cnq3/code/qcommon/vm_interpreted.cpp

638 lines
12 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "vm_local.h"
//#define DEBUG_VM
#ifdef DEBUG_VM // bk001204
static const char *opnames[256] = {
"OP_UNDEF",
"OP_IGNORE",
"OP_BREAK",
"OP_ENTER",
"OP_LEAVE",
"OP_CALL",
"OP_PUSH",
"OP_POP",
"OP_CONST",
"OP_LOCAL",
"OP_JUMP",
//-------------------
"OP_EQ",
"OP_NE",
"OP_LTI",
"OP_LEI",
"OP_GTI",
"OP_GEI",
"OP_LTU",
"OP_LEU",
"OP_GTU",
"OP_GEU",
"OP_EQF",
"OP_NEF",
"OP_LTF",
"OP_LEF",
"OP_GTF",
"OP_GEF",
//-------------------
"OP_LOAD1",
"OP_LOAD2",
"OP_LOAD4",
"OP_STORE1",
"OP_STORE2",
"OP_STORE4",
"OP_ARG",
"OP_BLOCK_COPY",
//-------------------
"OP_SEX8",
"OP_SEX16",
"OP_NEGI",
"OP_ADD",
"OP_SUB",
"OP_DIVI",
"OP_DIVU",
"OP_MODI",
"OP_MODU",
"OP_MULI",
"OP_MULU",
"OP_BAND",
"OP_BOR",
"OP_BXOR",
"OP_BCOM",
"OP_LSH",
"OP_RSHI",
"OP_RSHU",
"OP_NEGF",
"OP_ADDF",
"OP_SUBF",
"OP_DIVF",
"OP_MULF",
"OP_CVIF",
"OP_CVFI"
};
#endif
/*
====================
VM_PrepareInterpreter2
====================
*/
qboolean VM_PrepareInterpreter2( vm_t *vm, vmHeader_t *header )
{
const char *errMsg;
instruction_t *buf;
buf = ( instruction_t *) Hunk_Alloc( (vm->instructionCount + 8) * sizeof( instruction_t ), h_high );
errMsg = VM_LoadInstructions( header, buf );
if ( !errMsg ) {
errMsg = VM_CheckInstructions( buf, vm->instructionCount, vm->jumpTableTargets, vm->numJumpTableTargets, vm->dataLength );
}
if ( errMsg ) {
Com_Printf( "VM_PrepareInterpreter2 error: %s\n", errMsg );
return qfalse;
}
vm->codeBase.ptr = (byte*)buf;
return qtrue;
}
static void CallStackPush( vm_t *vm, int *callStackDepth, int ip )
{
const int clampedDepth = min( vm->callStackDepth, MAX_VM_CALL_STACK_DEPTH - 1 );
vm->callStack[clampedDepth] = ip;
vm->callStackDepth++;
*callStackDepth = max( *callStackDepth, clampedDepth + 1 );
}
static void CallStackPop( vm_t *vm )
{
vm->callStackDepth--;
}
/*
==============
VM_CallInterpreted2
Upon a system call, the stack will look like:
sp+32 parm1
sp+28 parm0
sp+24 return stack
sp+20 return address
sp+16 local1
sp+14 local0
sp+12 arg1
sp+8 arg0
sp+4 return stack
sp return address
An interpreted function will immediately execute
an OP_ENTER instruction, which will subtract space for
locals from sp
==============
*/
int VM_CallInterpreted2( vm_t *vm, int *args ) {
typedef union floatint_u {
int i;
unsigned int u;
float f;
byte b[4];
} floatint_t;
int stack[MAX_OPSTACK_SIZE];
int *opStack, *opStackTop;
int programStack;
int stackOnEntry;
int callStackDepth = 0;
byte *image;
int v1, v0;
int dataMask;
instruction_t *inst, *ci;
floatint_t r0, r1;
int opcode;
int *img;
int i;
// interpret the code
vm->currentlyInterpreting = qtrue;
// we might be called recursively, so this might not be the very top
programStack = stackOnEntry = vm->programStack;
// set up the stack frame
image = vm->dataBase;
inst = (instruction_t *)vm->codeBase.ptr;
dataMask = vm->dataMask;
// leave a free spot at start of stack so
// that as long as opStack is valid, opStack-1 will
// not corrupt anything
opStack = stack;
opStackTop = stack + ARRAY_LEN( stack ) - 1;
programStack -= 8 + (VMMAIN_CALL_ARGS*4);
img = (int*)&image[ programStack ];
for ( i = 0; i < VMMAIN_CALL_ARGS; i++ ) {
img[ i + 2 ] = args[ i ];
}
img[ 1 ] = 0; // return stack
img[ 0 ] = -1; // will terminate the loop on return
ci = inst;
// main interpreter loop, will exit when a LEAVE instruction
// grabs the -1 program counter
while ( 1 ) {
r0.i = opStack[0];
r1.i = opStack[-1];
nextInstruction2:
v0 = ci->value;
opcode = ci->op;
ci++;
switch ( opcode ) {
case OP_BREAK:
vm->breakCount++;
goto nextInstruction2;
case OP_ENTER:
// get size of stack frame
programStack -= v0;
if ( programStack <= vm->stackBottom ) {
Com_Error( ERR_DROP, "VM programStack overflow" );
}
if ( opStack + ((ci-1)->opStack/4) >= opStackTop ) {
Com_Error( ERR_DROP, "VM opStack overflow" );
}
CallStackPush( vm, &callStackDepth, (int)(ci - (instruction_t*)vm->codeBase.ptr) - 1 );
break;
case OP_LEAVE:
CallStackPop( vm );
// remove our stack frame
programStack += v0;
// grab the saved program counter
v1 = *(int *)&image[ programStack ];
// check for leaving the VM
if ( v1 == -1 ) {
goto done;
} else if ( (unsigned)v1 >= vm->instructionCount ) {
Com_Error( ERR_DROP, "VM program counter out of range in OP_LEAVE" );
}
ci = inst + v1;
break;
case OP_CALL:
// save current program counter
*(int *)&image[ programStack ] = ci - inst;
// jump to the location on the stack
if ( r0.i < 0 ) {
// system call
// save the stack to allow recursive VM entry
vm->programStack = programStack - 4;
*(int *)&image[ programStack + 4 ] = ~r0.i;
{
#if idx64 //__WORDSIZE == 64
// the vm has ints on the stack, we expect
// longs so we have to convert it
intptr_t argarr[16];
int argn;
for ( argn = 0; argn < ARRAY_LEN( argarr ); ++argn ) {
argarr[ argn ] = *(int*)&image[ programStack + 4 + 4*argn ];
}
CallStackPush( vm, &callStackDepth, r0.i );
v0 = vm->systemCall( &argarr[0] );
CallStackPop( vm );
#else
CallStackPush( vm, &callStackDepth, r0.i );
v0 = vm->systemCall( (intptr_t *)&image[ programStack + 4 ] );
CallStackPop( vm );
#endif
}
// save return value
//opStack++;
ci = inst + *(int *)&image[ programStack ];
*opStack = v0;
} else if ( r0.u < vm->instructionCount ) {
// vm call
ci = inst + r0.i;
opStack--;
} else {
Com_Error( ERR_DROP, "VM program counter out of range in OP_CALL" );
}
break;
// push and pop are only needed for discarded or bad function return values
case OP_PUSH:
opStack++;
break;
case OP_POP:
opStack--;
break;
case OP_CONST:
opStack++;
r1.i = r0.i;
r0.i = *opStack = v0;
goto nextInstruction2;
case OP_LOCAL:
opStack++;
r1.i = r0.i;
r0.i = *opStack = v0 + programStack;
goto nextInstruction2;
case OP_JUMP:
if ( r0.u >= vm->instructionCount ) {
Com_Error( ERR_DROP, "VM program counter out of range in OP_JUMP" );
}
ci = inst + r0.i;
opStack--;
break;
/*
===================================================================
BRANCHES
===================================================================
*/
case OP_EQ:
opStack -= 2;
if ( r1.i == r0.i )
ci = inst + v0;
break;
case OP_NE:
opStack -= 2;
if ( r1.i != r0.i )
ci = inst + v0;
break;
case OP_LTI:
opStack -= 2;
if ( r1.i < r0.i )
ci = inst + v0;
break;
case OP_LEI:
opStack -= 2;
if ( r1.i <= r0.i )
ci = inst + v0;
break;
case OP_GTI:
opStack -= 2;
if ( r1.i > r0.i )
ci = inst + v0;
break;
case OP_GEI:
opStack -= 2;
if ( r1.i >= r0.i )
ci = inst + v0;
break;
case OP_LTU:
opStack -= 2;
if ( r1.u < r0.u )
ci = inst + v0;
break;
case OP_LEU:
opStack -= 2;
if ( r1.u <= r0.u )
ci = inst + v0;
break;
case OP_GTU:
opStack -= 2;
if ( r1.u > r0.u )
ci = inst + v0;
break;
case OP_GEU:
opStack -= 2;
if ( r1.u >= r0.u )
ci = inst + v0;
break;
case OP_EQF:
opStack -= 2;
if ( r1.f == r0.f )
ci = inst + v0;
break;
case OP_NEF:
opStack -= 2;
if ( r1.f != r0.f )
ci = inst + v0;
break;
case OP_LTF:
opStack -= 2;
if ( r1.f < r0.f )
ci = inst + v0;
break;
case OP_LEF:
opStack -= 2;
if ( r1.f <= r0.f )
ci = inst + v0;
break;
case OP_GTF:
opStack -= 2;
if ( r1.f > r0.f )
ci = inst + v0;
break;
case OP_GEF:
opStack -= 2;
if ( r1.f >= r0.f )
ci = inst + v0;
break;
//===================================================================
case OP_LOAD1:
r0.i = *opStack = image[ r0.i & dataMask ];
goto nextInstruction2;
case OP_LOAD2:
r0.i = *opStack = *(unsigned short *)&image[ r0.i & ( dataMask & ~1 ) ];
goto nextInstruction2;
case OP_LOAD4:
r0.i = *opStack = *(int *)&image[ r0.i & ( dataMask & ~3 ) ];
goto nextInstruction2;
case OP_STORE1:
image[ r1.i & dataMask ] = r0.i;
opStack -= 2;
break;
case OP_STORE2:
*(short *)&image[ r1.i & (dataMask & ~1) ] = r0.i;
opStack -= 2;
break;
case OP_STORE4:
*(int *)&image[ r1.i & (dataMask & ~3) ] = r0.i;
opStack -= 2;
break;
case OP_ARG:
// single byte offset from programStack
*(int *)&image[ ( v0 + programStack ) /*& ( dataMask & ~3 ) */ ] = r0.i;
opStack--;
break;
case OP_BLOCK_COPY:
{
int *src, *dest;
int count, srci, desti;
count = v0;
// MrE: copy range check
srci = r0.i & dataMask;
desti = r1.i & dataMask;
count = ((srci + count) & dataMask) - srci;
count = ((desti + count) & dataMask) - desti;
src = (int *)&image[ srci ];
dest = (int *)&image[ desti ];
memcpy( dest, src, count );
opStack -= 2;
}
break;
case OP_SEX8:
*opStack = (signed char)*opStack;
break;
case OP_SEX16:
*opStack = (short)*opStack;
break;
case OP_NEGI:
*opStack = -r0.i;
break;
case OP_ADD:
opStack[-1] = r1.i + r0.i;
opStack--;
break;
case OP_SUB:
opStack[-1] = r1.i - r0.i;
opStack--;
break;
case OP_DIVI:
opStack[-1] = r1.i / r0.i;
opStack--;
break;
case OP_DIVU:
opStack[-1] = r1.u / r0.u;
opStack--;
break;
case OP_MODI:
opStack[-1] = r1.i % r0.i;
opStack--;
break;
case OP_MODU:
opStack[-1] = r1.u % r0.u;
opStack--;
break;
case OP_MULI:
opStack[-1] = r1.i * r0.i;
opStack--;
break;
case OP_MULU:
opStack[-1] = r1.u * r0.u;
opStack--;
break;
case OP_BAND:
opStack[-1] = r1.u & r0.u;
opStack--;
break;
case OP_BOR:
opStack[-1] = r1.u | r0.u;
opStack--;
break;
case OP_BXOR:
opStack[-1] = r1.u ^ r0.u;
opStack--;
break;
case OP_BCOM:
*opStack = ~ r0.u; // id bug: was writing to opStack[-1]
break;
case OP_LSH:
opStack[-1] = r1.i << r0.i;
opStack--;
break;
case OP_RSHI:
opStack[-1] = r1.i >> r0.i;
opStack--;
break;
case OP_RSHU:
opStack[-1] = r1.u >> r0.i;
opStack--;
break;
case OP_NEGF:
*(float *)opStack = - r0.f;
break;
case OP_ADDF:
*(float *)(opStack-1) = r1.f + r0.f;
opStack--;
break;
case OP_SUBF:
*(float *)(opStack-1) = r1.f - r0.f;
opStack--;
break;
case OP_DIVF:
*(float *)(opStack-1) = r1.f / r0.f;
opStack--;
break;
case OP_MULF:
*(float *)(opStack-1) = r1.f * r0.f;
opStack--;
break;
case OP_CVIF:
*(float *)opStack = (float) r0.i;
break;
case OP_CVFI:
*opStack = (int) r0.f;
break;
}
}
done:
//vm->currentlyInterpreting = qfalse;
if ( opStack != &stack[1] ) {
Com_Error( ERR_DROP, "Interpreter error: opStack = %ld", (long int) (opStack - stack) );
}
vm->programStack = stackOnEntry;
vm->lastCallStackDepth = callStackDepth;
// return the result
return *opStack;
}