants(2, (UINT)byteCount / 4, constants, (UINT)byteOffset / 4);
}
else
{
rhi.commandList->SetComputeRoot32BitConstants(2, (UINT)byteCount / 4, constants, (UINT)byteOffset / 4);
}
}
static void Barrier(uint32_t texCount, const TextureBarrier* textures, uint32_t buffCount, const BufferBarrier* buffers)
{
Q_assert(CanWriteCommands());
static D3D12_RESOURCE_BARRIER barriers[MAX_DRAWIMAGES * 2];
Q_assert(buffCount + texCount <= ARRAY_LEN(barriers));
UINT barrierCount = 0;
for(uint32_t i = 0; i < texCount; ++i)
{
Q_assert(!IsNullHandle(textures[i].texture));
Texture& texture = rhi.textures.Get(textures[i].texture);
if(SetBarrier(texture.currentState, barriers[barrierCount], textures[i].newState, texture.texture))
{
barrierCount++;
}
}
for(uint32_t i = 0; i < buffCount; ++i)
{
Q_assert(!IsNullHandle(buffers[i].buffer));
Buffer& buffer = rhi.buffers.Get(buffers[i].buffer);
if(SetBarrier(buffer.currentState, barriers[barrierCount], buffers[i].newState, buffer.buffer))
{
barrierCount++;
}
}
if(barrierCount > 0)
{
rhi.commandList->ResourceBarrier(barrierCount, barriers);
}
}
static void EnsureBufferIsThisLarge(HBuffer& hbuffer, const char* name, ResourceStates::Flags state, uint32_t byteCount)
{
uint32_t oldByteCount = 0;
if(!IsNullHandle(hbuffer))
{
const Buffer& buffer = rhi.buffers.Get(hbuffer);
if(buffer.desc.byteCount >= byteCount)
{
return;
}
oldByteCount = buffer.desc.byteCount;
}
byteCount = max(byteCount, 2 * oldByteCount);
DestroyBufferDelayed(hbuffer);
BufferDesc desc(name, byteCount, state);
desc.shortLifeTime = true;
hbuffer = CreateBuffer(desc);
}
static void UpdateGPUIndexRangeAndHelp()
{
Cvar_SetRange(r_gpuIndex->name, r_gpuIndex->type, "0", va("%d", rhi.gpuCount));
char values[256];
StringList stringList;
stringList.Init(values, sizeof(values));
stringList.Append("0");
stringList.Append("Default GPU");
stringList.Append("");
for(uint32_t i = 0; i < rhi.gpuCount; ++i)
{
stringList.Append(va("%d", (int)i + 1));
stringList.Append(rhi.gpus[i].name);
stringList.Append("");
}
stringList.Terminate();
Cvar_SetMenuData(r_gpuIndex->name, CVARCAT_DISPLAY | CVARCAT_PERFORMANCE, "GPU selection", "Choose the GPU to use", "", values);
}
#if defined(RHI_ENABLE_NVAPI) && defined(RHI_ENABLE_NVAPI_RT_VALIDATION)
static void __stdcall NVAPI_RTValidationCallback(void* pUserData, NVAPI_D3D12_RAYTRACING_VALIDATION_MESSAGE_SEVERITY severity, const char* messageCode, const char* message, const char* messageDetails)
{
const char* severityString = "unknown";
switch(severity)
{
case NVAPI_D3D12_RAYTRACING_VALIDATION_MESSAGE_SEVERITY_ERROR: severityString = "error"; break;
case NVAPI_D3D12_RAYTRACING_VALIDATION_MESSAGE_SEVERITY_WARNING: severityString = "warning"; break;
}
OutputDebugStringA(va("NVAPI RT: %s: [%s] %s\n%s\n", severityString, messageCode, message, messageDetails));
}
#endif
static void DrawResourceUsage()
{
if(BeginTable("Handles", 3))
{
TableHeader(3, "Type", "Count", "Max");
#define ITEM(Name, Variable) TableRow(3, Name, va("%d", (int)Variable.CountUsedSlots()), va("%d", (int)Variable.size))
ITEM("Buffers", rhi.buffers);
ITEM("Textures", rhi.textures);
ITEM("Root Signatures", rhi.rootSignatures);
ITEM("Descriptor Tables", rhi.descriptorTables);
ITEM("Pipelines", rhi.pipelines);
ITEM("Shaders", rhi.shaders);
ITEM("Samplers", rhi.samplers);
#undef ITEM
TableRow(3, "Duration Queries",
va("%d", rhi.frameQueries[rhi.frameIndex].durationQueryCount),
va("%d", MaxDurationQueries));
ImGui::EndTable();
}
ImGui::NewLine();
if(BeginTable("Descriptors", 3))
{
TableHeader(3, "Type", "Count", "Max");
#define ITEM(Name, Variable) TableRow(3, Name, va("%d", (int)Variable.allocatedItemCount), va("%d", (int)Variable.size))
#define DRITEM(Name, Index) TableRow(3, Name, va("%d", (int)(Index.index - Index.start)), va("%d", (int)Index.count));
if(rhi.useDynamicResources)
{
const DynamicResources& dr = rhi.dynamicResources;
DRITEM("GPU SRV", dr.srvIndex);
DRITEM("GPU UAV", dr.uavIndex);
DRITEM("GPU CBV", dr.cbvIndex);
DRITEM("GPU Samplers", dr.samplerIndex);
}
else
{
ITEM("CPU CBV/SRV/UAV", rhi.descHeapGeneric.freeList);
ITEM("CPU Samplers", rhi.descHeapSamplers.freeList);
}
ITEM("CPU RTV", rhi.descHeapRTVs.freeList);
ITEM("CPU DSV", rhi.descHeapDSVs.freeList);
#undef DRITEM
#undef ITEM
ImGui::EndTable();
}
ImGui::NewLine();
if(BeginTable("Memory", 2))
{
D3D12MA::Budget budget;
rhi.allocator->GetBudget(&budget, NULL);
TableRow2("UMA", rhi.allocator->IsUMA());
TableRow2("Cache coherent UMA", rhi.allocator->IsCacheCoherentUMA());
TableRow(2, "Total", Com_FormatBytes(rhi.allocator->GetMemoryCapacity(DXGI_MEMORY_SEGMENT_GROUP_LOCAL)));
TableRow(2, "Budget", Com_FormatBytes(budget.BudgetBytes));
TableRow(2, "Usage", Com_FormatBytes(budget.UsageBytes));
TableRow(2, "Allocated", Com_FormatBytes(budget.Stats.BlockBytes));
TableRow(2, "Used", Com_FormatBytes(budget.Stats.AllocationBytes));
TableRow(2, "Block count", va("%d", budget.Stats.BlockCount));
TableRow(2, "Allocation count", va("%d", budget.Stats.AllocationCount));
ImGui::EndTable();
}
}
static void DrawCaps()
{
if(BeginTable("Capabilities", 2))
{
TableRow(2, "Adapter", rhi.adapterName);
TableRow(2, "Driver version", rhi.umdVersionString);
D3D12_FEATURE_DATA_D3D12_OPTIONS options0 = { 0 };
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS, &options0, sizeof(options0))))
{
const char* tier = "Unknown";
switch(options0.ResourceBindingTier)
{
case D3D12_RESOURCE_BINDING_TIER_1: tier = "1"; break;
case D3D12_RESOURCE_BINDING_TIER_2: tier = "2"; break;
case D3D12_RESOURCE_BINDING_TIER_3: tier = "3"; break;
default: break;
}
TableRow(2, "Resource binding tier", tier);
}
D3D12_FEATURE_DATA_D3D12_OPTIONS2 options2 = { 0 };
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS2, &options2, sizeof(options2))))
{
TableRow2("Depth bounds test", options2.DepthBoundsTestSupported ? "YES" : "NO");
}
D3D12_FEATURE_DATA_ARCHITECTURE arch0 = { 0 };
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_ARCHITECTURE, &arch0, sizeof(arch0))))
{
TableRow2("Tile-based renderer", arch0.TileBasedRenderer ? "YES" : "NO");
}
D3D12_FEATURE_DATA_ROOT_SIGNATURE root0 = {};
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &root0, sizeof(root0))))
{
const char* version = "Unknown";
switch(root0.HighestVersion)
{
case D3D_ROOT_SIGNATURE_VERSION_1_0: version = "1.0"; break;
case D3D_ROOT_SIGNATURE_VERSION_1_1: version = "1.1"; break;
default: break;
}
TableRow(2, "Root signature version", version);
}
D3D12_FEATURE_DATA_D3D12_OPTIONS5 options5 = { 0 };
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS5, &options5, sizeof(options5))))
{
const char* tier = "Unknown";
switch(options5.RenderPassesTier)
{
case D3D12_RENDER_PASS_TIER_0: tier = "0"; break;
case D3D12_RENDER_PASS_TIER_1: tier = "1"; break;
case D3D12_RENDER_PASS_TIER_2: tier = "2"; break;
default: break;
}
TableRow(2, "Render passes tier", tier);
tier = "Unknown";
switch(options5.RaytracingTier)
{
case D3D12_RAYTRACING_TIER_NOT_SUPPORTED: tier = "Not supported"; break;
case D3D12_RAYTRACING_TIER_1_0: tier = "1.0"; break;
case D3D12_RAYTRACING_TIER_1_1: tier = "1.1"; break;
default: break;
}
TableRow(2, "Raytracing (DXR) tier", tier);
}
D3D12_FEATURE_DATA_D3D12_OPTIONS6 options6 = { 0 };
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS6, &options6, sizeof(options6))))
{
const char* tier = "Unknown";
switch(options6.VariableShadingRateTier)
{
case D3D12_VARIABLE_SHADING_RATE_TIER_NOT_SUPPORTED: tier = "N/A"; break;
case D3D12_VARIABLE_SHADING_RATE_TIER_1: tier = "1"; break;
case D3D12_VARIABLE_SHADING_RATE_TIER_2: tier = "2"; break;
default: break;
}
TableRow(2, "Variable-rate shading (VRS) tier", tier);
TableRow(2, "VRS: 2x4, 4x2, 4x4 support", options6.AdditionalShadingRatesSupported ? "YES" : "NO");
}
D3D12_FEATURE_DATA_SHADER_MODEL shaderModel = {};
shaderModel.HighestShaderModel = D3D_SHADER_MODEL_6_8;
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_SHADER_MODEL, &shaderModel, sizeof(shaderModel))))
{
const char* model = "Unknown";
switch(shaderModel.HighestShaderModel)
{
case D3D_SHADER_MODEL_6_0: model = "6.0"; break;
case D3D_SHADER_MODEL_6_1: model = "6.1"; break;
case D3D_SHADER_MODEL_6_2: model = "6.2"; break;
case D3D_SHADER_MODEL_6_3: model = "6.3"; break;
case D3D_SHADER_MODEL_6_4: model = "6.4"; break;
case D3D_SHADER_MODEL_6_5: model = "6.5"; break;
case D3D_SHADER_MODEL_6_6: model = "6.6"; break;
case D3D_SHADER_MODEL_6_7: model = "6.7"; break;
case D3D_SHADER_MODEL_6_8: model = "6.8"; break;
default: break;
}
TableRow(2, "Shader model", model);
}
TableRow(2, "UMA", rhiInfo.isUMA ? "YES" : "NO");
TableRow(2, "Cache-coherent UMA", rhiInfo.isCacheCoherentUMA ? "YES" : "NO");
TableRow(2, "Barycentrics", rhiInfo.hasBarycentrics ? "YES" : "NO");
// the validation layer reports live objects at shutdown when NvAPI_D3D12_QueryCpuVisibleVidmem is called
#if defined(RHI_ENABLE_NVAPI)
if(rhi.nvapiActive)
{
NvU64 cvvTotal, cvvFree;
if(NvAPI_D3D12_QueryCpuVisibleVidmem(rhi.device, &cvvTotal, &cvvFree) == NvAPI_Status::NVAPI_OK &&
cvvTotal > 0)
{
TableRow(2, "CPU Visible VRAM Total", Com_FormatBytes(cvvTotal));
TableRow(2, "CPU Visible VRAM Free", Com_FormatBytes(cvvFree));
}
else
{
TableRow(2, "CPU Visible VRAM", "N/A");
}
}
#endif
ImGui::EndTable();
}
}
static void DrawTextures()
{
static char filter[256];
if(ImGui::Button("Clear filter"))
{
filter[0] = '\0';
}
ImGui::SameLine();
ImGui::InputText(" ", filter, ARRAY_LEN(filter));
if(BeginTable("Textures", 4))
{
TableHeader(4, "Name", "State", "Size", "Format");
int i = 0;
Texture* texture;
HTexture htexture;
while(rhi.textures.FindNext(&texture, &htexture, &i))
{
if(filter[0] != '\0' && !Com_Filter(filter, texture->desc.name))
{
continue;
}
const D3D12_RESOURCE_DESC desc = texture->texture->GetDesc();
const uint64_t byteCount = texture->allocation != NULL ? texture->allocation->GetSize() : 0;
TableRow(4,
texture->desc.name,
GetNameForD3DResourceStates(texture->currentState),
Com_FormatBytes(byteCount),
GetNameForD3DFormat(desc.Format));
}
ImGui::EndTable();
}
}
static void DrawBuffers()
{
static char filter[256];
if(ImGui::Button("Clear filter"))
{
filter[0] = '\0';
}
ImGui::SameLine();
ImGui::InputText(" ", filter, ARRAY_LEN(filter));
if(BeginTable("Buffers", 4))
{
TableHeader(4, "Buffer", "State", "Heap", "Size");
int i = 0;
Buffer* buffer;
HBuffer hbuffer;
while(rhi.buffers.FindNext(&buffer, &hbuffer, &i))
{
if(filter[0] != '\0' && !Com_Filter(filter, buffer->desc.name))
{
continue;
}
TableRow(4,
buffer->desc.name,
GetNameForD3DResourceStates(buffer->currentState),
GetResourceHeapName(buffer->buffer),
Com_FormatBytes(buffer->allocation->GetSize()));
}
ImGui::EndTable();
}
}
typedef void (*UICallback)();
static void DrawSection(const char* name, UICallback callback)
{
if(ImGui::BeginTabItem(name))
{
(*callback)();
ImGui::EndTabItem();
}
}
static void DrawGUI()
{
static bool resourcesActive = false;
ToggleBooleanWithShortcut(resourcesActive, ImGuiKey_R);
GUI_AddMainMenuItem(GUI_MainMenu::Info, "RHI Resources", "Ctrl+R", &resourcesActive);
if(resourcesActive)
{
if(ImGui::Begin("Direct3D 12 RHI", &resourcesActive))
{
if(ImGui::BeginTabBar("Tabs#RHI"))
{
DrawSection("Resources", &DrawResourceUsage);
DrawSection("Caps", &DrawCaps);
DrawSection("Textures", &DrawTextures);
DrawSection("Buffers", &DrawBuffers);
ImGui::EndTabBar();
}
}
ImGui::End();
}
}
bool Init(const InitDesc& initDesc)
{
Sys_V_Init();
if(rhi.device != NULL)
{
rhi.raytracingScratchBuffer = RHI_MAKE_NULL_HANDLE();
rhi.raytracingInstanceBuffer = RHI_MAKE_NULL_HANDLE();
DXGI_SWAP_CHAIN_DESC desc;
D3D(rhi.swapChain->GetDesc(&desc));
// V-Sync toggles require changing the swap chain flags,
// which means ResizeBuffers can't be used
const bool vsync = r_vsync->integer != 0;
rhi.renderFrameCount = vsync ? 1 : 2;
if(glInfo.winWidth != desc.BufferDesc.Width ||
glInfo.winHeight != desc.BufferDesc.Height ||
vsync != rhi.vsync)
{
WaitUntilDeviceIsIdle();
for(uint32_t f = 0; f < rhi.swapChainBufferCount; ++f)
{
DestroyTexture(rhi.renderTargets[f]);
}
const UINT flags = GetSwapChainFlags();
if(vsync == rhi.vsync)
{
D3D(rhi.swapChain->ResizeBuffers(desc.BufferCount, glInfo.winWidth, glInfo.winHeight, desc.BufferDesc.Format, flags));
}
else
{
if(rhi.frameLatencyWaitableObject != NULL)
{
CloseHandle(rhi.frameLatencyWaitableObject);
rhi.frameLatencyWaitableObject = NULL;
}
COM_RELEASE(rhi.swapChain);
IDXGISwapChain* dxgiSwapChain;
DXGI_SWAP_CHAIN_DESC swapChainDesc = { 0 };
swapChainDesc.BufferCount = rhi.swapChainBufferCount;
swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapChainDesc.BufferDesc.Width = glInfo.winWidth;
swapChainDesc.BufferDesc.Height = glInfo.winHeight;
swapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.Flags = flags;
swapChainDesc.OutputWindow = GetActiveWindow();
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.SampleDesc.Quality = 0;
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
swapChainDesc.Windowed = TRUE;
D3D(rhi.factory->CreateSwapChain(rhi.mainCommandQueue, &swapChainDesc, &dxgiSwapChain));
D3D(dxgiSwapChain->QueryInterface(IID_PPV_ARGS(&rhi.swapChain)));
COM_RELEASE(dxgiSwapChain);
if(vsync)
{
rhi.frameLatencyWaitableObject = rhi.swapChain->GetFrameLatencyWaitableObject();
rhi.frameLatencyWaitNeeded = true;
D3D(rhi.swapChain->SetMaximumFrameLatency(1));
}
}
GrabSwapChainTextures();
rhi.swapChainBufferIndex = rhi.swapChain->GetCurrentBackBufferIndex();
for(uint32_t f = 0; f < FrameCount; ++f)
{
rhi.mainFenceValues[f] = 0;
}
rhi.readback.ResizeIfNeeded();
}
GetMonitorRefreshRate();
rhi.tempStringAllocator.Clear();
rhi.vsync = vsync;
UpdateDynamicResources();
UpdateGPUIndexRangeAndHelp();
return false;
}
// @NOTE: we can't use memset because of the StaticPool members
new (&rhi) RHIPrivate();
rhi.useDynamicResources = initDesc.directDescriptorHeapIndexing;
// check for the presence of our 3 DLLs ASAP
{
HMODULE coreModule = LoadLibraryA("cnq3/D3D12Core.dll");
if(coreModule == NULL)
{
ri.Error(ERR_FATAL, "Failed to locate/open cnq3/D3D12Core.dll\n");
}
FreeLibrary(coreModule);
rhi.dxilModule = LoadLibraryA("cnq3/dxil.dll");
if(rhi.dxilModule == NULL)
{
ri.Error(ERR_FATAL, "Failed to locate/open cnq3/dxil.dll\n");
}
rhi.dxcModule = LoadLibraryA("cnq3/dxcompiler.dll");
if(rhi.dxcModule == NULL)
{
ri.Error(ERR_FATAL, "Failed to locate/open cnq3/dxcompiler.dll\n");
}
}
rhi.persStringAllocator.Init(rhi.persStringData, sizeof(rhi.persStringData));
rhi.tempStringAllocator.Init(rhi.tempStringData, sizeof(rhi.tempStringData));
#if defined(D3D_DEBUG)
if(SUCCEEDED(D3D12GetDebugInterface(IID_PPV_ARGS(&rhi.debug))))
{
// calling after device creation will remove the device
// if you hit this error:
// "D3D12 SDKLayers dll does not match the D3D12SDKVersion of D3D12 Core dll."
// make sure your D3D12SDKVersion and D3D12SDKPath are valid!
rhi.debug->EnableDebugLayer();
#if defined(D3D_GPU_BASED_VALIDATION)
ID3D12Debug1* debug1;
if(SUCCEEDED(rhi.debug->QueryInterface(IID_PPV_ARGS(&debug1))))
{
debug1->SetEnableGPUBasedValidation(TRUE);
debug1->SetEnableSynchronizedCommandQueueValidation(TRUE);
}
#endif
}
UINT dxgiFactoryFlags = 0;
if(SUCCEEDED(DXGIGetDebugInterface1(0, IID_PPV_ARGS(&rhi.dxgiInfoQueue))))
{
dxgiFactoryFlags |= DXGI_CREATE_FACTORY_DEBUG;
rhi.dxgiInfoQueue->SetBreakOnSeverity(DXGI_DEBUG_ALL, DXGI_INFO_QUEUE_MESSAGE_SEVERITY_ERROR, TRUE);
rhi.dxgiInfoQueue->SetBreakOnSeverity(DXGI_DEBUG_ALL, DXGI_INFO_QUEUE_MESSAGE_SEVERITY_CORRUPTION, TRUE);
}
#endif
#if defined(D3D_DEBUG)
D3D(CreateDXGIFactory2(dxgiFactoryFlags, IID_PPV_ARGS(&rhi.factory)));
#else
D3D(CreateDXGIFactory1(IID_PPV_ARGS(&rhi.factory)));
#endif
CreateAdapterList();
if(r_gpuIndex->integer > 0)
{
rhi.adapter = GetAdapterAtIndex(r_gpuIndex->integer - 1);
}
if(rhi.adapter == NULL)
{
rhi.adapter = FindMostSuitableAdapter(rhi.factory, r_gpuPreference->integer);
}
{
char adapterName[256];
const char* adapterNamePtr = "unknown";
DXGI_ADAPTER_DESC1 desc;
if(SUCCEEDED(rhi.adapter->GetDesc1(&desc)) &&
WideCharToMultiByte(CP_UTF8, 0, desc.Description, -1, adapterName, sizeof(adapterName), NULL, NULL) > 0)
{
adapterNamePtr = adapterName;
}
ri.Printf(PRINT_ALL, "Selected graphics adapter: %s\n", adapterNamePtr);
Q_strncpyz(rhi.adapterName, adapterNamePtr, sizeof(rhi.adapterName));
}
UpdateGPUIndexRangeAndHelp();
D3D(D3D12CreateDevice(rhi.adapter, FeatureLevel, IID_PPV_ARGS(&rhi.device)));
rhi.vendorId = VENDORID_INVALID;
{
DXGI_ADAPTER_DESC desc;
if(SUCCEEDED(rhi.adapter->GetDesc(&desc)))
{
rhi.vendorId = desc.VendorId;
}
}
{
LARGE_INTEGER driverVersion;
if(SUCCEEDED(rhi.adapter->CheckInterfaceSupport(__uuidof(IDXGIDevice), &driverVersion)))
{
rhi.umdVersionSplit[0] = driverVersion.QuadPart >> 48;
rhi.umdVersionSplit[1] = (driverVersion.QuadPart >> 32) & 0xFFFF;
rhi.umdVersionSplit[2] = (driverVersion.QuadPart >> 16) & 0xFFFF;
rhi.umdVersionSplit[3] = driverVersion.QuadPart & 0xFFFF;
rhi.umdVersion = driverVersion.QuadPart;
Com_sprintf(rhi.umdVersionString, sizeof(rhi.umdVersionString), "%d.%d.%d.%d",
(int)rhi.umdVersionSplit[0],
(int)rhi.umdVersionSplit[1],
(int)rhi.umdVersionSplit[2],
(int)rhi.umdVersionSplit[3]);
}
}
// with direct descriptor heap indexing on Intel,
// *Texture*.GetDimensions() calls return incorrect values
// UMD version 31.0.101.5382 (0x001F000000651506) is still broken
// UMD version 31.0.101.5444 (0X001F000000651544) is the first fixed version
if(initDesc.directDescriptorHeapIndexing &&
rhi.vendorId == VENDORID_INTEL &&
rhi.umdVersion < 0X001F000000651544)
{
ri.Error(ERR_FATAL,
"This Intel graphics driver is known to have incorrect behavior.\n"
"Version 31.0.101.5444 (April 19, 2024) or newer is required.\n");
}
#if defined(RHI_ENABLE_AFTERMATH)
rhi.aftermathActive = false;
if(rhi.vendorId == VENDORID_NVIDIA)
{
const GFSDK_Aftermath_FeatureFlags flags = GFSDK_Aftermath_FeatureFlags_Maximum;
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_DX12_Initialize(GFSDK_Aftermath_Version_API, flags, rhi.device);
if(result == GFSDK_Aftermath_Result_Success)
{
rhi.aftermathActive = true;
}
Q_assert(rhi.aftermathActive);
}
#endif
{
D3D12_INDIRECT_ARGUMENT_DESC argDesc = {};
argDesc.Type = D3D12_INDIRECT_ARGUMENT_TYPE_DISPATCH;
D3D12_COMMAND_SIGNATURE_DESC desc = {};
desc.ByteStride = 12;
desc.NodeMask = 0;
desc.NumArgumentDescs = 1;
desc.pArgumentDescs = &argDesc;
D3D(rhi.device->CreateCommandSignature(&desc, NULL, IID_PPV_ARGS(&rhi.indirectDispatchSignature)));
}
if(rhi.useDynamicResources)
{
D3D12_FEATURE_DATA_D3D12_OPTIONS options0 = {};
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS, &options0, sizeof(options0))))
{
if(options0.ResourceBindingTier < D3D12_RESOURCE_BINDING_TIER_3)
{
ri.Error(ERR_FATAL, "The CRP requires Resource Binding Tier 3 capable hardware\n");
}
}
D3D12_FEATURE_DATA_SHADER_MODEL shaderModel = {};
shaderModel.HighestShaderModel = D3D_SHADER_MODEL_6_6;
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_SHADER_MODEL, &shaderModel, sizeof(shaderModel))))
{
if(shaderModel.HighestShaderModel < D3D_SHADER_MODEL_6_6)
{
ri.Error(ERR_FATAL, "The CRP requires Shader Model 6.6 capable hardware\n");
}
}
}
{
D3D12MA::ALLOCATOR_DESC desc = {};
desc.pDevice = rhi.device;
desc.pAdapter = rhi.adapter;
desc.Flags = D3D12MA::ALLOCATOR_FLAG_SINGLETHREADED;
D3D(D3D12MA::CreateAllocator(&desc, &rhi.allocator));
}
if(rhi.allocator->IsCacheCoherentUMA())
{
D3D12MA::POOL_DESC poolDesc = {};
poolDesc.HeapProperties.CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_WRITE_COMBINE;
poolDesc.HeapProperties.CreationNodeMask = 0;
poolDesc.HeapProperties.MemoryPoolPreference = D3D12_MEMORY_POOL_L0; // system
poolDesc.HeapProperties.Type = D3D12_HEAP_TYPE_CUSTOM;
poolDesc.HeapProperties.VisibleNodeMask = 0;
poolDesc.HeapFlags = D3D12_HEAP_FLAG_NONE;
poolDesc.Flags = D3D12MA::POOL_FLAG_NONE;
D3D12MA::Pool* pool;
if(SUCCEEDED(rhi.allocator->CreatePool(&poolDesc, &pool)))
{
rhi.umaPool = pool;
}
}
#if defined(D3D_DEBUG)
if(rhi.debug)
{
rhi.device->QueryInterface(IID_PPV_ARGS(&rhi.infoQueue));
if(rhi.infoQueue)
{
rhi.infoQueue->SetBreakOnSeverity(D3D12_MESSAGE_SEVERITY_CORRUPTION, TRUE);
rhi.infoQueue->SetBreakOnSeverity(D3D12_MESSAGE_SEVERITY_ERROR, TRUE);
rhi.infoQueue->SetBreakOnSeverity(D3D12_MESSAGE_SEVERITY_WARNING, TRUE);
D3D12_MESSAGE_ID filteredMessages[] =
{
// can't remember what this one is for...
//D3D12_MESSAGE_ID_SETPRIVATEDATA_CHANGINGPARAMS,
// clear color mismatch will happen when going through a teleporter
D3D12_MESSAGE_ID_CLEARRENDERTARGETVIEW_MISMATCHINGCLEARVALUE
};
D3D12_INFO_QUEUE_FILTER filter = { 0 };
filter.DenyList.NumIDs = ARRAY_LEN(filteredMessages);
filter.DenyList.pIDList = filteredMessages;
rhi.infoQueue->AddStorageFilterEntries(&filter);
}
}
if(rhi.debug)
{
ID3D12DebugDevice1* debugDevice1;
if(SUCCEEDED(rhi.device->QueryInterface(IID_PPV_ARGS(&debugDevice1))))
{
// defaults:
// D3D12_GPU_BASED_VALIDATION_SHADER_PATCH_MODE_UNGUARDED_VALIDATION
// 256
// D3D12_GPU_BASED_VALIDATION_PIPELINE_STATE_CREATE_FLAG_NONE
D3D12_DEBUG_DEVICE_GPU_BASED_VALIDATION_SETTINGS gbv = {};
gbv.DefaultShaderPatchMode = D3D12_GPU_BASED_VALIDATION_SHADER_PATCH_MODE_GUARDED_VALIDATION;
gbv.MaxMessagesPerCommandList = 1024; // defaults to 256
gbv.PipelineStateCreateFlags = D3D12_GPU_BASED_VALIDATION_PIPELINE_STATE_CREATE_FLAG_FRONT_LOAD_CREATE_GUARDED_VALIDATION_SHADERS;
debugDevice1->SetDebugParameter(D3D12_DEBUG_DEVICE_PARAMETER_GPU_BASED_VALIDATION_SETTINGS, &gbv, sizeof(gbv));
// default: D3D12_DEBUG_FEATURE_NONE
const D3D12_DEBUG_FEATURE features =
D3D12_DEBUG_FEATURE_ALLOW_BEHAVIOR_CHANGING_DEBUG_AIDS |
D3D12_DEBUG_FEATURE_CONSERVATIVE_RESOURCE_STATE_TRACKING;
debugDevice1->SetDebugParameter(D3D12_DEBUG_DEVICE_PARAMETER_FEATURE_FLAGS, &features, sizeof(features));
COM_RELEASE(debugDevice1);
}
}
#endif
{
uint16_t* freeList = rhi.descriptorFreeListData;
rhi.descHeapGeneric.Create(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV, MaxCPUGenericDescriptors, freeList, "all-encompassing CBV SRV UAV");
freeList += MaxCPUGenericDescriptors;
rhi.descHeapSamplers.Create(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER, MaxCPUSamplerDescriptors, freeList, "all-encompassing sampler");
freeList += MaxCPUSamplerDescriptors;
rhi.descHeapRTVs.Create(D3D12_DESCRIPTOR_HEAP_TYPE_RTV, MaxCPURTVDescriptors, freeList, "all-encompassing RTV");
freeList += MaxCPURTVDescriptors;
rhi.descHeapDSVs.Create(D3D12_DESCRIPTOR_HEAP_TYPE_DSV, MaxCPUDSVDescriptors, freeList, "all-encompassing DSV");
}
{
D3D12_COMMAND_QUEUE_DESC commandQueueDesc = { 0 };
commandQueueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
commandQueueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
commandQueueDesc.Priority = D3D12_COMMAND_QUEUE_PRIORITY_NORMAL;
commandQueueDesc.NodeMask = 0;
D3D(rhi.device->CreateCommandQueue(&commandQueueDesc, IID_PPV_ARGS(&rhi.mainCommandQueue)));
SetDebugName(rhi.mainCommandQueue, "main", D3DResourceType::CommandQueue);
commandQueueDesc.Type = D3D12_COMMAND_LIST_TYPE_COMPUTE;
D3D(rhi.device->CreateCommandQueue(&commandQueueDesc, IID_PPV_ARGS(&rhi.computeCommandQueue)));
SetDebugName(rhi.computeCommandQueue, "compute", D3DResourceType::CommandQueue);
}
rhi.isTearingSupported = IsTearingSupported();
rhi.swapChainBufferCount = 2;
rhi.renderFrameCount = r_vsync->integer ? 1 : 2;
{
const UINT flags = GetSwapChainFlags();
IDXGISwapChain* dxgiSwapChain;
DXGI_SWAP_CHAIN_DESC swapChainDesc = { 0 };
swapChainDesc.BufferCount = rhi.swapChainBufferCount;
swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapChainDesc.BufferDesc.Width = glInfo.winWidth;
swapChainDesc.BufferDesc.Height = glInfo.winHeight;
swapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.Flags = flags;
swapChainDesc.OutputWindow = GetActiveWindow();
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.SampleDesc.Quality = 0;
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
swapChainDesc.Windowed = TRUE;
D3D(rhi.factory->CreateSwapChain(rhi.mainCommandQueue, &swapChainDesc, &dxgiSwapChain));
rhi.vsync = r_vsync->integer != 0;
D3D(dxgiSwapChain->QueryInterface(IID_PPV_ARGS(&rhi.swapChain)));
rhi.swapChainBufferIndex = rhi.swapChain->GetCurrentBackBufferIndex();
COM_RELEASE(dxgiSwapChain);
if(r_vsync->integer)
{
rhi.frameLatencyWaitableObject = rhi.swapChain->GetFrameLatencyWaitableObject();
rhi.frameLatencyWaitNeeded = true;
D3D(rhi.swapChain->SetMaximumFrameLatency(1));
}
GrabSwapChainTextures();
}
GetMonitorRefreshRate();
for(UINT f = 0; f < FrameCount; ++f)
{
D3D(rhi.device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&rhi.mainCommandAllocators[f])));
SetDebugName(rhi.mainCommandAllocators[f], va("main #%d", f + 1), D3DResourceType::CommandAllocator);
}
// get command list ready to use during init
D3D(rhi.device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, rhi.mainCommandAllocators[rhi.frameIndex], NULL, IID_PPV_ARGS(&rhi.mainCommandList)));
SetDebugName(rhi.mainCommandList, "main", D3DResourceType::CommandList);
D3D(rhi.device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&rhi.tempCommandAllocator)));
SetDebugName(rhi.tempCommandAllocator, "temp", D3DResourceType::CommandAllocator);
// the temp command list is always left open for the user
D3D(rhi.device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, rhi.tempCommandAllocator, NULL, IID_PPV_ARGS(&rhi.tempCommandList)));
SetDebugName(rhi.tempCommandList, "temp", D3DResourceType::CommandList);
rhi.tempCommandListOpen = true;
// the active/bound command list is the main one by default
rhi.commandList = rhi.mainCommandList;
rhi.mainFence.Create(rhi.mainFenceValues[rhi.frameIndex], "main command queue");
rhi.tempFence.Create(rhi.tempFenceValue, "temp command queue");
rhi.upload.Create();
rhi.readback.Create();
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
Q_assert(rhi.mainCommandList != NULL);
Q_assert(rhi.tempCommandList != NULL);
GFSDK_Aftermath_Result r = GFSDK_Aftermath_Result_Fail;
r = GFSDK_Aftermath_DX12_CreateContextHandle(rhi.mainCommandList, &rhi.aftermathMainCommandList);
Q_assert(r == GFSDK_Aftermath_Result_Success);
r = GFSDK_Aftermath_DX12_CreateContextHandle(rhi.tempCommandList, &rhi.aftermathTempCommandList);
Q_assert(r == GFSDK_Aftermath_Result_Success);
rhi.aftermathCommandList = rhi.aftermathMainCommandList;
}
#endif
for(uint32_t f = 0; f < FrameCount; ++f)
{
D3D12_QUERY_HEAP_DESC desc = { 0 };
desc.Type = D3D12_QUERY_HEAP_TYPE_TIMESTAMP;
desc.Count = MaxDurationQueries * 2;
desc.NodeMask = 0;
D3D(rhi.device->CreateQueryHeap(&desc, IID_PPV_ARGS(&rhi.timeStampHeaps[f])));
SetDebugName(rhi.timeStampHeaps[f], va("timestamp #%d", f + 1), D3DResourceType::QueryHeap);
}
for(uint32_t f = 0; f < FrameCount; ++f)
{
const uint32_t byteCount = MaxDurationQueries * 2 * sizeof(UINT64);
BufferDesc desc(va("timestamp readback #%d", f + 1), byteCount, ResourceStates::CopySourceBit);
desc.memoryUsage = MemoryUsage::Readback;
rhi.timeStampBuffers[f] = CreateBuffer(desc);
}
CreateDynamicResources();
CreateNullResources();
// queue some actual work...
D3D(rhi.commandList->Close());
WaitUntilDeviceIsIdle();
#if defined(RHI_ENABLE_NVAPI)
rhi.nvapiActive = false;
if(rhi.vendorId == VENDORID_NVIDIA)
{
NvAPI_Status nr = NvAPI_Initialize();
if(nr == NvAPI_Status::NVAPI_OK)
{
NvAPI_ShortString version;
if(NvAPI_GetInterfaceVersionString(version) == NvAPI_Status::NVAPI_OK)
{
ri.Printf(PRINT_ALL, "Opened nvapi.dll (%s)\n", version);
}
else
{
ri.Printf(PRINT_ALL, "Opened nvapi.dll\n");
}
rhi.nvapiActive = true;
#if defined(RHI_ENABLE_NVAPI_RT_VALIDATION)
nr = NvAPI_D3D12_EnableRaytracingValidation(rhi.device, NVAPI_D3D12_RAYTRACING_VALIDATION_FLAG_NONE);
Q_assert(nr == NvAPI_Status::NVAPI_OK);
void* nvapiValidationCallbackHandle = NULL;
nr = NvAPI_D3D12_RegisterRaytracingValidationMessageCallback(rhi.device, &NVAPI_RTValidationCallback, NULL, &nvapiValidationCallbackHandle);
Q_assert(nr == NvAPI_Status::NVAPI_OK);
#endif
}
else
{
NvAPI_ShortString desc;
if(NvAPI_GetErrorMessage(nr, desc) == NvAPI_Status::NVAPI_OK)
{
ri.Printf(PRINT_WARNING, "Failed to load nvapi.dll: %s\n", desc);
}
else
{
ri.Printf(PRINT_WARNING, "Failed to load nvapi.dll\n");
}
}
}
#endif
rhi.pix.module = LoadLibraryA("cnq3/WinPixEventRuntime.dll");
if(rhi.pix.module != NULL)
{
rhi.pix.BeginEventOnCommandList = (PIX::BeginEventOnCommandListPtr)GetProcAddress(rhi.pix.module, "PIXBeginEventOnCommandList");
rhi.pix.EndEventOnCommandList = (PIX::EndEventOnCommandListPtr)GetProcAddress(rhi.pix.module, "PIXEndEventOnCommandList");
rhi.pix.SetMarkerOnCommandList = (PIX::SetMarkerOnCommandListPtr)GetProcAddress(rhi.pix.module, "PIXSetMarkerOnCommandList");
rhi.pix.canBeginAndEnd = rhi.pix.BeginEventOnCommandList != NULL && rhi.pix.EndEventOnCommandList != NULL;
}
typedef HRESULT (__stdcall* DxcCreateInstancePtr)(REFCLSID, REFIID, LPVOID*);
DxcCreateInstancePtr dxcCreateInstance = (DxcCreateInstancePtr)GetProcAddress(rhi.dxcModule, "DxcCreateInstance");
if(dxcCreateInstance == NULL)
{
ri.Error(ERR_FATAL, "Failed to locate DxcCreateInstance in cnq3/dxcompiler.dll\n");
}
D3D(dxcCreateInstance(CLSID_DxcUtils, IID_PPV_ARGS(&rhi.dxcUtils)));
D3D(dxcCreateInstance(CLSID_DxcCompiler, IID_PPV_ARGS(&rhi.dxcCompiler)));
{
D3D12_FEATURE_DATA_D3D12_OPTIONS6 options6 = {};
if(SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS6, &options6, sizeof(options6))))
{
rhi.baseVRSSupport = options6.VariableShadingRateTier != D3D12_VARIABLE_SHADING_RATE_TIER_NOT_SUPPORTED;
rhi.extendedVRSSupport = rhi.baseVRSSupport && options6.AdditionalShadingRatesSupported;
}
const char* modeLists[] = { "1x1", "1x1 2x1 1x2 2x2", "1x1 2x1 1x2 2x2 4x2 2x4 4x4" };
const int listIndex = rhi.extendedVRSSupport ? 2 : (rhi.baseVRSSupport ? 1 : 0);
ri.Printf(PRINT_ALL, "Supported VRS modes: %s\n", modeLists[listIndex]);
}
D3D12_FEATURE_DATA_D3D12_OPTIONS5 options5 = {};
const bool hasInlineRaytracing =
SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS5, &options5, sizeof(options5))) &&
options5.RaytracingTier >= D3D12_RAYTRACING_TIER_1_1;
D3D12_FEATURE_DATA_D3D12_OPTIONS3 options3 = {};
const bool hasBarycentrics =
SUCCEEDED(rhi.device->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS3, &options3, sizeof(options3))) &&
options3.BarycentricsSupported;
glInfo.maxTextureSize = MAX_TEXTURE_SIZE;
glInfo.maxAnisotropy = 16;
glInfo.depthFadeSupport = qtrue;
Q_strncpyz(glConfig.vendor_string, rhi.adapterName, sizeof(glConfig.vendor_string));
Q_strncpyz(glConfig.renderer_string, "Direct3D 12", sizeof(glConfig.renderer_string));
Q_strncpyz(rhiInfo.name, "Direct3D 12", sizeof(rhiInfo.name));
Q_strncpyz(rhiInfo.adapter, rhi.adapterName, sizeof(rhiInfo.adapter));
rhiInfo.hasTearing = rhi.isTearingSupported;
rhiInfo.hasBaseVRS = rhi.baseVRSSupport;
rhiInfo.hasExtendedVRS = rhi.extendedVRSSupport;
rhiInfo.isUMA = rhi.allocator->IsUMA();
rhiInfo.isCacheCoherentUMA = rhi.allocator->IsCacheCoherentUMA();
rhiInfo.hasInlineRaytracing = hasInlineRaytracing;
rhiInfo.hasBarycentrics = hasBarycentrics;
rhiInfo.allocatedByteCount = 0;
rhiInfo.forceNanoVDBPreviewMode = rhi.vendorId == VENDORID_AMD || rhi.vendorId == VENDORID_INTEL;
rhi.initialized = true;
return true;
}
void ShutDown(bool destroyWindow)
{
#define DESTROY_POOL(Name, Func) DestroyPool(rhi.Name, &Func, !!destroyWindow);
if(!destroyWindow &&
r_gpuPreference->latchedString != NULL &&
Q_stricmp(r_gpuPreference->latchedString, r_gpuPreference->string) != 0)
{
destroyWindow = true;
}
if(!destroyWindow &&
r_gpuIndex->latchedString != NULL &&
Q_stricmp(r_gpuIndex->latchedString, r_gpuIndex->string) != 0)
{
destroyWindow = true;
}
if(rhi.frameBegun)
{
backEnd.renderFrame = qfalse;
EndFrame();
backEnd.renderFrame = qtrue;
}
rhi.buffersToDelete.Clear();
if(!destroyWindow)
{
WaitUntilDeviceIsIdle();
rhi.texturesToTransition.Clear();
rhi.buffersToTransition.Clear();
DESTROY_POOL_LIST(DESTROY_POOL);
return;
}
rhi.initialized = false;
FreeLibrary(rhi.pix.module);
WaitUntilDeviceIsIdle();
if(destroyWindow)
{
DestroyDynamicResources();
}
if(rhi.frameLatencyWaitableObject != NULL)
{
CloseHandle(rhi.frameLatencyWaitableObject);
}
free(rhi.rtGeoDescs);
rhi.upload.Release();
rhi.readback.Release();
rhi.mainFence.Release();
rhi.tempFence.Release();
rhi.descHeapGeneric.Release();
rhi.descHeapSamplers.Release();
rhi.descHeapRTVs.Release();
rhi.descHeapDSVs.Release();
DESTROY_POOL_LIST(DESTROY_POOL);
COM_RELEASE(rhi.indirectDispatchSignature);
COM_RELEASE(rhi.dxcCompiler);
COM_RELEASE(rhi.dxcUtils);
COM_RELEASE_ARRAY(rhi.timeStampHeaps);
COM_RELEASE(rhi.mainCommandList);
COM_RELEASE_ARRAY(rhi.mainCommandAllocators);
COM_RELEASE(rhi.tempCommandList);
COM_RELEASE(rhi.tempCommandAllocator);
COM_RELEASE(rhi.swapChain);
COM_RELEASE(rhi.computeCommandQueue);
COM_RELEASE(rhi.mainCommandQueue);
COM_RELEASE(rhi.infoQueue);
COM_RELEASE(rhi.umaPool);
COM_RELEASE(rhi.allocator);
COM_RELEASE(rhi.device);
COM_RELEASE(rhi.adapter);
COM_RELEASE(rhi.factory);
#if defined(D3D_DEBUG)
COM_RELEASE(rhi.dxgiInfoQueue);
#endif
COM_RELEASE(rhi.debug);
FreeLibrary(rhi.dxilModule);
FreeLibrary(rhi.dxcModule);
#if defined(RHI_ENABLE_NVAPI)
if(rhi.nvapiActive)
{
NvAPI_Unload();
rhi.nvapiActive = false;
}
#endif
#if defined(D3D_DEBUG)
IDXGIDebug1* debug = NULL;
if(SUCCEEDED(DXGIGetDebugInterface1(0, IID_PPV_ARGS(&debug))))
{
// DXGI_DEBUG_RLO_ALL is DXGI_DEBUG_RLO_SUMMARY | DXGI_DEBUG_RLO_DETAIL | DXGI_DEBUG_RLO_IGNORE_INTERNAL
OutputDebugStringA("**** >>>> CNQ3: calling ReportLiveObjects\n");
const HRESULT hr = debug->ReportLiveObjects(DXGI_DEBUG_ALL, DXGI_DEBUG_RLO_ALL);
OutputDebugStringA(va("**** >>>> CNQ3: ReportLiveObjects returned 0x%08X (%s)\n", (unsigned int)hr, GetSystemErrorString(hr)));
debug->Release();
}
#endif
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
GFSDK_Aftermath_ReleaseContextHandle(rhi.aftermathMainCommandList);
GFSDK_Aftermath_ReleaseContextHandle(rhi.aftermathTempCommandList);
GFSDK_Aftermath_ReleaseContextHandle(rhi.aftermathUploadCommandList);
rhi.aftermathMainCommandList = NULL;
rhi.aftermathTempCommandList = NULL;
rhi.aftermathUploadCommandList = NULL;
rhi.aftermathCommandList = NULL;
rhi.aftermathActive = false;
}
#endif
#undef DESTROY_POOL
}
void BeginFrame()
{
if(rhi.frameBegun)
{
Sys_DebugPrintf("BeginFrame already called!\n");
return;
}
rhi.frameBegun = true;
rhi.beginFrameCounter++;
rhi.beforeRenderingUS = Sys_Microseconds();
WaitForSwapChain();
{
const UINT64 currentFenceValue = rhi.mainFenceValues[rhi.frameIndex];
#if RHI_DEBUG_FENCE
Sys_DebugPrintf("Wait: %d (BeginFrame)\n", (int)currentFenceValue);
#endif
rhi.mainFence.WaitOnCPU(currentFenceValue);
rhi.frameIndex = (rhi.frameIndex + 1) % rhi.renderFrameCount;
rhi.mainFenceValues[rhi.frameIndex] = currentFenceValue + 1;
rhi.swapChainBufferIndex = rhi.swapChain->GetCurrentBackBufferIndex();
}
#if defined(RHI_ENABLE_NVAPI) && defined(RHI_ENABLE_NVAPI_RT_VALIDATION)
if(rhi.nvapiActive)
{
const NvAPI_Status nr = NvAPI_D3D12_FlushRaytracingValidationMessages(rhi.device);
Q_assert(nr == NvAPI_Status::NVAPI_OK);
}
#endif
D3D12MA::Budget budget;
rhi.allocator->GetBudget(&budget, NULL);
rhiInfo.allocatedByteCount = (uint64_t)budget.UsageBytes;
DrawGUI();
Q_assert(rhi.commandList == rhi.mainCommandList);
rhi.currentRootSignature = RHI_MAKE_NULL_HANDLE();
WaitForTempCommandList();
// wait for pending copies from the upload manager to be finished
rhi.upload.WaitToStartDrawing(rhi.mainCommandQueue);
rhie.inputToRenderUS = (uint32_t)(Sys_Microseconds() - rhi.beforeInputSamplingUS);
// reclaim used memory and start recording
D3D(rhi.mainCommandAllocators[rhi.frameIndex]->Reset());
D3D(rhi.commandList->Reset(rhi.mainCommandAllocators[rhi.frameIndex], NULL));
BindDynamicResources();
rhi.frameDurationQueryIndex = CmdBeginDurationQuery();
rhi.commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
static TextureBarrier textureBarriers[MAX_DRAWIMAGES + 1];
static BufferBarrier bufferBarriers[64];
for(uint32_t t = 0; t < rhi.texturesToTransition.count; ++t)
{
const HTexture handle = rhi.texturesToTransition[t];
const Texture& texture = rhi.textures.Get(handle);
textureBarriers[t] = TextureBarrier(handle, texture.desc.initialState);
}
textureBarriers[rhi.texturesToTransition.count] = TextureBarrier(rhi.renderTargets[rhi.swapChainBufferIndex], ResourceStates::RenderTargetBit);
for(uint32_t b = 0; b < rhi.buffersToTransition.count; ++b)
{
const HBuffer handle = rhi.buffersToTransition[b];
const Buffer& buffer = rhi.buffers.Get(handle);
bufferBarriers[b] = BufferBarrier(handle, buffer.desc.initialState);
}
Barrier(rhi.texturesToTransition.count, textureBarriers, rhi.buffersToTransition.count, bufferBarriers);
rhi.texturesToTransition.Clear();
rhi.buffersToTransition.Clear();
for(uint32_t b = 0; b < rhi.buffersToDelete.count; )
{
if(rhi.beginFrameCounter >= rhi.buffersToDelete[b].beginFrameCounter)
{
DestroyBuffer(rhi.buffersToDelete[b].buffer);
rhi.buffersToDelete.RemoveUnordered(b);
}
else
{
b++;
}
}
CmdInsertDebugLabel("RHI::BeginFrame", 0.8f, 0.8f, 0.8f);
}
void EndFrame()
{
if(!rhi.frameBegun)
{
Sys_DebugPrintf("EndFrame already called!\n");
return;
}
rhi.frameBegun = false;
CmdInsertDebugLabel("RHI::EndFrame", 0.8f, 0.8f, 0.8f);
CmdBeginBarrier();
CmdTextureBarrier(rhi.renderTargets[rhi.swapChainBufferIndex], ResourceStates::PresentBit);
CmdEndBarrier();
CmdEndDurationQuery(rhi.frameDurationQueryIndex);
// needs to happens before the command list is closed
ResolveDurationQueries();
// stop recording
D3D(rhi.commandList->Close());
#if RHI_DEBUG_FENCE
Sys_DebugPrintf("Signal: %d (EndFrame)\n", rhi.mainFenceValues[rhi.frameIndex]);
#endif
rhi.mainFence.Signal(rhi.mainCommandQueue, rhi.mainFenceValues[rhi.frameIndex]);
const int64_t currentTimeUS = Sys_Microseconds();
rhie.inputToPresentUS = (uint32_t)(currentTimeUS - rhi.beforeInputSamplingUS);
rhie.renderToPresentUS = (uint32_t)(currentTimeUS - rhi.beforeRenderingUS);
if(backEnd.renderFrame)
{
ID3D12CommandList* commandListArray[] = { rhi.commandList };
rhi.mainCommandQueue->ExecuteCommandLists(ARRAY_LEN(commandListArray), commandListArray);
if(!rhi.vsync && com_nextTargetTimeUS > currentTimeUS)
{
const int64_t remainingUS = com_nextTargetTimeUS - currentTimeUS;
Sys_MicroSleep((int)remainingUS);
}
Present();
static int64_t prevTS = 0;
const int64_t currTS = Sys_Microseconds();
const int64_t us = currTS - prevTS;
prevTS = currTS;
rhie.presentToPresentUS = us;
}
else
{
rhie.presentToPresentUS = 0;
}
}
uint32_t GetFrameIndex()
{
return rhi.frameIndex;
}
HTexture GetSwapChainTexture()
{
return rhi.renderTargets[rhi.swapChainBufferIndex];
}
HBuffer CreateBuffer(const BufferDesc& rhiDesc)
{
// alignment must be 64KB (D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT) or 0, which is effectively 64KB.
// https://msdn.microsoft.com/en-us/library/windows/desktop/dn903813(v=vs.85).aspx
D3D12_RESOURCE_DESC desc = { 0 };
desc.Alignment = 0; // D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT
desc.DepthOrArraySize = 1;
desc.Dimension = D3D12_RESOURCE_DIMENSION_BUFFER;
desc.Flags = D3D12_RESOURCE_FLAG_NONE;
desc.Format = DXGI_FORMAT_UNKNOWN;
desc.Width = rhiDesc.byteCount;
desc.Height = 1;
desc.Layout = D3D12_TEXTURE_LAYOUT_ROW_MAJOR;
desc.MipLevels = 1;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
if(rhiDesc.initialState & ResourceStates::UnorderedAccessBit)
{
desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
if(rhiDesc.initialState & ResourceStates::RaytracingASBit)
{
// @NOTE: don't use D3D12_RESOURCE_FLAG_RAYTRACING_ACCELERATION_STRUCTURE
// it's reserved for future use and isn't the right one to use
desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
bool transitionNeeded = false;
D3D12_RESOURCE_STATES resourceState = D3D12_RESOURCE_STATE_COMMON;
D3D12MA::ALLOCATION_DESC allocDesc = { 0 };
allocDesc.HeapType = D3D12_HEAP_TYPE_DEFAULT;
if(rhiDesc.initialState == ResourceStates::RaytracingASBit)
{
resourceState = D3D12_RESOURCE_STATE_RAYTRACING_ACCELERATION_STRUCTURE;
}
else if(rhiDesc.memoryUsage == MemoryUsage::CPU || rhiDesc.memoryUsage == MemoryUsage::Upload)
{
allocDesc.HeapType = D3D12_HEAP_TYPE_UPLOAD;
resourceState = D3D12_RESOURCE_STATE_GENERIC_READ; // mandated
}
else if(rhiDesc.memoryUsage == MemoryUsage::Readback)
{
allocDesc.HeapType = D3D12_HEAP_TYPE_READBACK;
resourceState = D3D12_RESOURCE_STATE_COPY_DEST; // mandated
desc.Flags |= D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE;
}
else
{
transitionNeeded = true;
}
if(rhiDesc.memoryUsage == MemoryUsage::GPU && rhi.umaPool != NULL)
{
// we only use the custom heap for buffers that are not supposed to be CPU-visible
allocDesc.HeapType = D3D12_HEAP_TYPE_CUSTOM;
allocDesc.CustomPool = rhi.umaPool;
}
allocDesc.Flags = D3D12MA::ALLOCATION_FLAG_STRATEGY_MIN_MEMORY;
if(rhiDesc.committedResource)
{
allocDesc.Flags = (D3D12MA::ALLOCATION_FLAGS)(allocDesc.Flags | D3D12MA::ALLOCATION_FLAG_COMMITTED);
}
D3D12MA::Allocation* allocation;
ID3D12Resource* resource;
D3D(rhi.allocator->CreateResource(&allocDesc, &desc, resourceState, NULL, &allocation, IID_PPV_ARGS(&resource)));
AllocateAndFixName(rhiDesc);
SetDebugName(resource, rhiDesc.name, D3DResourceType::Buffer);
Buffer buffer = {};
buffer.desc = rhiDesc;
buffer.allocation = allocation;
buffer.buffer = resource;
buffer.gpuAddress = resource->GetGPUVirtualAddress();
buffer.currentState = resourceState;
buffer.shortLifeTime = rhiDesc.shortLifeTime;
CreateBufferDescriptors(buffer);
const HBuffer hbuffer = rhi.buffers.Add(buffer);
if(transitionNeeded)
{
rhi.buffersToTransition.Add(hbuffer);
}
return hbuffer;
}
void DestroyBuffer(HBuffer handle)
{
Buffer& buffer = rhi.buffers.Get(handle);
if(buffer.mapped)
{
UnmapBuffer(handle);
}
if(!rhi.useDynamicResources)
{
if(buffer.srvIndex != InvalidDescriptorIndex)
{
rhi.descHeapGeneric.Free(buffer.srvIndex);
}
if(buffer.uavIndex != InvalidDescriptorIndex)
{
rhi.descHeapGeneric.Free(buffer.uavIndex);
}
if(buffer.cbvIndex != InvalidDescriptorIndex)
{
rhi.descHeapGeneric.Free(buffer.cbvIndex);
}
}
COM_RELEASE(buffer.buffer);
COM_RELEASE(buffer.allocation);
rhi.buffers.Remove(handle);
}
void DestroyBufferDelayed(HBuffer buffer)
{
if(IsNullHandle(buffer))
{
return;
}
BufferToDelete b = {};
b.beginFrameCounter = rhi.beginFrameCounter + FrameCount + 1;
b.buffer = buffer;
rhi.buffersToDelete.Add(b);
}
uint8_t* MapBuffer(HBuffer handle)
{
Buffer& buffer = rhi.buffers.Get(handle);
if(buffer.mapped)
{
ri.Error(ERR_FATAL, "Attempted to map buffer '%s' that is already mapped!\n", buffer.desc.name);
return NULL;
}
void* mappedPtr = NULL;
D3D(buffer.buffer->Map(0, NULL, &mappedPtr));
buffer.mapped = true;
Q_assert(mappedPtr != NULL);
return (uint8_t*)mappedPtr;
}
void UnmapBuffer(HBuffer handle)
{
Buffer& buffer = rhi.buffers.Get(handle);
if(!buffer.mapped)
{
ri.Error(ERR_FATAL, "Attempted to unmap buffer '%s' that isn't mapped!\n", buffer.desc.name);
return;
}
buffer.buffer->Unmap(0, NULL);
buffer.mapped = false;
}
HTexture CreateTexture(const TextureDesc& rhiDesc)
{
Q_assert(rhiDesc.width > 0);
Q_assert(rhiDesc.height > 0);
Q_assert(rhiDesc.sampleCount > 0);
Q_assert(rhiDesc.mipCount > 0);
Q_assert(rhiDesc.mipCount <= MaxTextureMips);
// Alignment 0 is the same as specifying D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT
D3D12_RESOURCE_DESC desc = { 0 };
desc.Alignment = 0;
desc.DepthOrArraySize = 1;
desc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
desc.Flags = D3D12_RESOURCE_FLAG_NONE;
desc.Format = GetD3DFormat(rhiDesc.format);
desc.Width = rhiDesc.width;
desc.Height = rhiDesc.height;
desc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
desc.MipLevels = rhiDesc.mipCount;
desc.SampleDesc.Count = rhiDesc.sampleCount;
desc.SampleDesc.Quality = 0;
if(rhiDesc.allowedState & ResourceStates::UnorderedAccessBit)
{
desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
if(rhiDesc.allowedState & ResourceStates::RenderTargetBit)
{
desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET;
}
if(rhiDesc.allowedState & ResourceStates::DepthAccessBits)
{
desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;
}
if((rhiDesc.allowedState & ResourceStates::ShaderAccessBits) == 0)
{
desc.Flags |= D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE;
}
if(rhiDesc.depth > 1)
{
desc.DepthOrArraySize = rhiDesc.depth;
desc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE3D;
}
D3D12MA::ALLOCATION_DESC allocDesc = { 0 };
allocDesc.HeapType = D3D12_HEAP_TYPE_DEFAULT;
allocDesc.ExtraHeapFlags = D3D12_HEAP_FLAG_NONE;
allocDesc.Flags = D3D12MA::ALLOCATION_FLAG_STRATEGY_MIN_MEMORY;
if(rhiDesc.committedResource)
{
allocDesc.Flags = (D3D12MA::ALLOCATION_FLAGS)(allocDesc.Flags | D3D12MA::ALLOCATION_FLAG_COMMITTED);
}
D3D12_CLEAR_VALUE clearValue = {};
const D3D12_CLEAR_VALUE* pClearValue = NULL;
if(rhiDesc.usePreferredClearValue)
{
pClearValue = &clearValue;
clearValue.Format = desc.Format;
if(IsD3DDepthFormat(clearValue.Format))
{
clearValue.DepthStencil.Depth = rhiDesc.clearDepth;
clearValue.DepthStencil.Stencil = rhiDesc.clearStencil;
}
else
{
memcpy(clearValue.Color, rhiDesc.clearColor, sizeof(clearValue.Color));
}
}
if(rhiDesc.format == TextureFormat::Depth24_Stencil8)
{
desc.Format = DXGI_FORMAT_R24G8_TYPELESS;
}
D3D12MA::Allocation* allocation = NULL;
ID3D12Resource* resource;
if(rhiDesc.nativeResource != NULL)
{
resource = (ID3D12Resource*)rhiDesc.nativeResource;
}
else
{
D3D(rhi.allocator->CreateResource(&allocDesc, &desc, D3D12_RESOURCE_STATE_COPY_DEST, pClearValue, &allocation, IID_PPV_ARGS(&resource)));
}
AllocateAndFixName(rhiDesc);
SetDebugName(resource, rhiDesc.name, D3DResourceType::Texture);
uint32_t rtvIndex = InvalidDescriptorIndex;
if(rhiDesc.allowedState & ResourceStates::RenderTargetBit)
{
D3D12_RENDER_TARGET_VIEW_DESC rtv = { 0 };
rtv.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2D;
rtv.Format = desc.Format;
rtv.Texture2D.MipSlice = 0;
rtv.Texture2D.PlaneSlice = 0;
rtvIndex = rhi.descHeapRTVs.CreateRTV(resource, rtv);
}
uint32_t dsvIndex = InvalidDescriptorIndex;
if(rhiDesc.allowedState & ResourceStates::DepthWriteBit)
{
D3D12_DEPTH_STENCIL_VIEW_DESC dsv = { 0 };
dsv.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
dsv.Format = desc.Format;
dsv.Flags = D3D12_DSV_FLAG_NONE;
dsv.Texture2D.MipSlice = 0;
if(rhiDesc.format == TextureFormat::Depth24_Stencil8)
{
dsv.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
}
dsvIndex = rhi.descHeapDSVs.CreateDSV(resource, dsv);
}
Texture texture = {};
texture.desc = rhiDesc;
texture.allocation = allocation;
texture.texture = resource;
texture.rtvIndex = rtvIndex;
texture.dsvIndex = dsvIndex;
texture.currentState = D3D12_RESOURCE_STATE_COPY_DEST;
texture.shortLifeTime = rhiDesc.shortLifeTime;
CreateTextureDescriptors(texture);
const HTexture handle = rhi.textures.Add(texture);
if(rhiDesc.nativeResource == NULL)
{
rhi.texturesToTransition.Add(handle);
}
return handle;
}
void DestroyTexture(HTexture handle)
{
Texture& texture = rhi.textures.Get(handle);
if(texture.rtvIndex != InvalidDescriptorIndex)
{
rhi.descHeapRTVs.Free(texture.rtvIndex);
}
if(texture.dsvIndex != InvalidDescriptorIndex)
{
rhi.descHeapDSVs.Free(texture.dsvIndex);
}
if(!rhi.useDynamicResources)
{
if(texture.srvIndex != InvalidDescriptorIndex)
{
rhi.descHeapGeneric.Free(texture.srvIndex);
}
for(uint32_t m = 0; m < texture.desc.mipCount; ++m)
{
const uint32_t uavIndex = texture.mips[m].uavIndex;
if(uavIndex != InvalidDescriptorIndex)
{
rhi.descHeapGeneric.Free(uavIndex);
}
}
}
COM_RELEASE(texture.texture);
COM_RELEASE(texture.allocation);
rhi.textures.Remove(handle);
}
HSampler CreateSampler(const SamplerDesc& rhiDesc)
{
const D3D12_TEXTURE_ADDRESS_MODE addressMode = GetD3DTextureAddressMode(rhiDesc.wrapMode);
D3D12_FILTER filter = GetD3DFilter(rhiDesc.filterMode);
UINT maxAnisotropy = r_ext_max_anisotropy->integer;
if(filter == D3D12_FILTER_ANISOTROPIC && maxAnisotropy <= 1)
{
filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
maxAnisotropy = 1;
}
if(filter != D3D12_FILTER_ANISOTROPIC)
{
maxAnisotropy = 1;
}
D3D12_SAMPLER_DESC desc = { 0 };
desc.AddressU = addressMode;
desc.AddressV = addressMode;
desc.AddressW = addressMode;
desc.ComparisonFunc = D3D12_COMPARISON_FUNC_NONE;
desc.MaxAnisotropy = maxAnisotropy;
desc.MaxLOD = 666.0f;
desc.MinLOD = rhiDesc.minLOD;
desc.MipLODBias = rhiDesc.mipLODBias;
desc.Filter = filter;
const uint32_t index = CreateSampler(desc);
Sampler sampler;
sampler.desc = rhiDesc;
sampler.shortLifeTime = rhiDesc.shortLifeTime;
sampler.heapIndex = index;
const HSampler handle = rhi.samplers.Add(sampler);
return handle;
}
void DestroySampler(HSampler hsampler)
{
const Sampler& sampler = rhi.samplers.Get(hsampler);
if(!rhi.useDynamicResources)
{
rhi.descHeapSamplers.Free(sampler.heapIndex);
}
rhi.samplers.Remove(hsampler);
}
static void AddShaderVisibility(bool outVis[ShaderStage::Count], D3D12_SHADER_VISIBILITY inVis)
{
switch(inVis)
{
case D3D12_SHADER_VISIBILITY_VERTEX: outVis[ShaderStage::Vertex] = true; break;
case D3D12_SHADER_VISIBILITY_PIXEL: outVis[ShaderStage::Pixel] = true; break;
default: break;
}
}
HRootSignature CreateRootSignature(const RootSignatureDesc& rhiDesc)
{
ASSERT_DR_DISABLED();
RootSignature rhiSignature = {};
rhiSignature.genericTableIndex = UINT32_MAX;
rhiSignature.samplerTableIndex = UINT32_MAX;
rhiSignature.genericDescCount = 0;
rhiSignature.samplerDescCount = rhiDesc.samplerCount;
bool shaderVis[ShaderStage::Count] = {};
//
// root constants
//
int parameterCount = 0;
D3D12_ROOT_PARAMETER parameters[16];
for(int s = 0; s < ShaderStage::Count; ++s)
{
if(rhiDesc.constants[s].byteCount > 0)
{
rhiSignature.constants[s].parameterIndex = parameterCount;
D3D12_ROOT_PARAMETER& p = parameters[parameterCount];
p.ParameterType = D3D12_ROOT_PARAMETER_TYPE_32BIT_CONSTANTS;
p.Constants.Num32BitValues = AlignUp<UINT>(rhiDesc.constants[s].byteCount, 4) / 4;
p.Constants.RegisterSpace = 0;
p.Constants.ShaderRegister = 0;
p.ShaderVisibility = GetD3DVisibility((ShaderStage::Id)s);
AddShaderVisibility(shaderVis, p.ShaderVisibility);
parameterCount++;
}
}
Q_assert(parameterCount <= ShaderStage::Count);
//
// CBV SRV UAV table
//
uint32_t onePastLastTableIndex = 0;
D3D12_DESCRIPTOR_RANGE genericRanges[ARRAY_LEN(rhiDesc.genericRanges)] = {};
for(uint32_t rangeIndex = 0; rangeIndex < rhiDesc.genericRangeCount; ++rangeIndex)
{
D3D12_DESCRIPTOR_RANGE& r = genericRanges[rangeIndex];
const RootSignatureDesc::DescriptorRange& rIn = rhiDesc.genericRanges[rangeIndex];
Q_assert(rIn.count > 0);
r.BaseShaderRegister = 0;
r.NumDescriptors = rIn.count;
r.OffsetInDescriptorsFromTableStart = rIn.firstIndex;
r.RangeType = GetD3DDescriptorRangeType(rIn.type);
r.RegisterSpace = 0;
if(rIn.type == DescriptorType::Buffer)
{
// @TODO: or bump up BaseShaderRegister, or let the user decide
r.RegisterSpace = 1;
}
rhiSignature.genericDescCount += rIn.count;
onePastLastTableIndex = max(onePastLastTableIndex, rIn.firstIndex + rIn.count);
}
// if you trigger this, you have at least 1 gap in your root signature
Q_assert(onePastLastTableIndex == rhiSignature.genericDescCount);
rhiSignature.genericDescCount = onePastLastTableIndex; // safety net...
if(rhiSignature.genericDescCount > 0)
{
rhiSignature.genericTableIndex = parameterCount;
D3D12_ROOT_PARAMETER& p = parameters[parameterCount++];
p.ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
p.DescriptorTable.NumDescriptorRanges = rhiDesc.genericRangeCount;
p.DescriptorTable.pDescriptorRanges = genericRanges;
p.ShaderVisibility = GetD3DVisibility(rhiDesc.genericVisibility);
AddShaderVisibility(shaderVis, p.ShaderVisibility);
}
//
// sampler table
//
D3D12_DESCRIPTOR_RANGE samplerRange = {};
if(rhiDesc.samplerCount > 0)
{
rhiSignature.samplerTableIndex = parameterCount;
D3D12_DESCRIPTOR_RANGE& r = samplerRange;
r.BaseShaderRegister = 0;
r.NumDescriptors = rhiDesc.samplerCount;
r.OffsetInDescriptorsFromTableStart = 0;
r.RangeType = D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER;
r.RegisterSpace = 0;
D3D12_ROOT_PARAMETER& p = parameters[parameterCount++];
p.ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
p.DescriptorTable.NumDescriptorRanges = 1;
p.DescriptorTable.pDescriptorRanges = &samplerRange;
p.ShaderVisibility = GetD3DVisibility(rhiDesc.samplerVisibility);
AddShaderVisibility(shaderVis, p.ShaderVisibility);
}
D3D12_ROOT_SIGNATURE_DESC desc = { 0 };
desc.Flags = D3D12_ROOT_SIGNATURE_FLAG_NONE |
D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_AMPLIFICATION_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_MESH_SHADER_ROOT_ACCESS;
if(!shaderVis[ShaderStage::Vertex])
{
desc.Flags |= D3D12_ROOT_SIGNATURE_FLAG_DENY_VERTEX_SHADER_ROOT_ACCESS;
}
if(!shaderVis[ShaderStage::Pixel])
{
desc.Flags |= D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;
}
if(rhiDesc.usingVertexBuffers)
{
desc.Flags |= D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT;
}
desc.NumParameters = parameterCount;
desc.pParameters = parameters;
desc.NumStaticSamplers = 0;
desc.pStaticSamplers = NULL;
ID3DBlob* blob;
ID3DBlob* errorBlob;
if(FAILED(D3D12SerializeRootSignature(&desc, D3D_ROOT_SIGNATURE_VERSION_1, &blob, &errorBlob)))
{
ri.Error(ERR_FATAL, "Root signature creation failed!\n%s\n", (const char*)errorBlob->GetBufferPointer());
}
COM_RELEASE(errorBlob);
ID3D12RootSignature* signature;
D3D(rhi.device->CreateRootSignature(0, blob->GetBufferPointer(), blob->GetBufferSize(), IID_PPV_ARGS(&signature)));
COM_RELEASE(blob);
AllocateAndFixName(rhiDesc);
SetDebugName(signature, rhiDesc.name, D3DResourceType::RootSignature);
rhiSignature.desc = rhiDesc;
rhiSignature.signature = signature;
rhiSignature.shortLifeTime = rhiDesc.shortLifeTime;
return rhi.rootSignatures.Add(rhiSignature);
}
void DestroyRootSignature(HRootSignature signature)
{
ASSERT_DR_DISABLED();
COM_RELEASE(rhi.rootSignatures.Get(signature).signature);
rhi.rootSignatures.Remove(signature);
}
HDescriptorTable CreateDescriptorTable(const DescriptorTableDesc& desc)
{
ASSERT_DR_DISABLED();
const RootSignature& sig = rhi.rootSignatures.Get(desc.rootSignature);
const char* srvName = AllocateName(va("%s GPU-visible CBV SRV UAV", desc.name), desc.shortLifeTime);
const char* samName = AllocateName(va("%s GPU-visible sampler", desc.name), desc.shortLifeTime);
DescriptorTable table = { 0 };
table.genericHeap = CreateDescriptorHeap(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV, sig.genericDescCount, true, srvName);
table.samplerHeap = CreateDescriptorHeap(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER, sig.samplerDescCount, true, samName);
table.shortLifeTime = desc.shortLifeTime;
const Texture& nullTex = rhi.textures.Get(rhi.nullTexture);
const Texture& nullRWTex = rhi.textures.Get(rhi.nullRWTexture);
const Buffer& nullBuffer = rhi.buffers.Get(rhi.nullBuffer);
const Buffer& nullRWBuffer = rhi.buffers.Get(rhi.nullRWBuffer);
// bind null CBV SRV UAV resources
for(uint32_t r = 0; r < sig.desc.genericRangeCount; ++r)
{
const RootSignatureDesc::DescriptorRange& range = sig.desc.genericRanges[r];
uint32_t index;
switch(range.type)
{
case DescriptorType::Texture: index = nullTex.srvIndex; break;
case DescriptorType::RWTexture: index = nullRWTex.mips[0].uavIndex; break;
case DescriptorType::Buffer: index = nullBuffer.srvIndex; break;
case DescriptorType::RWBuffer: index = nullRWBuffer.uavIndex; break;
default: Q_assert(!"Unsupported descriptor type"); continue;
}
for(uint32_t i = 0; i < range.count; ++i)
{
CopyDescriptor(table.genericHeap, range.firstIndex + i, rhi.descHeapGeneric, index);
}
}
// bind null samplers
for(uint32_t d = 0; d < sig.desc.samplerCount; ++d)
{
Handle type, index, gen;
DecomposeHandle(&type, &index, &gen, rhi.nullSampler.v);
CopyDescriptor(table.samplerHeap, d, rhi.descHeapSamplers, index);
}
return rhi.descriptorTables.Add(table);
}
void UpdateDescriptorTable(HDescriptorTable htable, const DescriptorTableUpdate& update)
{
ASSERT_DR_DISABLED();
Q_assert(update.textures != NULL);
DescriptorTable& table = rhi.descriptorTables.Get(htable);
if(update.type == DescriptorType::Texture && table.genericHeap)
{
for(uint32_t i = 0; i < update.resourceCount; ++i)
{
const Texture& texture = rhi.textures.Get(update.textures[i]);
Q_assert(texture.srvIndex != InvalidDescriptorIndex);
CopyDescriptor(table.genericHeap, update.firstIndex + i, rhi.descHeapGeneric, texture.srvIndex);
}
}
else if(update.type == DescriptorType::Buffer && table.genericHeap)
{
for(uint32_t i = 0; i < update.resourceCount; ++i)
{
const Buffer& buffer = rhi.buffers.Get(update.buffers[i]);
Q_assert(buffer.srvIndex != InvalidDescriptorIndex);
CopyDescriptor(table.genericHeap, update.firstIndex + i, rhi.descHeapGeneric, buffer.srvIndex);
}
}
else if(update.type == DescriptorType::RWBuffer && table.genericHeap)
{
for(uint32_t i = 0; i < update.resourceCount; ++i)
{
const Buffer& buffer = rhi.buffers.Get(update.buffers[i]);
Q_assert(buffer.uavIndex != InvalidDescriptorIndex);
CopyDescriptor(table.genericHeap, update.firstIndex + i, rhi.descHeapGeneric, buffer.uavIndex);
}
}
else if(update.type == DescriptorType::RWTexture && table.genericHeap)
{
uint32_t destIndex = update.firstIndex;
for(uint32_t i = 0; i < update.resourceCount; ++i)
{
const Texture& texture = rhi.textures.Get(update.textures[i]);
uint32_t start;
uint32_t end;
if(update.uavMipChain)
{
start = 0;
end = texture.desc.mipCount;
}
else
{
Q_assert(update.uavMipSlice < texture.desc.mipCount);
start = update.uavMipSlice;
end = start + 1;
}
for(uint32_t m = start; m < end; ++m)
{
Q_assert(texture.mips[m].uavIndex != InvalidDescriptorIndex);
CopyDescriptor(table.genericHeap, destIndex++, rhi.descHeapGeneric, texture.mips[m].uavIndex);
}
}
}
else if(update.type == DescriptorType::Sampler && table.samplerHeap)
{
for(uint32_t i = 0; i < update.resourceCount; ++i)
{
Handle htype, index, gen;
DecomposeHandle(&htype, &index, &gen, update.samplers[i].v);
Q_assert(index != InvalidDescriptorIndex);
CopyDescriptor(table.samplerHeap, update.firstIndex + i, rhi.descHeapSamplers, index);
}
}
else
{
ri.Error(ERR_FATAL, "UpdateDescriptorTable: unsupported descriptor type\n");
}
}
void DestroyDescriptorTable(HDescriptorTable handle)
{
ASSERT_DR_DISABLED();
DescriptorTable& table = rhi.descriptorTables.Get(handle);
COM_RELEASE(table.genericHeap);
COM_RELEASE(table.samplerHeap);
rhi.descriptorTables.Remove(handle);
}
HPipeline CreateGraphicsPipeline(const GraphicsPipelineDesc& rhiDesc)
{
if(!rhi.useDynamicResources)
{
Q_assert(!IsNullHandle(rhiDesc.rootSignature));
Q_assert(rhi.rootSignatures.Get(rhiDesc.rootSignature).desc.pipelineType == PipelineType::Graphics);
}
D3D12_GRAPHICS_PIPELINE_STATE_DESC desc = { 0 };
desc.Flags = D3D12_PIPELINE_STATE_FLAG_NONE; // none available so far
desc.pRootSignature = rhi.useDynamicResources ?
rhi.dynamicResources.rootSignature :
rhi.rootSignatures.Get(rhiDesc.rootSignature).signature;
desc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
desc.SampleDesc.Count = 1;
desc.SampleMask = UINT_MAX;
UINT semanticIndices[ShaderSemantic::Count] = { 0 };
D3D12_INPUT_ELEMENT_DESC inputElementDescs[MaxVertexAttributes];
for(int a = 0; a < rhiDesc.vertexLayout.attributeCount; ++a)
{
const VertexAttribute& va = rhiDesc.vertexLayout.attributes[a];
D3D12_INPUT_ELEMENT_DESC& ied = inputElementDescs[a];
ied.SemanticName = GetD3DSemanticName(va.semantic);
ied.SemanticIndex = semanticIndices[va.semantic]++;
ied.Format = GetD3DFormat(va.dataType, va.vectorLength);
ied.InputSlot = va.vertexBufferIndex;
ied.AlignedByteOffset = va.structByteOffset;
ied.InputSlotClass = D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA;
ied.InstanceDataStepRate = 0;
}
desc.InputLayout.NumElements = rhiDesc.vertexLayout.attributeCount;
desc.InputLayout.pInputElementDescs = inputElementDescs;
for(int t = 0; t < rhiDesc.renderTargetCount; ++t)
{
const GraphicsPipelineDesc::RenderTarget& rtIn = rhiDesc.renderTargets[t];
D3D12_RENDER_TARGET_BLEND_DESC& rtOut = desc.BlendState.RenderTarget[t];
rtOut.BlendEnable = TRUE;
rtOut.BlendOp = D3D12_BLEND_OP_ADD;
rtOut.BlendOpAlpha = D3D12_BLEND_OP_ADD;
rtOut.LogicOpEnable = FALSE;
rtOut.RenderTargetWriteMask = D3D12_COLOR_WRITE_ENABLE_ALL; // RGBA
rtOut.SrcBlend = GetD3DSourceBlend(rtIn.q3BlendMode);
rtOut.DestBlend = GetD3DDestBlend(rtIn.q3BlendMode);
rtOut.SrcBlendAlpha = GetAlphaBlendFromColorBlend(rtOut.SrcBlend);
rtOut.DestBlendAlpha = GetAlphaBlendFromColorBlend(rtOut.DestBlend);
if(rtOut.SrcBlend == D3D12_BLEND_ONE && rtOut.DestBlend == D3D12_BLEND_ZERO)
{
rtOut.BlendEnable = FALSE;
}
desc.RTVFormats[t] = GetD3DFormat(rtIn.format);
}
desc.NumRenderTargets = rhiDesc.renderTargetCount;
desc.DepthStencilState.DepthEnable = rhiDesc.depthStencil.enableDepthTest ? TRUE : FALSE;
desc.DepthStencilState.DepthFunc = GetD3DComparisonFunction(rhiDesc.depthStencil.depthComparison);
desc.DepthStencilState.DepthWriteMask = rhiDesc.depthStencil.enableDepthWrites ? D3D12_DEPTH_WRITE_MASK_ALL : D3D12_DEPTH_WRITE_MASK_ZERO;
desc.DepthStencilState.StencilEnable = rhiDesc.depthStencil.enableStencil;
desc.DepthStencilState.StencilReadMask = rhiDesc.depthStencil.stencilReadMask;
desc.DepthStencilState.StencilWriteMask = rhiDesc.depthStencil.stencilWriteMask;
desc.DepthStencilState.BackFace.StencilFunc = GetD3DComparisonFunction(rhiDesc.depthStencil.backFace.comparison);
desc.DepthStencilState.BackFace.StencilPassOp = GetD3DStencilOp(rhiDesc.depthStencil.backFace.passOp);
desc.DepthStencilState.BackFace.StencilFailOp = GetD3DStencilOp(rhiDesc.depthStencil.backFace.failOp);
desc.DepthStencilState.BackFace.StencilDepthFailOp = GetD3DStencilOp(rhiDesc.depthStencil.backFace.depthFailOp);
desc.DepthStencilState.FrontFace.StencilFunc = GetD3DComparisonFunction(rhiDesc.depthStencil.frontFace.comparison);
desc.DepthStencilState.FrontFace.StencilPassOp = GetD3DStencilOp(rhiDesc.depthStencil.frontFace.passOp);
desc.DepthStencilState.FrontFace.StencilFailOp = GetD3DStencilOp(rhiDesc.depthStencil.frontFace.failOp);
desc.DepthStencilState.FrontFace.StencilDepthFailOp = GetD3DStencilOp(rhiDesc.depthStencil.frontFace.depthFailOp);
desc.DSVFormat = GetD3DFormat(rhiDesc.depthStencil.depthStencilFormat);
desc.VS.pShaderBytecode = rhiDesc.vertexShader.data;
desc.VS.BytecodeLength = rhiDesc.vertexShader.byteCount;
desc.PS.pShaderBytecode = rhiDesc.pixelShader.data;
desc.PS.BytecodeLength = rhiDesc.pixelShader.byteCount;
desc.RasterizerState.AntialiasedLineEnable = FALSE;
desc.RasterizerState.ConservativeRaster = D3D12_CONSERVATIVE_RASTERIZATION_MODE_OFF;
desc.RasterizerState.CullMode = GetD3DCullMode(rhiDesc.rasterizer.cullMode);
desc.RasterizerState.FrontCounterClockwise = TRUE;
desc.RasterizerState.DepthBias = rhiDesc.rasterizer.polygonOffset ? 1 : 0;
desc.RasterizerState.DepthBiasClamp = 0.0f;
desc.RasterizerState.SlopeScaledDepthBias = rhiDesc.rasterizer.polygonOffset ? 1.0f : 0.0f;
desc.RasterizerState.FillMode = rhiDesc.rasterizer.wireFrame ? D3D12_FILL_MODE_WIREFRAME : D3D12_FILL_MODE_SOLID;
desc.RasterizerState.ForcedSampleCount = 0;
desc.RasterizerState.MultisampleEnable = FALSE;
desc.RasterizerState.DepthClipEnable = rhiDesc.rasterizer.clampDepth ? FALSE : TRUE;
ID3D12PipelineState* pso;
D3D(rhi.device->CreateGraphicsPipelineState(&desc, IID_PPV_ARGS(&pso)));
AllocateAndFixName(rhiDesc);
SetDebugName(pso, rhiDesc.name, D3DResourceType::PipelineState);
Pipeline rhiPipeline;
rhiPipeline.type = PipelineType::Graphics;
rhiPipeline.graphicsDesc = rhiDesc;
rhiPipeline.pso = pso;
rhiPipeline.shortLifeTime = rhiDesc.shortLifeTime;
return rhi.pipelines.Add(rhiPipeline);
}
HPipeline CreateComputePipeline(const ComputePipelineDesc& rhiDesc)
{
if(!rhi.useDynamicResources)
{
Q_assert(!IsNullHandle(rhiDesc.rootSignature));
Q_assert(rhi.rootSignatures.Get(rhiDesc.rootSignature).desc.pipelineType == PipelineType::Compute);
}
D3D12_COMPUTE_PIPELINE_STATE_DESC desc = { 0 };
desc.Flags = D3D12_PIPELINE_STATE_FLAG_NONE; // none available so far
desc.pRootSignature = rhi.useDynamicResources ?
rhi.dynamicResources.rootSignature :
rhi.rootSignatures.Get(rhiDesc.rootSignature).signature;
desc.CS.pShaderBytecode = rhiDesc.shader.data;
desc.CS.BytecodeLength = rhiDesc.shader.byteCount;
ID3D12PipelineState* pso;
D3D(rhi.device->CreateComputePipelineState(&desc, IID_PPV_ARGS(&pso)));
AllocateAndFixName(rhiDesc);
SetDebugName(pso, rhiDesc.name, D3DResourceType::PipelineState);
Pipeline rhiPipeline;
rhiPipeline.type = PipelineType::Compute;
rhiPipeline.computeDesc = rhiDesc;
rhiPipeline.pso = pso;
rhiPipeline.shortLifeTime = rhiDesc.shortLifeTime;
return rhi.pipelines.Add(rhiPipeline);
}
void DestroyPipeline(HPipeline pipeline)
{
COM_RELEASE(rhi.pipelines.Get(pipeline).pso);
rhi.pipelines.Remove(pipeline);
}
HShader CreateShader(const ShaderDesc& desc)
{
IDxcBlobEncoding* blobEncoding;
D3D(rhi.dxcUtils->CreateBlob(desc.source, desc.sourceLength, CP_ACP, &blobEncoding));
LPCWSTR targetW = L"???";
LPCSTR targetName = "???";
switch(desc.stage)
{
case ShaderStage::Vertex: targetW = L"vs_6_0"; targetName = "vs"; break;
case ShaderStage::Pixel: targetW = L"ps_6_0"; targetName = "ps"; break;
case ShaderStage::Compute: targetW = L"cs_6_0"; targetName = "cs"; break;
default: Q_assert(0); break;
}
wchar_t entryPointW[256];
MultiByteToWideChar(CP_ACP, 0, desc.entryPoint, -1, entryPointW, ARRAY_LEN(entryPointW));
struct MacroW
{
wchar_t macro[256];
};
MacroW macros[16];
Q_assert(desc.macroCount <= ARRAY_LEN(macros));
LPCWSTR arguments[64];
UINT32 argumentCount = 0;
#define PushArg(Arg) arguments[argumentCount++] = Arg
PushArg(L"E");
PushArg(L"-E");
PushArg(entryPointW);
PushArg(L"-T");
PushArg(targetW);
PushArg(DXC_ARG_WARNINGS_ARE_ERRORS); // -WX
#if defined(D3D_DEBUG)
PushArg(DXC_ARG_DEBUG); // -Zi embeds debug info
PushArg(DXC_ARG_SKIP_OPTIMIZATIONS); // -Od disables optimizations
PushArg(DXC_ARG_ENABLE_STRICTNESS); // -Ges enables strict mode
PushArg(DXC_ARG_IEEE_STRICTNESS); // -Gis forces IEEE strictness
PushArg(L"-Qembed_debug"); // -Qembed_debug embeds debug info in shader container
#else
PushArg(L"-Qstrip_debug");
PushArg(L"-Qstrip_reflect");
PushArg(DXC_ARG_OPTIMIZATION_LEVEL3); // -O3
#endif
PushArg(L"-D");
PushArg(desc.stage == ShaderStage::Vertex ? L"VERTEX_SHADER=1" : L"VERTEX_SHADER=0");
PushArg(L"-D");
PushArg(desc.stage == ShaderStage::Pixel ? L"PIXEL_SHADER=1" : L"PIXEL_SHADER=0");
PushArg(L"-D");
PushArg(desc.stage == ShaderStage::Compute ? L"COMPUTE_SHADER=1" : L"COMPUTE_SHADER=0");
for(uint32_t m = 0; m < desc.macroCount; ++m)
{
const char* input = va("%s=%s", desc.macros[m].name, desc.macros[m].value);
MacroW& output = macros[m];
MultiByteToWideChar(CP_ACP, 0, input, -1, output.macro, ARRAY_LEN(output.macro));
PushArg(L"-D");
PushArg(output.macro);
}
#undef PushArg
Q_assert(argumentCount <= ARRAY_LEN(arguments));
DxcBuffer sourceBuffer = {};
sourceBuffer.Ptr = blobEncoding->GetBufferPointer();
sourceBuffer.Size = blobEncoding->GetBufferSize();
sourceBuffer.Encoding = 0;
IDxcResult* result = NULL;
HRESULT hr = S_OK;
if(FAILED(rhi.dxcCompiler->Compile(&sourceBuffer, arguments, argumentCount, NULL, IID_PPV_ARGS(&result))) ||
FAILED(result->GetStatus(&hr)) ||
FAILED(hr))
{
IDxcBlobUtf8* errors;
if(result != NULL && SUCCEEDED(result->GetOutput(DXC_OUT_ERRORS, IID_PPV_ARGS(&errors), NULL)) &&
errors->GetStringLength() > 0)
{
ri.Error(ERR_FATAL, "Shader (%s) compilation failed:\n%s\n", targetName, (const char*)errors->GetBufferPointer());
}
else
{
ri.Error(ERR_FATAL, "Shader (%s) compilation failed:\n", targetName);
}
return RHI_MAKE_NULL_HANDLE();
}
IDxcBlob* shaderBlob;
D3D(result->GetOutput(DXC_OUT_OBJECT, IID_PPV_ARGS(&shaderBlob), NULL));
blobEncoding->Release();
result->Release();
Shader shader;
shader.blob = shaderBlob;
return rhi.shaders.Add(shader);
}
ShaderByteCode GetShaderByteCode(HShader shader)
{
IDxcBlob* const blob = rhi.shaders.Get(shader).blob;
ShaderByteCode byteCode;
byteCode.data = blob->GetBufferPointer();
byteCode.byteCount = blob->GetBufferSize();
return byteCode;
}
void DestroyShader(HShader shader)
{
COM_RELEASE(rhi.shaders.Get(shader).blob);
rhi.shaders.Remove(shader);
}
void CmdBindRenderTargets(uint32_t colorCount, const HTexture* colorTargets, const HTexture* depthStencilTarget)
{
Q_assert(CanWriteCommands());
Q_assert(colorCount > 0 || colorTargets == NULL);
D3D12_CPU_DESCRIPTOR_HANDLE rtvHandles[MaxRenderTargets] = {};
for(uint32_t t = 0; t < colorCount; ++t)
{
const uint32_t rtvIndex = rhi.textures.Get(colorTargets[t]).rtvIndex;
rtvHandles[t] = rhi.descHeapRTVs.GetCPUHandle(rtvIndex);
}
D3D12_CPU_DESCRIPTOR_HANDLE* dsvHandlePtr = NULL;
D3D12_CPU_DESCRIPTOR_HANDLE dsvHandle;
if(depthStencilTarget != NULL)
{
const Texture& depthStencil = rhi.textures.Get(*depthStencilTarget);
dsvHandle = rhi.descHeapDSVs.GetCPUHandle(depthStencil.dsvIndex);
dsvHandlePtr = &dsvHandle;
}
rhi.commandList->OMSetRenderTargets(colorCount, rtvHandles, FALSE, dsvHandlePtr);
}
void CmdBindRootSignature(HRootSignature rootSignature)
{
Q_assert(CanWriteCommands());
const RootSignature& sig = rhi.rootSignatures.Get(rootSignature);
if(sig.desc.pipelineType == PipelineType::Graphics && rootSignature != rhi.currentRootSignature)
{
rhi.currentRootSignature = rootSignature;
rhi.commandList->SetGraphicsRootSignature(sig.signature);
}
else if(sig.desc.pipelineType == PipelineType::Compute)
{
rhi.commandList->SetComputeRootSignature(sig.signature);
}
}
void CmdBindDescriptorTable(HRootSignature sigHandle, HDescriptorTable handle)
{
Q_assert(CanWriteCommands());
const DescriptorTable& table = rhi.descriptorTables.Get(handle);
const RootSignature& sig = rhi.rootSignatures.Get(sigHandle);
UINT heapCount = 0;
ID3D12DescriptorHeap* heaps[2];
if(sig.genericTableIndex != UINT32_MAX)
{
heaps[heapCount++] = table.genericHeap;
}
if(sig.samplerTableIndex != UINT32_MAX)
{
heaps[heapCount++] = table.samplerHeap;
}
rhi.commandList->SetDescriptorHeaps(heapCount, heaps);
if(sig.genericTableIndex != UINT32_MAX)
{
if(sig.desc.pipelineType == PipelineType::Graphics)
{
rhi.commandList->SetGraphicsRootDescriptorTable(sig.genericTableIndex, table.genericHeap->GetGPUDescriptorHandleForHeapStart());
}
else if(sig.desc.pipelineType == PipelineType::Compute)
{
rhi.commandList->SetComputeRootDescriptorTable(sig.genericTableIndex, table.genericHeap->GetGPUDescriptorHandleForHeapStart());
}
}
if(sig.samplerTableIndex != UINT32_MAX)
{
if(sig.desc.pipelineType == PipelineType::Graphics)
{
rhi.commandList->SetGraphicsRootDescriptorTable(sig.samplerTableIndex, table.samplerHeap->GetGPUDescriptorHandleForHeapStart());
}
else if(sig.desc.pipelineType == PipelineType::Compute)
{
rhi.commandList->SetComputeRootDescriptorTable(sig.samplerTableIndex, table.samplerHeap->GetGPUDescriptorHandleForHeapStart());
}
}
}
void CmdBindPipeline(HPipeline pipeline)
{
Q_assert(CanWriteCommands());
const Pipeline& pipe = rhi.pipelines.Get(pipeline);
rhi.commandList->SetPipelineState(pipe.pso);
}
void CmdBindVertexBuffers(uint32_t count, const HBuffer* vertexBuffers, const uint32_t* byteStrides, const uint32_t* startByteOffsets)
{
Q_assert(CanWriteCommands());
Q_assert(count <= MaxVertexBuffers);
count = min(count, MaxVertexBuffers);
D3D12_VERTEX_BUFFER_VIEW views[MaxVertexBuffers];
for(uint32_t v = 0; v < count; ++v)
{
const Buffer& buffer = rhi.buffers.Get(vertexBuffers[v]);
const uint32_t offset = startByteOffsets ? startByteOffsets[v] : 0;
views[v].BufferLocation = buffer.gpuAddress + offset;
views[v].SizeInBytes = buffer.desc.byteCount - offset;
views[v].StrideInBytes = byteStrides[v];
}
rhi.commandList->IASetVertexBuffers(0, count, views);
}
void CmdBindIndexBuffer(HBuffer indexBuffer, IndexType::Id type, uint32_t startByteOffset)
{
Q_assert(CanWriteCommands());
const Buffer& buffer = rhi.buffers.Get(indexBuffer);
D3D12_INDEX_BUFFER_VIEW view = { 0 };
view.BufferLocation = buffer.gpuAddress + startByteOffset;
view.Format = GetD3DIndexFormat(type);
view.SizeInBytes = (UINT)(buffer.desc.byteCount - startByteOffset);
rhi.commandList->IASetIndexBuffer(&view);
}
void CmdSetViewport(uint32_t x, uint32_t y, uint32_t w, uint32_t h, float minDepth, float maxDepth)
{
Q_assert(CanWriteCommands());
D3D12_VIEWPORT viewport;
viewport.TopLeftX = x;
viewport.TopLeftY = y;
viewport.Width = w;
viewport.Height = h;
viewport.MinDepth = minDepth;
viewport.MaxDepth = maxDepth;
rhi.commandList->RSSetViewports(1, &viewport);
}
void CmdSetScissor(uint32_t x, uint32_t y, uint32_t w, uint32_t h)
{
Q_assert(CanWriteCommands());
D3D12_RECT rect;
rect.left = x;
rect.top = y;
rect.right = x + w;
rect.bottom = y + h;
rhi.commandList->RSSetScissorRects(1, &rect);
}
void CmdSetRootConstants(HRootSignature rootSignature, ShaderStage::Id shaderType, const void* constants)
{
ASSERT_DR_DISABLED();
Q_assert(CanWriteCommands());
Q_assert(constants);
const RootSignature& sig = rhi.rootSignatures.Get(rootSignature);
const UINT parameterIndex = sig.constants[shaderType].parameterIndex;
const UINT constantCount = sig.desc.constants[shaderType].byteCount / 4;
CmdBindRootSignature(rootSignature);
if(sig.desc.pipelineType == PipelineType::Graphics)
{
rhi.commandList->SetGraphicsRoot32BitConstants(parameterIndex, constantCount, constants, 0);
}
else if(sig.desc.pipelineType == PipelineType::Compute)
{
rhi.commandList->SetComputeRoot32BitConstants(parameterIndex, constantCount, constants, 0);
}
}
void CmdSetGraphicsRootConstants(uint32_t byteOffset, uint32_t byteCount, const void* constants)
{
ASSERT_DR_ENABLED();
Q_assert(CanWriteCommands());
SetRootConstants(byteOffset, byteCount, constants, true);
}
void CmdSetComputeRootConstants(uint32_t byteOffset, uint32_t byteCount, const void* constants)
{
ASSERT_DR_ENABLED();
Q_assert(CanWriteCommands());
SetRootConstants(byteOffset, byteCount, constants, false);
}
void CmdDraw(uint32_t vertexCount, uint32_t firstVertex)
{
Q_assert(CanWriteCommands());
rhi.commandList->DrawInstanced(vertexCount, 1, firstVertex, 0);
}
void CmdDrawIndexed(uint32_t indexCount, uint32_t firstIndex, uint32_t firstVertex)
{
Q_assert(CanWriteCommands());
rhi.commandList->DrawIndexedInstanced(indexCount, 1, firstIndex, firstVertex, 0);
}
void CmdDispatch(uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ)
{
Q_assert(CanWriteCommands());
rhi.commandList->Dispatch(groupCountX, groupCountY, groupCountZ);
}
void CmdDispatchIndirect(HBuffer hbuffer, uint32_t byteOffset)
{
Q_assert(CanWriteCommands());
Q_assert(byteOffset % 4 == 0);
const Buffer& buffer = rhi.buffers.Get(hbuffer);
rhi.commandList->ExecuteIndirect(rhi.indirectDispatchSignature, 1, buffer.buffer, (UINT64)byteOffset, NULL, 0);
}
uint32_t CmdBeginDurationQuery()
{
Q_assert(CanWriteCommands());
FrameQueries& fq = rhi.frameQueries[rhi.frameIndex];
Q_assert(fq.durationQueryCount < MaxDurationQueries);
if(fq.durationQueryCount >= MaxDurationQueries)
{
return UINT32_MAX;
}
const uint32_t durationIndex = fq.durationQueryCount;
const UINT timeStampBeginIndex = durationIndex * 2;
rhi.commandList->EndQuery(rhi.timeStampHeaps[rhi.frameIndex], D3D12_QUERY_TYPE_TIMESTAMP, timeStampBeginIndex);
DurationQuery& query = fq.durationQueries[durationIndex];
if(backEnd.renderFrame)
{
Q_assert(query.state == QueryState::Free);
}
query.state = QueryState::Begun;
fq.durationQueryCount++;
return durationIndex;
}
void CmdEndDurationQuery(uint32_t durationIndex)
{
Q_assert(CanWriteCommands());
FrameQueries& fq = rhi.frameQueries[rhi.frameIndex];
Q_assert(durationIndex < fq.durationQueryCount);
if(durationIndex >= fq.durationQueryCount)
{
return;
}
DurationQuery& query = fq.durationQueries[durationIndex];
Q_assert(query.state == QueryState::Begun);
const UINT timeStampEndIndex = durationIndex * 2 + 1;
rhi.commandList->EndQuery(rhi.timeStampHeaps[rhi.frameIndex], D3D12_QUERY_TYPE_TIMESTAMP, timeStampEndIndex);
query.state = QueryState::Ended;
}
void CmdBeginBarrier()
{
Q_assert(CanWriteCommands());
Q_assert(rhi.textureBarrierCount == 0);
Q_assert(rhi.bufferBarrierCount == 0);
Q_assert(!rhi.barrierOpen);
Q_assert(rhi.barrierCommandList == NULL);
rhi.barrierCommandList = rhi.commandList;
rhi.textureBarrierCount = 0;
rhi.bufferBarrierCount = 0;
rhi.barrierOpen = true;
}
void CmdTextureBarrier(HTexture texture, ResourceStates::Flags newState)
{
Q_assert(CanWriteCommands());
Q_assert(rhi.barrierOpen);
Q_assert(rhi.commandList == rhi.barrierCommandList);
Q_assert(rhi.textureBarrierCount < ARRAY_LEN(rhi.textureBarriers));
if(rhi.textureBarrierCount < ARRAY_LEN(rhi.textureBarriers))
{
TextureBarrier* const barrier = &rhi.textureBarriers[rhi.textureBarrierCount++];
barrier->texture = texture;
barrier->newState = newState;
}
else
{
ri.Error(ERR_FATAL, "Not enough texture barrier storage!\n");
}
}
void CmdBufferBarrier(HBuffer buffer, ResourceStates::Flags newState)
{
Q_assert(CanWriteCommands());
Q_assert(rhi.barrierOpen);
Q_assert(rhi.commandList == rhi.barrierCommandList);
Q_assert(rhi.bufferBarrierCount < ARRAY_LEN(rhi.bufferBarriers));
if(rhi.bufferBarrierCount < ARRAY_LEN(rhi.bufferBarriers))
{
BufferBarrier* const barrier = &rhi.bufferBarriers[rhi.bufferBarrierCount++];
barrier->buffer = buffer;
barrier->newState = newState;
}
else
{
ri.Error(ERR_FATAL, "Not enough buffer barrier storage!\n");
}
}
void CmdEndBarrier()
{
Q_assert(CanWriteCommands());
Q_assert(rhi.barrierOpen);
Q_assert(rhi.commandList == rhi.barrierCommandList);
if(rhi.textureBarrierCount > 0 || rhi.bufferBarrierCount > 0)
{
Barrier(rhi.textureBarrierCount, rhi.textureBarriers, rhi.bufferBarrierCount, rhi.bufferBarriers);
}
rhi.barrierCommandList = NULL;
rhi.textureBarrierCount = 0;
rhi.bufferBarrierCount = 0;
rhi.barrierOpen = false;
}
void CmdClearColorTarget(HTexture texture, const vec4_t clearColor, const Rect* rect)
{
Q_assert(CanWriteCommands());
D3D12_RECT* d3dRectPtr = NULL;
D3D12_RECT d3dRect = {};
UINT rectCount = 0;
if(rect != NULL)
{
rectCount = 1;
d3dRect.left = rect->x;
d3dRect.top = rect->y;
d3dRect.right = rect->x + rect->w;
d3dRect.bottom = rect->y + rect->h;
d3dRectPtr = &d3dRect;
}
const Texture& renderTarget = rhi.textures.Get(texture);
const D3D12_CPU_DESCRIPTOR_HANDLE rtvHandle = rhi.descHeapRTVs.GetCPUHandle(renderTarget.rtvIndex);
rhi.commandList->ClearRenderTargetView(rtvHandle, clearColor, rectCount, d3dRectPtr);
}
void CmdClearDepthStencilTarget(HTexture texture, bool clearDepth, float depth, bool clearStencil, uint8_t stencil, const Rect* rect)
{
Q_assert(CanWriteCommands());
Q_assert(clearDepth || clearStencil);
if(!clearDepth && !clearStencil)
{
return;
}
D3D12_RECT* d3dRectPtr = NULL;
D3D12_RECT d3dRect = {};
UINT rectCount = 0;
if(rect != NULL)
{
rectCount = 1;
d3dRect.left = rect->x;
d3dRect.top = rect->y;
d3dRect.right = rect->x + rect->w;
d3dRect.bottom = rect->y + rect->h;
d3dRectPtr = &d3dRect;
}
D3D12_CLEAR_FLAGS flags = (D3D12_CLEAR_FLAGS)0;
if(clearDepth)
{
flags |= D3D12_CLEAR_FLAG_DEPTH;
}
if(clearStencil)
{
flags |= D3D12_CLEAR_FLAG_STENCIL;
}
const Texture& depthStencil = rhi.textures.Get(texture);
const D3D12_CPU_DESCRIPTOR_HANDLE dsvHandle = rhi.descHeapDSVs.GetCPUHandle(depthStencil.dsvIndex);
rhi.commandList->ClearDepthStencilView(dsvHandle, flags, depth, stencil, rectCount, d3dRectPtr);
}
void CmdClearTextureUAV(HTexture htexture, uint32_t mipIndex, const uint32_t* values)
{
ASSERT_DR_ENABLED();
Q_assert(CanWriteCommands());
Q_assert(values);
static_assert(sizeof(UINT) == 4, "sizeof(UINT) isn't 4 as expected");
const Texture& texture = rhi.textures.Get(htexture);
Q_assert(mipIndex < texture.desc.mipCount);
const uint32_t descIndex = texture.mips[mipIndex].uavIndex;
const UINT descSize = rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
D3D12_CPU_DESCRIPTOR_HANDLE cpuHandle = rhi.dynamicResources.genericCPUDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
D3D12_GPU_DESCRIPTOR_HANDLE gpuHandle = rhi.dynamicResources.genericDescriptorHeap->GetGPUDescriptorHandleForHeapStart();
cpuHandle.ptr += descIndex * descSize;
gpuHandle.ptr += descIndex * descSize;
rhi.commandList->ClearUnorderedAccessViewUint(gpuHandle, cpuHandle, texture.texture, values, 0, NULL);
}
void CmdClearBufferUAV(HBuffer hbuffer, uint32_t value)
{
ASSERT_DR_ENABLED();
Q_assert(CanWriteCommands());
static_assert(sizeof(UINT) == 4, "sizeof(UINT) isn't 4 as expected");
const Buffer& buffer = rhi.buffers.Get(hbuffer);
const uint32_t descIndex = buffer.uavIndex;
const UINT descSize = rhi.device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
D3D12_CPU_DESCRIPTOR_HANDLE cpuHandle = rhi.dynamicResources.genericCPUDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
D3D12_GPU_DESCRIPTOR_HANDLE gpuHandle = rhi.dynamicResources.genericDescriptorHeap->GetGPUDescriptorHandleForHeapStart();
cpuHandle.ptr += descIndex * descSize;
gpuHandle.ptr += descIndex * descSize;
const UINT values[4] = { value, value, value, value };
rhi.commandList->ClearUnorderedAccessViewUint(gpuHandle, cpuHandle, buffer.buffer, values, 0, NULL);
}
void CmdInsertDebugLabel(const char* name, float r, float g, float b)
{
Q_assert(CanWriteCommands());
Q_assert(name);
if(rhi.pix.SetMarkerOnCommandList != NULL)
{
rhi.pix.SetMarkerOnCommandList(rhi.commandList, BGRAUIntFromFloat(r, g, b), name);
}
else
{
rhi.commandList->SetMarker(1, name, strlen(name) + 1);
}
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_SetEventMarker(rhi.aftermathCommandList, name, strlen(name) + 1);
Q_assert(result == GFSDK_Aftermath_Result_Success);
}
#endif
}
void CmdBeginDebugLabel(const char* name, float r, float g, float b)
{
Q_assert(CanWriteCommands());
Q_assert(name);
Q_assert(name[0] != '\0');
if(rhi.pix.canBeginAndEnd)
{
rhi.pix.BeginEventOnCommandList(rhi.commandList, BGRAUIntFromFloat(r, g, b), name);
}
else
{
rhi.commandList->BeginEvent(1, name, strlen(name) + 1);
}
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
const char* const markerString = va("Begin: %s", name);
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_SetEventMarker(rhi.aftermathCommandList, markerString, strlen(markerString) + 1);
Q_assert(result == GFSDK_Aftermath_Result_Success);
Q_assert(rhi.aftermathMarkerDepth < ARRAY_LEN(rhi.aftermathMarkers));
RHIPrivate::AftermathMarker& marker = rhi.aftermathMarkers[rhi.aftermathMarkerDepth++];
Q_strncpyz(marker.string, name, sizeof(marker.string));
}
#endif
}
void CmdEndDebugLabel()
{
Q_assert(CanWriteCommands());
if(rhi.pix.canBeginAndEnd)
{
rhi.pix.EndEventOnCommandList(rhi.commandList);
}
else
{
rhi.commandList->EndEvent();
}
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
Q_assert(rhi.aftermathMarkerDepth > 0);
const RHIPrivate::AftermathMarker& marker = rhi.aftermathMarkers[rhi.aftermathMarkerDepth - 1];
Q_assert(marker.string[0] != '\0');
const char* const markerString = va("End: %s", marker.string);
const GFSDK_Aftermath_Result result = GFSDK_Aftermath_SetEventMarker(rhi.aftermathCommandList, markerString, strlen(markerString) + 1);
Q_assert(result == GFSDK_Aftermath_Result_Success);
rhi.aftermathMarkerDepth--;
}
#endif
}
void CmdSetStencilReference(uint8_t stencilRef)
{
rhi.commandList->OMSetStencilRef((UINT)stencilRef);
}
void CmdCopyBuffer(HBuffer dest, HBuffer source)
{
Q_assert(CanWriteCommands());
const Buffer& dst = rhi.buffers.Get(dest);
const Buffer& src = rhi.buffers.Get(source);
const UINT64 byteCount = min(src.desc.byteCount, dst.desc.byteCount);
rhi.commandList->CopyBufferRegion(dst.buffer, 0, src.buffer, 0, byteCount);
}
void CmdCopyBuffer(HBuffer dest, uint32_t destOffset, HBuffer source, uint32_t sourceOffset, uint32_t byteCount)
{
Q_assert(CanWriteCommands());
const Buffer& dst = rhi.buffers.Get(dest);
const Buffer& src = rhi.buffers.Get(source);
Q_assert(destOffset + byteCount <= dst.desc.byteCount);
Q_assert(sourceOffset + byteCount <= src.desc.byteCount);
rhi.commandList->CopyBufferRegion(dst.buffer, destOffset, src.buffer, sourceOffset, byteCount);
}
void CmdCopyTexture(HTexture dest, HTexture source)
{
Q_assert(CanWriteCommands());
Q_assert(dest != source);
const Texture& dst = rhi.textures.Get(dest);
const Texture& src = rhi.textures.Get(source);
Q_assert(dst.desc.width == src.desc.width);
Q_assert(dst.desc.height == src.desc.height);
Q_assert(dst.desc.depth == src.desc.depth);
Q_assert(dst.desc.mipCount == src.desc.mipCount);
Q_assert(dst.desc.format == src.desc.format);
rhi.commandList->CopyResource(dst.texture, src.texture);
}
void CmdSetShadingRate(ShadingRate::Id shadingRate)
{
Q_assert(CanWriteCommands());
if(!rhi.baseVRSSupport)
{
return;
}
if(!rhi.extendedVRSSupport)
{
switch(shadingRate)
{
case ShadingRate::SR_2x4:
case ShadingRate::SR_4x2:
case ShadingRate::SR_4x4:
shadingRate = ShadingRate::SR_2x2;
break;
default:
break;
}
}
rhi.commandList->RSSetShadingRate(GetD3DShadingRate(shadingRate), NULL);
}
uint32_t GetDurationCount()
{
return rhi.resolvedQueries.durationQueryCount;
}
void GetDurations(uint32_t* gpuMicroSeconds)
{
memcpy(gpuMicroSeconds, rhi.resolvedQueries.gpuMicroSeconds, rhi.resolvedQueries.durationQueryCount * sizeof(uint32_t));
}
uint8_t* BeginBufferUpload(HBuffer buffer, uint32_t destByteOffset, uint32_t byteCount)
{
Q_assert(!IsNullHandle(buffer));
return rhi.upload.BeginBufferUpload(buffer, destByteOffset, byteCount);
}
void EndBufferUpload(HBuffer buffer)
{
rhi.upload.EndBufferUpload(buffer);
}
void BeginTextureUpload(MappedTexture& mappedTexture, HTexture texture)
{
Q_assert(!IsNullHandle(texture));
rhi.upload.BeginTextureUpload(mappedTexture, texture);
}
void EndTextureUpload()
{
rhi.upload.EndTextureUpload();
}
void BeginTempCommandList()
{
Q_assert(!rhi.frameBegun);
Q_assert(rhi.commandList == rhi.mainCommandList);
rhi.commandList = rhi.tempCommandList;
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
rhi.aftermathCommandList = rhi.aftermathTempCommandList;
}
#endif
// CPU wait for the temp command list to be done executing on the GPU
WaitForTempCommandList();
// GPU wait for the copy queue to be done executing on the GPU
rhi.upload.WaitToStartDrawing(rhi.computeCommandQueue);
BindDynamicResources();
}
void EndTempCommandList()
{
Q_assert(!rhi.frameBegun);
Q_assert(rhi.commandList == rhi.tempCommandList);
rhi.commandList = rhi.mainCommandList;
#if defined(RHI_ENABLE_AFTERMATH)
if(rhi.aftermathActive)
{
rhi.aftermathCommandList = rhi.aftermathMainCommandList;
}
#endif
// execute and wait on the temporary command list
ID3D12CommandQueue* const queue = rhi.computeCommandQueue;
rhi.tempCommandList->Close();
ID3D12CommandList* tempCommandListArray[] = { rhi.tempCommandList };
queue->ExecuteCommandLists(ARRAY_LEN(tempCommandListArray), tempCommandListArray);
rhi.tempFenceValue++;
rhi.tempFence.Signal(queue, rhi.tempFenceValue);
rhi.tempCommandListOpen = false;
}
void WaitForTempCommandList()
{
rhi.tempFence.WaitOnCPU(rhi.tempFenceValue);
if(rhi.tempCommandListOpen)
{
rhi.tempCommandList->Close();
}
D3D(rhi.tempCommandAllocator->Reset());
D3D(rhi.tempCommandList->Reset(rhi.tempCommandAllocator, NULL));
rhi.tempCommandListOpen = true;
}
void BeginTextureReadback(MappedTexture& mappedTexture, HTexture htexture)
{
rhi.readback.BeginTextureReadback(mappedTexture, htexture);
}
void EndTextureReadback()
{
rhi.readback.EndTextureReadback();
}
void WaitUntilDeviceIsIdle()
{
// direct queue
rhi.mainFenceValues[rhi.frameIndex]++;
#if RHI_DEBUG_FENCE
Sys_DebugPrintf("Signal: %d (WaitUntilDeviceIsIdle)\n", (int)rhi.mainFenceValues[rhi.frameIndex]);
Sys_DebugPrintf("Wait: %d (WaitUntilDeviceIsIdle)\n", (int)rhi.mainFenceValues[rhi.frameIndex]);
#endif
rhi.mainFence.Signal(rhi.mainCommandQueue, rhi.mainFenceValues[rhi.frameIndex]);
rhi.mainFence.WaitOnCPU(rhi.mainFenceValues[rhi.frameIndex]);
// compute queue
rhi.tempFence.WaitOnCPU(rhi.tempFenceValue);
// upload queue
rhi.upload.fence.WaitOnCPU(rhi.upload.fenceValue);
}
void SubmitAndContinue()
{
ASSERT_DR_ENABLED();
Q_assert(rhi.commandList == rhi.mainCommandList);
CmdInsertDebugLabel("RHI::SubmitAndWaitOnCPU", 0.8f, 0.8f, 0.8f);
rhi.frameBegun = false;
D3D(rhi.commandList->Close());
ID3D12CommandList* commandListArray[] = { rhi.commandList };
rhi.mainCommandQueue->ExecuteCommandLists(ARRAY_LEN(commandListArray), commandListArray);
const UINT64 currentFenceValue = rhi.mainFenceValues[rhi.frameIndex];
#if RHI_DEBUG_FENCE
Sys_DebugPrintf("Signal: %d (SubmitAndWaitOnCPU)\n", (int)currentFenceValue);
Sys_DebugPrintf("Wait: %d (SubmitAndWaitOnCPU)\n", (int)currentFenceValue);
#endif
rhi.mainFence.Signal(rhi.mainCommandQueue, currentFenceValue);
rhi.mainFence.WaitOnCPU(currentFenceValue);
rhi.mainFenceValues[rhi.frameIndex] = currentFenceValue + 1;
D3D(rhi.mainCommandAllocators[rhi.frameIndex]->Reset());
D3D(rhi.commandList->Reset(rhi.mainCommandAllocators[rhi.frameIndex], NULL));
BindDynamicResources();
rhi.commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
rhi.currentRootSignature = RHI_MAKE_NULL_HANDLE();
rhi.frameBegun = true;
}
uint32_t GetTextureIndexSRV(HTexture htexture)
{
ASSERT_DR_ENABLED();
Q_assert(!IsNullHandle(htexture));
Texture& texture = rhi.textures.Get(htexture);
return texture.srvIndex;
}
uint32_t GetTextureIndexUAV(HTexture htexture, uint32_t mipIndex)
{
ASSERT_DR_ENABLED();
Q_assert(!IsNullHandle(htexture));
Texture& texture = rhi.textures.Get(htexture);
Q_assert(mipIndex < texture.desc.mipCount);
return texture.mips[mipIndex].uavIndex;
}
uint32_t GetBufferIndexSRV(HBuffer hbuffer)
{
ASSERT_DR_ENABLED();
Q_assert(!IsNullHandle(hbuffer));
Buffer& buffer = rhi.buffers.Get(hbuffer);
return buffer.srvIndex;
}
uint32_t GetBufferIndexUAV(HBuffer hbuffer)
{
ASSERT_DR_ENABLED();
Q_assert(!IsNullHandle(hbuffer));
Buffer& buffer = rhi.buffers.Get(hbuffer);
return buffer.uavIndex;
}
uint32_t GetBufferIndexCBV(HBuffer hbuffer)
{
ASSERT_DR_ENABLED();
Q_assert(!IsNullHandle(hbuffer));
Buffer& buffer = rhi.buffers.Get(hbuffer);
return buffer.cbvIndex;
}
uint32_t GetSamplerIndex(HSampler hsampler)
{
ASSERT_DR_ENABLED();
Q_assert(!IsNullHandle(hsampler));
const Sampler& sampler = rhi.samplers.Get(hsampler);
return sampler.heapIndex;
}
void CmdBarrierUAV()
{
ASSERT_DR_ENABLED();
Q_assert(CanWriteCommands());
D3D12_RESOURCE_BARRIER barrier = {};
barrier.Type = D3D12_RESOURCE_BARRIER_TYPE_UAV;
barrier.Flags = D3D12_RESOURCE_BARRIER_FLAG_NONE;
barrier.UAV.pResource = NULL;
rhi.commandList->ResourceBarrier(1, &barrier);
}
void PrintGPUList()
{
CreateAdapterList();
ri.Printf(PRINT_ALL, "%s0^7. Default\n", S_COLOR_VAL);
for(uint32_t i = 0; i < rhi.gpuCount; ++i)
{
ri.Printf(PRINT_ALL, "%s%d^7. %s\n", S_COLOR_VAL, (int)i + 1, rhi.gpus[i].name);
}
}
void CmdCreateBLAS(HBuffer* blasBuffer, const BLASDesc& rhiDesc)
{
ASSERT_DR_ENABLED();
Q_assert(blasBuffer);
Q_assert(!IsNullHandle(rhiDesc.vertexBuffer));
Q_assert(!IsNullHandle(rhiDesc.indexBuffer));
Q_assert(rhiDesc.meshCount > 0);
Q_assert(rhiDesc.meshes);
const D3D12_GPU_VIRTUAL_ADDRESS baseVertexAddress = rhi.buffers.Get(rhiDesc.vertexBuffer).gpuAddress;
const D3D12_GPU_VIRTUAL_ADDRESS baseIndexAddress = rhi.buffers.Get(rhiDesc.indexBuffer).gpuAddress;
if(rhiDesc.meshCount > rhi.rtGeoDescCount)
{
const uint32_t meshCount = max(rhiDesc.meshCount, 2 * rhi.rtGeoDescCount);
const size_t byteCount = meshCount * sizeof(D3D12_RAYTRACING_GEOMETRY_DESC);
rhi.rtGeoDescs = (D3D12_RAYTRACING_GEOMETRY_DESC*)realloc(rhi.rtGeoDescs, byteCount);
if(rhi.rtGeoDescs == NULL)
{
ri.Error(ERR_FATAL, "Failed to allocate %d D3D12_RAYTRACING_GEOMETRY_DESC instances\n", (int)meshCount);
}
rhi.rtGeoDescCount = rhiDesc.meshCount;
}
for(uint32_t i = 0; i < rhiDesc.meshCount; ++i)
{
const BLASMeshDesc& mesh = rhiDesc.meshes[i];
D3D12_RAYTRACING_GEOMETRY_DESC& geoDesc = rhi.rtGeoDescs[i];
geoDesc.Type = D3D12_RAYTRACING_GEOMETRY_TYPE_TRIANGLES;
geoDesc.Flags = mesh.isFullyOpaque ?
D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE :
D3D12_RAYTRACING_GEOMETRY_FLAG_NONE;
geoDesc.Triangles.IndexFormat = DXGI_FORMAT_R32_UINT;
geoDesc.Triangles.IndexCount = mesh.indexCount;
geoDesc.Triangles.IndexBuffer = baseIndexAddress + mesh.firstIndex * sizeof(uint32_t);
geoDesc.Triangles.VertexFormat = DXGI_FORMAT_R32G32B32_FLOAT;
geoDesc.Triangles.VertexCount = mesh.vertexCount;
geoDesc.Triangles.VertexBuffer.StartAddress = baseVertexAddress + mesh.firstVertex * sizeof(vec3_t);
geoDesc.Triangles.VertexBuffer.StrideInBytes = sizeof(vec3_t);
geoDesc.Triangles.Transform3x4 = NULL;
}
D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_INPUTS inputs = {};
inputs.Type = D3D12_RAYTRACING_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL;
inputs.Flags = D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BUILD_FLAG_NONE;
inputs.DescsLayout = D3D12_ELEMENTS_LAYOUT_ARRAY;
inputs.NumDescs = rhiDesc.meshCount;
inputs.pGeometryDescs = rhi.rtGeoDescs;
D3D12_RAYTRACING_ACCELERATION_STRUCTURE_PREBUILD_INFO info = {};
rhi.device->GetRaytracingAccelerationStructurePrebuildInfo(&inputs, &info);
if(info.ResultDataMaxSizeInBytes >= UINT64(4ull << 30ull) ||
info.ScratchDataSizeInBytes >= UINT64(4ull << 30ull))
{
ri.Error(ERR_FATAL, "Attempted to create a BLAS larger than 4 GB!\n");
}
EnsureBufferIsThisLarge(rhi.raytracingScratchBuffer, "RTAS scratch",
ResourceStates::UnorderedAccessBit, (uint32_t)info.ScratchDataSizeInBytes);
EnsureBufferIsThisLarge(*blasBuffer, rhiDesc.name,
ResourceStates::RaytracingASBit, (uint32_t)info.ResultDataMaxSizeInBytes);
// dest + src: D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BYTE_ALIGNMENT
D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC rtasDesc = {};
rtasDesc.SourceAccelerationStructureData = 0;
rtasDesc.DestAccelerationStructureData = rhi.buffers.Get(*blasBuffer).gpuAddress;
rtasDesc.ScratchAccelerationStructureData = rhi.buffers.Get(rhi.raytracingScratchBuffer).gpuAddress;
rtasDesc.Inputs = inputs;
#if defined(RHI_ENABLE_AFTERMATH)
CmdInsertDebugLabel("BLAS: Before build");
#endif
rhi.commandList->BuildRaytracingAccelerationStructure(&rtasDesc, 0, NULL);
#if defined(RHI_ENABLE_AFTERMATH)
CmdInsertDebugLabel("BLAS: After build");
#endif
CmdBeginBarrier();
CmdBufferBarrier(*blasBuffer, ResourceStates::UnorderedAccessBit);
CmdEndBarrier();
#if defined(RHI_ENABLE_AFTERMATH)
CmdInsertDebugLabel("BLAS: After barrier");
#endif
}
void CmdCreateTLAS(HBuffer* tlasBuffer, const TLASDesc& rhiDesc)
{
ASSERT_DR_ENABLED();
Q_assert(tlasBuffer != NULL);
Q_assert(rhiDesc.instances);
Q_assert(rhiDesc.instanceCount > 0);
EnsureBufferIsThisLarge(rhi.raytracingInstanceBuffer, "RT TLAS instance",
ResourceStates::Common, rhiDesc.instanceCount * sizeof(D3D12_RAYTRACING_INSTANCE_DESC));
D3D12_RAYTRACING_INSTANCE_DESC* const instanceDescs =
(D3D12_RAYTRACING_INSTANCE_DESC*)BeginBufferUpload(rhi.raytracingInstanceBuffer);
for(uint32_t i = 0; i < rhiDesc.instanceCount; ++i)
{
const TLASInstanceDesc& rhiInstDesc = rhiDesc.instances[i];
D3D12_RAYTRACING_INSTANCE_DESC instDesc = {};
instDesc.AccelerationStructure = rhi.buffers.Get(rhiInstDesc.blasBuffer).gpuAddress;
switch(rhiInstDesc.cullMode)
{
case CT_FRONT_SIDED: instDesc.Flags = D3D12_RAYTRACING_INSTANCE_FLAG_TRIANGLE_FRONT_COUNTERCLOCKWISE; break;
case CT_BACK_SIDED: instDesc.Flags = D3D12_RAYTRACING_INSTANCE_FLAG_NONE; break;
default: instDesc.Flags = D3D12_RAYTRACING_INSTANCE_FLAG_TRIANGLE_CULL_DISABLE; break;
}
instDesc.InstanceContributionToHitGroupIndex = 0; // @TODO: do we care for this?
instDesc.InstanceID = rhiInstDesc.instanceId;
instDesc.InstanceMask = rhiInstDesc.instanceMask;
instDesc.Transform[0][0] = rhiInstDesc.transform[0]; // @TODO: confirm order
instDesc.Transform[1][0] = rhiInstDesc.transform[1];
instDesc.Transform[2][0] = rhiInstDesc.transform[2];
instDesc.Transform[0][1] = rhiInstDesc.transform[3];
instDesc.Transform[1][1] = rhiInstDesc.transform[4];
instDesc.Transform[2][1] = rhiInstDesc.transform[5];
instDesc.Transform[0][2] = rhiInstDesc.transform[6];
instDesc.Transform[1][2] = rhiInstDesc.transform[7];
instDesc.Transform[2][2] = rhiInstDesc.transform[8];
instDesc.Transform[0][3] = rhiInstDesc.translation[0];
instDesc.Transform[1][3] = rhiInstDesc.translation[1];
instDesc.Transform[2][3] = rhiInstDesc.translation[2];
memcpy(&instanceDescs[i], &instDesc, sizeof(D3D12_RAYTRACING_INSTANCE_DESC));
}
EndBufferUpload(rhi.raytracingInstanceBuffer);
// GPU wait for the copy queue to be done executing on the GPU
rhi.upload.WaitToStartDrawing(rhi.computeCommandQueue);
// InstanceDescs: D3D12_RAYTRACING_INSTANCE_DESC_BYTE_ALIGNMENT
D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_INPUTS inputs = {};
inputs.Type = D3D12_RAYTRACING_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL;
inputs.Flags = D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BUILD_FLAG_NONE;
inputs.DescsLayout = D3D12_ELEMENTS_LAYOUT_ARRAY;
inputs.NumDescs = rhiDesc.instanceCount;
inputs.InstanceDescs = rhi.buffers.Get(rhi.raytracingInstanceBuffer).gpuAddress;
D3D12_RAYTRACING_ACCELERATION_STRUCTURE_PREBUILD_INFO info = {};
rhi.device->GetRaytracingAccelerationStructurePrebuildInfo(&inputs, &info);
if(info.ResultDataMaxSizeInBytes >= UINT64(4ull << 30ull) ||
info.ScratchDataSizeInBytes >= UINT64(4ull << 30ull))
{
ri.Error(ERR_FATAL, "Attempted to create a BLAS larger than 4 GB!\n");
}
EnsureBufferIsThisLarge(rhi.raytracingScratchBuffer, "RTAS scratch",
ResourceStates::UnorderedAccessBit, (uint32_t)info.ScratchDataSizeInBytes);
EnsureBufferIsThisLarge(*tlasBuffer, "RT TLAS",
ResourceStates::RaytracingASBit, (uint32_t)info.ResultDataMaxSizeInBytes);
// dest + src: D3D12_RAYTRACING_ACCELERATION_STRUCTURE_BYTE_ALIGNMENT
D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_DESC rtasDesc = {};
rtasDesc.DestAccelerationStructureData = rhi.buffers.Get(*tlasBuffer).gpuAddress;
rtasDesc.ScratchAccelerationStructureData = rhi.buffers.Get(rhi.raytracingScratchBuffer).gpuAddress;
rtasDesc.Inputs = inputs;
#if defined(RHI_ENABLE_AFTERMATH)
CmdInsertDebugLabel("TLAS: Before build");
#endif
rhi.commandList->BuildRaytracingAccelerationStructure(&rtasDesc, 0, NULL);
#if defined(RHI_ENABLE_AFTERMATH)
CmdInsertDebugLabel("TLAS: After build");
#endif
CmdBeginBarrier();
CmdBufferBarrier(*tlasBuffer, ResourceStates::UnorderedAccessBit);
CmdEndBarrier();
#if defined(RHI_ENABLE_AFTERMATH)
CmdInsertDebugLabel("TLAS: After barrier");
#endif
}
}
void R_WaitBeforeInputSampling()
{
RHI::WaitForSwapChain();
RHI::rhi.beforeInputSamplingUS = Sys_Microseconds();
}
/*
PIX CAPTURE API WOES
Never got the PIX programmable capture API to work
PIXBeginCapture returns "not implemented"
// before include
#define USE_PIX 1
// before creating the device
PIXLoadLatestWinPixGpuCapturerLibrary();
HRESULT hr = PIXSetTargetWindow(GetActiveWindow());
Check(hr, "PIXSetTargetWindow");
// whenever...
PIXCaptureParameters params = {};
params.GpuCaptureParameters.FileName = L"temp.wpix";
HRESULT hr = PIXBeginCapture(0, &params);
Check(hr, "PIXBeginCapture");
The legacy API fails as well
DXGIGetDebugInterface1 returns "no such interface supported"
#include <DXProgrammableCapture.h>
IDXGraphicsAnalysis* graphicsAnalysis;
D3D(DXGIGetDebugInterface1(0, IID_PPV_ARGS(&graphicsAnalysis)));
*/