cnq3/code/qcommon/q_math.c
myT afc81437c3 added NanoVDB support
- added the foundation for a GPU particle system
- reworked volumetric particle injection
2024-07-02 02:06:15 +02:00

961 lines
25 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
//
// q_math.c -- stateless support routines that are included in each code module
#include "q_shared.h"
const vec3_t vec2_zero = { 0, 0 };
const vec3_t vec2_one = { 1, 1 };
const vec3_t vec3_origin = { 0, 0, 0 };
const vec3_t vec3_zero = { 0, 0, 0 };
const vec3_t vec3_one = { 1, 1, 1 };
const vec3_t vec3_axis[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
const vec4_t vec4_zero = { 0, 0, 0, 0 };
const vec4_t vec4_one = { 1, 1, 1, 1 };
#if defined(Q3_VM) // lcc can't cope with "const vec3_t []"
vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
#else
const vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
#endif
const vec4_t colorBlack = { 0, 0, 0, 1 };
const vec4_t colorRed = { 1, 0, 0, 1 };
const vec4_t colorGreen = { 0, 1, 0, 1 };
const vec4_t colorYellow = { 1, 1, 0, 1 };
const vec4_t colorBlue = { 0.2f, 0.2f, 1, 1 }; // blue is impure because its intensity is so poor otherwise
const vec4_t colorPink = { 1, 0, 1, 1 };
const vec4_t colorCyan = { 0, 1, 1, 1 };
const vec4_t colorWhite = { 1, 1, 1, 1 };
static const vec4_t colorTable[] =
{
{ 0, 0, 0, 1 },
{ 1, 0, 0, 1 },
{ 0, 1, 0, 1 },
{ 1, 1, 0, 1 },
{ 0.2f, 0.2f, 1, 1 },
{ 0, 1, 1, 1 }, // id got pink and cyan backwards
{ 1, 0, 1, 1 },
{ 1, 1, 1, 1 },
{1.00000f, 0.50000f, 0.00000f, 1.00000f}, // 8
{0.60000f, 0.60000f, 1.00000f, 1.00000f}, // 9
// CPMA's alphabet rainbow
{1.00000f, 0.00000f, 0.00000f, 1.00000f}, // a
{1.00000f, 0.26795f, 0.00000f, 1.00000f}, // b
{1.00000f, 0.50000f, 0.00000f, 1.00000f}, // c
{1.00000f, 0.73205f, 0.00000f, 1.00000f}, // d
{1.00000f, 1.00000f, 0.00000f, 1.00000f}, // e
{0.73205f, 1.00000f, 0.00000f, 1.00000f}, // f
{0.50000f, 1.00000f, 0.00000f, 1.00000f}, // g
{0.26795f, 1.00000f, 0.00000f, 1.00000f}, // h
{0.00000f, 1.00000f, 0.00000f, 1.00000f}, // i
{0.00000f, 1.00000f, 0.26795f, 1.00000f}, // j
{0.00000f, 1.00000f, 0.50000f, 1.00000f}, // k
{0.00000f, 1.00000f, 0.73205f, 1.00000f}, // l
{0.00000f, 1.00000f, 1.00000f, 1.00000f}, // m
{0.00000f, 0.73205f, 1.00000f, 1.00000f}, // n
{0.00000f, 0.50000f, 1.00000f, 1.00000f}, // o
{0.00000f, 0.26795f, 1.00000f, 1.00000f}, // p
{0.00000f, 0.00000f, 1.00000f, 1.00000f}, // q
{0.26795f, 0.00000f, 1.00000f, 1.00000f}, // r
{0.50000f, 0.00000f, 1.00000f, 1.00000f}, // s
{0.73205f, 0.00000f, 1.00000f, 1.00000f}, // t
{1.00000f, 0.00000f, 1.00000f, 1.00000f}, // u
{1.00000f, 0.00000f, 0.73205f, 1.00000f}, // v
{1.00000f, 0.00000f, 0.50000f, 1.00000f}, // w
{1.00000f, 0.00000f, 0.26795f, 1.00000f}, // x
{ 1, 1, 1, 1 }, // y, white, duped so all colors can be expressed with this palette
};
const /* vec4_t */ float* ColorFromChar( char ccode )
{
if ( ccode >= '0' && ccode <= '9' ) {
ccode -= '0';
} else if ( ccode >= 'a' && ccode <= 'y' ) {
ccode -= 'a' - 10;
} else if ( ccode >= 'A' && ccode <= 'Y' ) {
ccode -= 'A' - 10;
} else {
return colorWhite;
}
return colorTable[ccode];
}
///////////////////////////////////////////////////////////////
int Q_rand( int *seed )
{
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random( int *seed )
{
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}
float Q_crandom( int *seed )
{
return 2.0 * ( Q_random( seed ) - 0.5 );
}
///////////////////////////////////////////////////////////////
#define NUMVERTEXNORMALS 162
static const vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
};
// this isn't a real cheap function to call!
int DirToByte( const vec3_t dir )
{
int i, best;
float bestd = 0;
if ( !dir ) {
return 0;
}
best = 0;
for ( i = 0; i < NUMVERTEXNORMALS; ++i ) {
float d = DotProduct( dir, bytedirs[i] );
if ( d > bestd ) {
bestd = d;
best = i;
}
}
return best;
}
void ByteToDir( int b, vec3_t dir )
{
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
VectorCopy( vec3_origin, dir );
return;
}
VectorCopy( bytedirs[b], dir );
}
///////////////////////////////////////////////////////////////
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenerate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees ) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD( degrees );
zrot[0][0] = cos( rad );
zrot[0][1] = sin( rad );
zrot[1][0] = -sin( rad );
zrot[1][1] = cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ ) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
// create an arbitrary axis[1]
PerpendicularVector( axis[1], axis[0] );
// rotate it around axis[0] by yaw
if ( yaw ) {
vec3_t temp;
VectorCopy( axis[1], temp );
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
}
// cross to get axis[2]
CrossProduct( axis[0], axis[1], axis[2] );
}
void vectoangles( const vec3_t value1, vec3_t angles ) {
float forward;
float yaw, pitch;
if ( value1[1] == 0 && value1[0] == 0 ) {
yaw = 0;
if ( value1[2] > 0 ) {
pitch = 90;
}
else {
pitch = 270;
}
}
else {
if ( value1[0] ) {
yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
}
else if ( value1[1] > 0 ) {
yaw = 90;
}
else {
yaw = 270;
}
if ( yaw < 0 ) {
yaw += 360;
}
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
pitch = ( atan2(value1[2], forward) * 180 / M_PI );
if ( pitch < 0 ) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
/*
=================
AnglesToAxis
=================
*/
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
vec3_t right;
// angle vectors returns "right" instead of "y axis"
AngleVectors( angles, axis[0], right, axis[2] );
VectorSubtract( vec3_origin, right, axis[1] );
}
void AxisClear( vec3_t axis[3] ) {
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
#if defined(Q3_VM) // lcc can't cope with "const vec3_t []"
void AxisCopy( vec3_t in[3], vec3_t out[3] )
#else
void AxisCopy( const vec3_t in[3], vec3_t out[3] )
#endif
{
VectorCopy( in[0], out[0] );
VectorCopy( in[1], out[1] );
VectorCopy( in[2], out[2] );
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = DotProduct( normal, normal );
#ifndef Q3_VM
assert( Q_fabs(inv_denom) != 0.0f ); // bk010122 - zero vectors get here
#endif
inv_denom = 1.0f / inv_denom;
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
{
out[0] = DotProduct( in, matrix[0] );
out[1] = DotProduct( in, matrix[1] );
out[2] = DotProduct( in, matrix[2] );
}
///////////////////////////////////////////////////////////////
#if !idppc
float Q_rsqrt( float number )
{
union {
float f;
int i;
} t;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
t.f = number;
t.i = 0x5f3759df - ( t.i >> 1 ); // what the fuck?
y = t.f;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
//assert( !isnan(y) ); // bk010122 - FPE?
return y;
}
float Q_fabs( float f )
{
int tmp = * ( int * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
}
#endif
///////////////////////////////////////////////////////////////
float LerpAngle( float from, float to, float frac )
{
if ( to - from > 180 ) {
to -= 360;
}
if ( to - from < -180 ) {
to += 360;
}
return (from + frac * (to - from));
}
// always returns a value from -180 to 180
float AngleSubtract( float a1, float a2 )
{
float a = a1 - a2;
while ( a > 180 ) {
a -= 360;
}
while ( a < -180 ) {
a += 360;
}
return a;
}
void AnglesSubtract( const vec3_t v1, const vec3_t v2, vec3_t out )
{
out[0] = AngleSubtract( v1[0], v2[0] );
out[1] = AngleSubtract( v1[1], v2[1] );
out[2] = AngleSubtract( v1[2], v2[2] );
}
float AngleMod( float a )
{
return ((360.0/65536) * ((int)(a*(65536/360.0)) & 65535));
}
///////////////////////////////////////////////////////////////
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits (cplane_t *out) {
int bits, j;
// for fast box on planeside test
bits = 0;
for (j=0 ; j<3 ; j++) {
if (out->normal[j] < 0) {
bits |= 1<<j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
==================
*/
int BoxOnPlaneSide( const vec3_t emins, const vec3_t emaxs, const struct cplane_s* p )
{
float dist1, dist2;
int sides;
// fast axial cases
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
///////////////////////////////////////////////////////////////
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs )
{
int i;
vec3_t corner;
float a, b;
for ( i = 0; i < 3; ++i ) {
a = fabs( mins[i] );
b = fabs( maxs[i] );
corner[i] = a > b ? a : b;
}
return VectorLength( corner );
}
void ClearBounds( vec3_t mins, vec3_t maxs )
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs )
{
if ( v[0] < mins[0] ) {
mins[0] = v[0];
}
if ( v[0] > maxs[0]) {
maxs[0] = v[0];
}
if ( v[1] < mins[1] ) {
mins[1] = v[1];
}
if ( v[1] > maxs[1]) {
maxs[1] = v[1];
}
if ( v[2] < mins[2] ) {
mins[2] = v[2];
}
if ( v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
///////////////////////////////////////////////////////////////
// KHB although our version of q3asm CAN handle "static inline" correctly (I RULE :P)
// there's no actual value to it, because *LCC* can't, so multiple copies just bloat the vm
#if defined( Q3_VM )
qboolean VectorCompare( const vec3_t v1, const vec3_t v2 )
{
return (v1[0] == v2[0] && v1[1] == v2[1] && v1[2] == v2[2]);
}
vec_t VectorLength( const vec3_t v )
{
return (vec_t)sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
vec_t VectorLengthSquared( const vec3_t v )
{
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
vec_t Distance( const vec3_t p1, const vec3_t p2 )
{
vec3_t v;
VectorSubtract( p2, p1, v );
return VectorLength( v );
}
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 )
{
vec3_t v;
VectorSubtract( p2, p1, v );
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
void VectorNormalizeFast( vec3_t v )
{
float ilength = Q_rsqrt( DotProduct( v, v ) );
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
void VectorInverse( vec3_t v )
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross )
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
#endif // defined( Q3_VM )
vec_t VectorNormalize( vec3_t v )
{
float length;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt( length );
if ( length ) {
float ilength = 1.0f / length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
vec_t VectorNormalize2( const vec3_t v, vec3_t out )
{
float length;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt( length );
if (length) {
float ilength = 1.0f / length;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
} else {
VectorClear( out );
}
return length;
}
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc )
{
vecc[0] = veca[0] + scale*vecb[0];
vecc[1] = veca[1] + scale*vecb[1];
vecc[2] = veca[2] + scale*vecb[2];
}
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 )
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out )
{
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out )
{
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
void _VectorCopy( const vec3_t in, vec3_t out )
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out )
{
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
}
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out )
{
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
out[3] = in[3]*scale;
}
///////////////////////////////////////////////////////////////
void MatrixMultiply( float in1[3][3], float in2[3][3], float out[3][3] )
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle, sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
right[1] = (-1*sr*sp*sy+-1*cr*cy);
right[2] = -1*sr*cp;
}
if (up)
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
// assumes "src" is normalized
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0f;
vec3_t tempvec;
// find the smallest magnitude axially aligned vector
for ( pos = 0, i = 0; i < 3; ++i ) {
if ( fabs( src[i] ) < minelem ) {
pos = i;
minelem = fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0f;
tempvec[pos] = 1.0f;
// project the point onto the plane defined by src
ProjectPointOnPlane( dst, tempvec, src );
VectorNormalize( dst );
}