cnq3/code/renderer/tr_image.cpp

1194 lines
34 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_image.c
#include "tr_local.h"
#include <setjmp.h>
#if defined (_MSC_VER)
# pragma warning (disable: 4611) // setjmp and C++ destructors
#endif
// colors are pre-multiplied, alpha indicates whether blending should occur
const vec4_t r_mipBlendColors[16] = {
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.5f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 0.5f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 0.5f, 1.0f },
{ 0.5f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 0.5f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 0.5f, 1.0f },
{ 0.5f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 0.5f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 0.5f, 1.0f },
{ 0.5f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 0.5f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 0.5f, 1.0f },
{ 0.5f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 0.5f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 0.5f, 1.0f }
};
// colors are not pre-multiplied
static const byte mipBlendColors[16][4] = {
{ 0, 0, 0, 0 },
{ 255, 0, 0, 128 },
{ 0, 255, 0, 128 },
{ 0, 0, 255, 128 },
{ 255, 0, 0, 128 },
{ 0, 255, 0, 128 },
{ 0, 0, 255, 128 },
{ 255, 0, 0, 128 },
{ 0, 255, 0, 128 },
{ 0, 0, 255, 128 },
{ 255, 0, 0, 128 },
{ 0, 255, 0, 128 },
{ 0, 0, 255, 128 },
{ 255, 0, 0, 128 },
{ 0, 255, 0, 128 },
{ 0, 0, 255, 128 }
};
#define IMAGE_HASH_SIZE 1024
static image_t* hashTable[IMAGE_HASH_SIZE];
static byte s_intensitytable[256];
void R_ImageList_f( void )
{
const char* const match = Cmd_Argc() > 1 ? Cmd_Argv( 1 ) : NULL;
ri.Printf( PRINT_ALL, "\nwide high MPI W format name\n" );
int totalByteCount = 0;
int imageCount = 0;
for ( int i = 0; i < tr.numImages; ++i ) {
const image_t* image = tr.images[i];
if ( match && !Com_Filter( match, image->name ) )
continue;
const int byteCount = image->width * image->height * (image->format == TF_RGBA8 ? 4 : 1);
if ( !(image->flags & IMG_NOMIPMAP) && (image->width > 1) && (image->height > 1) )
totalByteCount += (byteCount * 4) / 3; // not exact, but good enough
else
totalByteCount += byteCount;
imageCount++;
ri.Printf( PRINT_ALL, "%4i %4i %c%c%c ",
image->width, image->height,
(image->flags & IMG_NOMIPMAP) ? ' ' : 'M',
(image->flags & IMG_NOPICMIP) ? ' ' : 'P',
(image->flags & IMG_NOIMANIP) ? ' ' : 'I'
);
switch ( image->wrapClampMode ) {
case TW_REPEAT: ri.Printf( PRINT_ALL, "R " ); break;
case TW_CLAMP_TO_EDGE: ri.Printf( PRINT_ALL, "E " ); break;
default: ri.Printf( PRINT_ALL, "? " ); break;
}
switch ( image->format ) {
case TF_RGBA8: ri.Printf( PRINT_ALL, "RGBA8 " ); break;
default: ri.Printf( PRINT_ALL, "%5i ", image->format ); break;
}
ri.Printf( PRINT_ALL, " %s\n", image->name );
}
const char* units[] = { "KB", "MB", "GB", "TB" };
int amount = totalByteCount >> 10;
int unit = 0;
while ( amount >= 1024 ) {
amount >>= 10;
++unit;
}
ri.Printf( PRINT_ALL, "---------\n" );
ri.Printf( PRINT_ALL, "%i images found\n", imageCount );
ri.Printf( PRINT_ALL, "Estimated VRAM use: %i %s\n\n", amount, units[unit] );
}
void R_ImageInfo_f()
{
if ( Cmd_Argc() <= 1 ) {
ri.Printf( PRINT_ALL, "usage: %s <imagepath>\n", Cmd_Argv(0) );
return;
}
const char* const name = Cmd_Argv(1);
const image_t* image = NULL;
for ( int i = 0; i < tr.numImages; i++ ) {
if ( !Q_stricmp( tr.images[i]->name, name ) ) {
image = tr.images[i];
break;
}
}
char pakName[256];
if ( FS_GetPakPath( pakName, sizeof( pakName ), image->pakChecksum ) ) {
ri.Printf( PRINT_ALL, "%s/%s\n", pakName, image->name );
}
ri.Printf( PRINT_ALL, "Used in these shaders:\n" );
for ( int s = 0; s < image->numShaders; ++s ) {
const shader_t* const shader = tr.imageShaders[image->firstShaderIndex + s];
const qbool nmmS = shader->imgflags & IMG_NOMIPMAP;
const qbool npmS = shader->imgflags & IMG_NOPICMIP;
ri.Printf( PRINT_ALL, "%s %s %s\n",
nmmS ? "NMM" : " ",
npmS ? "NPM" : " ",
shader->name );
const char* const shaderPath = R_GetShaderPath( shader );
if ( shaderPath != NULL ) {
ri.Printf( PRINT_ALL, " -> %s\n", shaderPath );
}
}
}
///////////////////////////////////////////////////////////////
// scale up the pixel values in a texture to increase the lighting range
static void R_LightScaleTexture( byte* p, int width, int height )
{
const int pixels = width * height;
for (int i = 0 ; i < pixels; ++i) {
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
p += 4;
}
}
// apply a color blend over a set of pixels - used for r_colorMipLevels
static void R_BlendOverTexture( byte *data, int pixelCount, const byte blend[4] )
{
int premult[3];
int inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for (int i = 0; i < pixelCount; ++i, data+=4) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
static int ComputeMipCount( int scaled_width, int scaled_height )
{
int mipCount = 1;
while ( scaled_width > 1 || scaled_height > 1 ) {
scaled_width = max( scaled_width >> 1, 1 );
scaled_height = max( scaled_height >> 1, 1 );
++mipCount;
}
return mipCount;
}
// note that the "32" here is for the image's STRIDE - it has nothing to do with the actual COMPONENTS
static void Upload32( image_t* image, unsigned int* data )
{
// atlases we generate ourselves
if ( image->flags & IMG_LMATLAS ) {
image->flags |= IMG_NOMIPMAP;
image->flags |= IMG_NOAF;
gal.CreateTexture( image, 1, image->width, image->height );
return;
}
// atlases loaded from images on disk
if ( Q_stristr( image->name, "maps/" ) == image->name &&
Q_stristr( image->name + 5, "/lm_" ) != NULL ) {
image->flags |= IMG_NOPICMIP;
image->flags |= IMG_NOMIPMAP;
image->flags |= IMG_NOAF;
image->flags |= IMG_EXTLMATLAS;
if ( r_mapBrightness->value != 1.0f ) {
const int pixelCount = image->width * image->height;
byte* pixel = (byte*)data;
byte* const pixelEnd = (byte*)( data + pixelCount );
while ( pixel < pixelEnd ) {
R_ColorShiftLightingBytes( pixel, pixel );
pixel += 4;
}
}
}
int scaled_width, scaled_height;
// convert to exact power of 2 sizes
//
for ( scaled_width = 1; scaled_width < image->width; scaled_width <<= 1 )
;
for ( scaled_height = 1; scaled_height < image->height; scaled_height <<=1 )
;
if ( r_roundImagesDown->integer && scaled_width > image->width )
scaled_width >>= 1;
if ( r_roundImagesDown->integer && scaled_height > image->height )
scaled_height >>= 1;
if ( scaled_width != image->width || scaled_height != image->height ) {
byte* resampled;
R_ResampleImage( &resampled, scaled_width, scaled_height, (const byte*)data, image->width, image->height, image->wrapClampMode );
data = (unsigned int*)resampled;
image->width = scaled_width;
image->height = scaled_height;
ri.Printf( PRINT_DEVELOPER, "^3WARNING: ^7'%s' doesn't have PoT dimensions.\n", image->name );
}
// perform optional picmip operation
if ( !(image->flags & IMG_NOPICMIP) ) {
scaled_width >>= r_picmip->integer;
scaled_height >>= r_picmip->integer;
}
// clamp to minimum size
scaled_width = max( scaled_width, 1 );
scaled_height = max( scaled_height, 1 );
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( scaled_width > glInfo.maxTextureSize || scaled_height > glInfo.maxTextureSize ) {
scaled_width >>= 1;
scaled_height >>= 1;
}
if ( glInfo.mipGenSupport && image->format == TF_RGBA8 && ( image->flags & IMG_NOMIPMAP ) == 0 ) {
const int w = image->width;
const int h = image->height;
const int mipCount = ComputeMipCount( w, h );
int mipOffset = 0;
while ( image->width > scaled_width || image->height > scaled_height ) {
image->width = max( image->width >> 1, 1 );
image->height = max( image->height >> 1, 1 );
mipOffset++;
}
gal.CreateTextureEx( image, mipCount, mipOffset, w, h, data );
return;
}
RI_AutoPtr pScaled( sizeof(unsigned) * scaled_width * scaled_height );
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == image->width ) && ( scaled_height == image->height ) ) {
if ( image->flags & IMG_NOMIPMAP ) {
gal.CreateTexture( image, 1, image->width, image->height );
gal.UpdateTexture( image, 0, 0, 0, image->width, image->height, data );
return;
}
Com_Memcpy( pScaled, data, image->width * image->height * 4 );
}
else
{
// use the normal mip-mapping function to go down from here
while ( image->width > scaled_width || image->height > scaled_height ) {
byte* resampled;
R_MipMap( &resampled, (const byte*)data, image->width, image->height, image->wrapClampMode );
data = (unsigned int*)resampled;
image->width = max( image->width >> 1, 1 );
image->height = max( image->height >> 1, 1 );
}
Com_Memcpy( pScaled, data, image->width * image->height * 4 );
}
if ( !(image->flags & IMG_NOIMANIP) )
R_LightScaleTexture( pScaled.Get<byte>(), scaled_width, scaled_height );
const int mipCount = ( image->flags & IMG_NOMIPMAP ) ? 1 : ComputeMipCount( scaled_width, scaled_height );
gal.CreateTexture( image, mipCount, scaled_width, scaled_height );
gal.UpdateTexture( image, 0, 0, 0, scaled_width, scaled_height, pScaled );
if ( !(image->flags & IMG_NOMIPMAP) )
{
byte* imageData = pScaled.Get<byte>();
int miplevel = 0;
while (scaled_width > 1 || scaled_height > 1)
{
byte* resampled;
R_MipMap( &resampled, imageData, scaled_width, scaled_height, image->wrapClampMode );
imageData = resampled;
scaled_width = max( scaled_width >> 1, 1 );
scaled_height = max( scaled_height >> 1, 1 );
++miplevel;
if ( r_colorMipLevels->integer )
R_BlendOverTexture( imageData, scaled_width * scaled_height, mipBlendColors[miplevel] );
gal.UpdateTexture( image, miplevel, 0, 0, scaled_width, scaled_height, imageData );
}
}
}
void R_UploadLightmapTile( image_t* image, byte* pic, int x, int y, int width, int height )
{
if ( !(image->flags & IMG_LMATLAS) )
ri.Error( ERR_DROP, "R_UploadLightmapTile: IMG_LMATLAS flag not defined\n" );
gal.UpdateTexture( image, 0, x, y, width, height, pic );
}
// this is the only way any image_t are created
// !!! i'm pretty sure this DOESN'T work correctly for non-POT images
image_t* R_CreateImage( const char* name, byte* pic, int width, int height, textureFormat_t format, int flags, textureWrap_t glWrapClampMode )
{
if (strlen(name) >= MAX_QPATH)
ri.Error( ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name );
if ( tr.numImages == MAX_DRAWIMAGES )
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit\n" );
image_t* image = tr.images[tr.numImages] = RI_New<image_t>();
strcpy( image->name, name );
image->format = format;
image->flags = flags;
image->width = width;
image->height = height;
image->wrapClampMode = glWrapClampMode;
tr.numImages++;
Upload32( image, (unsigned int*)pic );
// KHB there are times we have no interest in naming an image at all (notably, font glyphs)
// but atm the rest of the system is too dependent on everything being named
//if (name) {
int hash = Q_FileHash(name, IMAGE_HASH_SIZE);
image->next = hashTable[hash];
hashTable[hash] = image;
//}
return image;
}
static qbool ValidateImageResolution( int w, int h, const char* fileName )
{
const int dim[2] = { w, h };
const char* const dimNames[2] = { "width", "height" };
for (int i = 0; i < 2; ++i) {
if (dim[i] <= 0) {
ri.Printf( PRINT_WARNING, "%s: %s (%d) is too small\n", fileName, dimNames[i], dim[i] );
return qfalse;
}
if (dim[i] > MAX_TEXTURE_SIZE) {
ri.Printf( PRINT_WARNING, "%s: %s (%d) is too large (max. %d)\n",
fileName, dimNames[i], dim[i], MAX_TEXTURE_SIZE );
return qfalse;
}
}
return qtrue;
}
static qbool LoadTGA( const char* fileName, byte* buffer, int len, byte** pic, int* w, int* h, textureFormat_t* format )
{
*pic = NULL;
byte* p = buffer;
byte* const pEnd = buffer + len; // 1 byte past the end
TargaHeader targa_header;
targa_header.id_length = p[0];
targa_header.colormap_type = p[1];
targa_header.image_type = p[2];
targa_header.width = LittleShort( *(short*)&p[12] );
targa_header.height = LittleShort( *(short*)&p[14] );
targa_header.pixel_size = p[16];
targa_header.attributes = p[17];
// skip the header and the comment, if any
p += sizeof(TargaHeader);
if (targa_header.id_length != 0)
p += targa_header.id_length;
#define ERROR(Msg, ...) ri.Printf(PRINT_WARNING, Msg "\n", ##__VA_ARGS__); return qfalse
if (targa_header.image_type != 2 && targa_header.image_type != 10 && targa_header.image_type != 3) {
ERROR( "LoadTGA %s: Only type 2, 10 and 3 images supported", fileName );
}
if (targa_header.colormap_type) {
ERROR( "LoadTGA %s: Colormaps are not supported", fileName );
}
if (targa_header.image_type != 3 && targa_header.pixel_size != 32 && targa_header.pixel_size != 24) {
ERROR( "LoadTGA %s: Only 32-bit and 24-bit color images are supported", fileName );
}
if (targa_header.image_type == 3 && targa_header.pixel_size != 8) {
ERROR( "LoadTGA %s: Only 8-bit greyscale images are supported", fileName );
}
const int bpp = targa_header.pixel_size / 8;
const int width = targa_header.width;
const int height = targa_header.height;
const unsigned numBytes = width * height * 4;
if (!ValidateImageResolution( width, height, fileName ))
return qfalse;
if (numBytes / (width * 4) != height) {
ERROR( "LoadTGA %s: Invalid image size", fileName );
}
#undef ERROR
*pic = (byte*)ri.Malloc( numBytes );
*w = width;
*h = height;
*format = TF_RGBA8;
#define UNMUNGE_PIXEL { dst[2] = pixel[0]; dst[1] = pixel[1]; dst[0] = pixel[2]; dst[3] = pixel[3]; dst += 4; }
#define WRAP_ROW if ((++x == width) && y--) { x = 0; dst = *pic + y*width*4; }
#define RANGE_CHECK(Bytes) if (p + (Bytes) > pEnd) { ri.Printf( PRINT_WARNING, "LoadTGA %s: Truncated file\n", fileName ); ri.Free( *pic ); *pic = NULL; return qfalse; }
// uncompressed luminance
if (targa_header.image_type == 3) {
RANGE_CHECK( width * height )
for (int y = height-1; y >= 0; --y) {
byte* dst = *pic + y*width * 4;
for (int x = 0; x < width; ++x) {
const byte l = *p;
dst[0] = l;
dst[1] = l;
dst[2] = l;
dst[3] = 255;
dst += 4;
p += 1;
}
}
// uncompressed BGRA
} else if (targa_header.image_type == 2 && bpp == 4) {
RANGE_CHECK( width * height * 4 )
for (int y = height-1; y >= 0; --y) {
byte* dst = *pic + y*width * 4;
for (int x = 0; x < width; ++x) {
dst[2] = p[0];
dst[1] = p[1];
dst[0] = p[2];
dst[3] = p[3];
dst += 4;
p += 4;
}
}
// uncompressed BGR
} else if (targa_header.image_type == 2 && bpp == 3) {
RANGE_CHECK( width * height * 3 )
for (int y = height-1; y >= 0; --y) {
byte* dst = *pic + y*width * 4;
for (int x = 0; x < width; ++x) {
dst[2] = p[0];
dst[1] = p[1];
dst[0] = p[2];
dst[3] = 255;
dst += 4;
p += 3;
}
}
// RLE_BGRA and RLE_BGR
} else if (targa_header.image_type == 10) {
byte pixel[4] = { 0, 0, 0, 255 };
int y = height-1;
while (y >= 0) {
byte* dst = *pic + y*width * 4;
int x = 0;
while (x < width) {
RANGE_CHECK( 1 )
const int rle = *p++;
int n = 1 + (rle & 0x7F);
if (rle & 0x80) {
// RLE packet: 1 pixel repeated n times
RANGE_CHECK( bpp )
for (int i = 0; i < bpp; ++i)
pixel[i] = *p++;
while (n--) {
UNMUNGE_PIXEL
WRAP_ROW
}
} else {
// n distinct pixels
RANGE_CHECK( bpp * n )
while (n--) {
for (int i = 0; i < bpp; ++i)
pixel[i] = *p++;
UNMUNGE_PIXEL
WRAP_ROW
}
}
}
}
}
#undef WRAP_ROW
#undef UNMUNGE_PIXEL
#undef RANGE_CHECK
if (targa_header.attributes & 0x20)
ri.Printf( PRINT_WARNING, "LoadTGA %s: Top-down declaration ignored\n", fileName );
return qtrue;
}
///////////////////////////////////////////////////////////////
typedef struct {
jmp_buf jumpBuffer;
const char* fileName;
qbool load;
} engineJPEGInfo_t;
// The only memory allocation function pointers we can override are the ones exposed in jpeg_memory_mgr.
// The problem is that it's the wrong layer for us: we want to replace malloc and free,
// not change how the pooling of allocations works.
// We are therefore re-implementing jmemnobs.c to use the engine's allocator.
extern "C"
{
#define JPEG_INTERNALS
#include "../libjpeg-turbo/jinclude.h"
#include "../libjpeg-turbo/jpeglib.h"
#include "../libjpeg-turbo/jmemsys.h"
void* jpeg_get_small( j_common_ptr cinfo, size_t sizeofobject ) { return (void*)ri.Malloc(sizeofobject); }
void jpeg_free_small( j_common_ptr cinfo, void* object, size_t sizeofobject ) { ri.Free(object); }
void* jpeg_get_large( j_common_ptr cinfo, size_t sizeofobject ) { return jpeg_get_small( cinfo, sizeofobject ); }
void jpeg_free_large( j_common_ptr cinfo, void* object, size_t sizeofobject ) { jpeg_free_small( cinfo, object, sizeofobject ); }
size_t jpeg_mem_available( j_common_ptr cinfo, size_t min_bytes_needed, size_t max_bytes_needed, size_t already_allocated ) { return max_bytes_needed; }
void jpeg_open_backing_store( j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed ) { ERREXIT(cinfo, JERR_NO_BACKING_STORE); }
long jpeg_mem_init( j_common_ptr cinfo) { return 0; }
void jpeg_mem_term( j_common_ptr cinfo) {}
void error_exit( j_common_ptr cinfo )
{
char buffer[JMSG_LENGTH_MAX];
(*cinfo->err->format_message)(cinfo, buffer);
engineJPEGInfo_t* const extra = (engineJPEGInfo_t*)cinfo->client_data;
ri.Printf(PRINT_WARNING, "libjpeg-turbo: couldn't %s %s: %s\n", extra->load ? "load" : "save", extra->fileName, buffer);
jpeg_destroy(cinfo);
longjmp(extra->jumpBuffer, -1);
}
void output_message( j_common_ptr cinfo )
{
char buffer[JMSG_LENGTH_MAX];
(*cinfo->err->format_message)(cinfo, buffer);
const engineJPEGInfo_t* const extra = (const engineJPEGInfo_t*)cinfo->client_data;
ri.Printf(PRINT_ALL, "libjpeg-turbo: while %s %s: %s\n", extra->load ? "loading" : "saving", extra->fileName, buffer);
}
};
static qbool LoadJPG( const char* fileName, byte* buffer, int len, byte** pic, int* w, int* h, textureFormat_t* format )
{
jpeg_decompress_struct cinfo;
jpeg_error_mgr jerr;
engineJPEGInfo_t extra;
*pic = NULL;
if (setjmp( extra.jumpBuffer )) {
jpeg_destroy_decompress( &cinfo );
if (*pic != NULL) {
ri.Free( *pic );
*pic = NULL;
}
return qfalse;
}
extra.load = qtrue;
extra.fileName = fileName;
cinfo.err = jpeg_std_error( &jerr );
cinfo.err->error_exit = &error_exit;
cinfo.err->output_message = &output_message;
cinfo.client_data = &extra;
jpeg_create_decompress( &cinfo );
jpeg_mem_src( &cinfo, buffer, len );
jpeg_read_header( &cinfo, TRUE );
jpeg_start_decompress( &cinfo );
if (!ValidateImageResolution( cinfo.output_width, cinfo.output_height, fileName )) {
longjmp( extra.jumpBuffer, -1 );
}
const unsigned numBytes = cinfo.output_width * cinfo.output_height * 4;
*pic = (byte*)ri.Malloc(numBytes);
*w = cinfo.output_width;
*h = cinfo.output_height;
// We set JCS_EXT_RGBA to instruct libjpeg-turbo to always
// write the alpha value as 255.
cinfo.out_color_space = JCS_EXT_RGBA;
cinfo.output_components = 4;
// go for speed
cinfo.dither_mode = JDITHER_NONE;
cinfo.dct_method = JDCT_FASTEST;
cinfo.do_fancy_upsampling = FALSE;
const unsigned rowStride = cinfo.output_width * 4;
JSAMPROW rowPointer = *pic;
while (cinfo.output_scanline < cinfo.output_height) {
jpeg_read_scanlines( &cinfo, &rowPointer, 1 );
rowPointer += rowStride;
}
jpeg_finish_decompress( &cinfo );
jpeg_destroy_decompress( &cinfo );
*format = TF_RGBA8;
return qtrue;
}
int SaveJPGToBuffer( byte* out, int quality, int image_width, int image_height, byte* image_buffer )
{
static const char* fileName = "memory buffer";
jpeg_compress_struct cinfo;
jpeg_error_mgr jerr;
engineJPEGInfo_t extra;
if (setjmp( extra.jumpBuffer )) {
jpeg_destroy_compress( &cinfo );
return qfalse;
}
extra.load = qfalse;
extra.fileName = fileName;
cinfo.err = jpeg_std_error( &jerr );
cinfo.err->error_exit = &error_exit;
cinfo.err->output_message = &output_message;
cinfo.client_data = &extra;
jpeg_create_compress( &cinfo );
// jpeg_mem_dest only calls malloc if both outSize and outBuffer are 0
unsigned long outSize = image_width * image_height * 4;
unsigned char* outBuffer = out;
jpeg_mem_dest( &cinfo, &outBuffer, &outSize );
cinfo.image_width = image_width;
cinfo.image_height = image_height;
cinfo.input_components = 4;
cinfo.in_color_space = JCS_EXT_RGBA;
jpeg_set_defaults( &cinfo );
jpeg_set_quality( &cinfo, quality, TRUE );
jpeg_start_compress( &cinfo, TRUE );
const unsigned rowStride = image_width * 4;
JSAMPROW rowPointer = image_buffer + (cinfo.image_height - 1) * rowStride;
while (cinfo.next_scanline < cinfo.image_height) {
jpeg_write_scanlines( &cinfo, &rowPointer, 1 );
rowPointer -= rowStride;
}
jpeg_finish_compress( &cinfo );
const int csize = (int)(cinfo.dest->next_output_byte - outBuffer);
jpeg_destroy_compress( &cinfo );
return csize;
}
///////////////////////////////////////////////////////////////
extern qbool LoadSTB( const char* fileName, byte* buffer, int len, byte** pic, int* w, int* h, textureFormat_t* format );
typedef qbool (*imageLoaderFunc)( const char* fileName, byte* buffer, int len, byte** pic, int* w, int* h, textureFormat_t* format );
typedef struct {
const char* extension;
imageLoaderFunc function;
} imageLoader_t;
static const imageLoader_t imageLoaders[] = {
{ ".jpg", &LoadJPG },
{ ".tga", &LoadTGA },
{ ".png", &LoadSTB },
{ ".jpeg", &LoadJPG }
};
static void R_LoadImage( int* pakChecksum, const char* name, byte** pic, int* w, int* h, textureFormat_t* format )
{
*pic = NULL;
*w = 0;
*h = 0;
const int loaderCount = ARRAY_LEN( imageLoaders );
char altName[MAX_QPATH];
byte* buffer;
int bufferSize = ri.FS_ReadFilePak( name, (void**)&buffer, pakChecksum );
if ( buffer == NULL ) {
const char* lastDot = strrchr( name, '.' );
const int nameLength = lastDot != NULL ? (int)(lastDot - name) : (int)strlen( name );
if ( nameLength >= MAX_QPATH )
return;
for ( int i = 0; i < loaderCount; ++i ) {
memcpy( altName, name, nameLength );
altName[nameLength] = '\0';
Q_strcat( altName, sizeof(altName), imageLoaders[i].extension );
bufferSize = ri.FS_ReadFilePak( altName, (void**)&buffer, pakChecksum );
if ( buffer != NULL ) {
name = altName;
break;
}
}
if ( buffer == NULL )
return;
}
const int nameLength = (int)strlen( name );
for ( int i = 0; i < loaderCount; ++i ) {
const int extLength = (int)strlen( imageLoaders[i].extension );
if ( extLength < nameLength &&
Q_stricmp(name + nameLength - extLength, imageLoaders[i].extension) == 0 ) {
(*imageLoaders[i].function)( name, buffer, bufferSize, pic, w, h, format );
break;
}
}
ri.FS_FreeFile( buffer );
}
struct forcedLoadImage_t {
const char* mapName;
const char* shaderName;
int shaderNameHash;
};
// map-specific fixes for textures that are used with different (incompatible) settings
static const forcedLoadImage_t g_forcedLoadImages[] = {
{ "ct3ctf1", "textures/ct3ctf1/grate_02.tga", 716 }
};
// finds or loads the given image - returns NULL if it fails, not a default image
image_t* R_FindImageFile( const char* name, int flags, textureWrap_t glWrapClampMode )
{
if ( !name )
return NULL;
qbool forcedLoad = qfalse;
const int hash = Q_FileHash( name, IMAGE_HASH_SIZE );
const int forcedLoadImageCount = ARRAY_LEN( g_forcedLoadImages );
for ( int i = 0; i < forcedLoadImageCount; ++i ) {
const forcedLoadImage_t* const fli = g_forcedLoadImages + i;
if ( hash == fli->shaderNameHash &&
strcmp( R_GetMapName(), fli->mapName ) == 0 &&
strcmp( name, fli->shaderName ) == 0 ) {
forcedLoad = qtrue;
break;
}
}
// see if the image is already loaded
//
if ( !forcedLoad ) {
image_t* image;
for ( image = hashTable[hash]; image; image=image->next ) {
if ( strcmp( name, image->name ) )
continue;
// let's not whine about those since we rightfully ignore what the user asks for anyhow
if ( image->flags & IMG_EXTLMATLAS )
return image;
if ( !strcmp( name, "*white" ) )
return image;
// since this WASN'T enforced as an error, half the shaders out there (including most of id's)
// have been getting it wrong for years
// the white image can be used with any set of parms, but other mismatches are errors
if ( (image->flags & IMG_NOMIPMAP) != (flags & IMG_NOMIPMAP) ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed nomipmap settings\n", name );
}
if ( (image->flags & IMG_NOPICMIP) != (flags & IMG_NOPICMIP) ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed nopicmip settings\n", name );
}
if ( image->wrapClampMode != glWrapClampMode ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed clamp settings (map vs clampMap)\n", name );
}
return image;
}
}
// load the pic from disk
//
byte* pic;
int width, height, pakChecksum;
textureFormat_t format;
R_LoadImage( &pakChecksum, name, &pic, &width, &height, &format );
if ( !pic )
return NULL;
image_t* const image = R_CreateImage( name, pic, width, height, format, flags, glWrapClampMode );
image->pakChecksum = pakChecksum;
ri.Free( pic );
return image;
}
void R_InitFogTable()
{
const float exp = 0.5;
for (int i = 0; i < FOG_TABLE_SIZE; ++i) {
tr.fogTable[i] = pow( (float)i/(FOG_TABLE_SIZE-1), exp );
}
}
/*
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
*/
float R_FogFactor( float s, float t )
{
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
return tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
}
static void R_CreateFogImage()
{
const int FOG_S = 256;
const int FOG_T = 32;
RI_AutoPtr ap( FOG_S * FOG_T * 4 );
byte* p = ap;
// S is distance, T is depth
for (int x = 0; x < FOG_S; ++x) {
for (int y = 0; y < FOG_T; ++y) {
float d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
p[(y*FOG_S+x)*4+0] = p[(y*FOG_S+x)*4+1] = p[(y*FOG_S+x)*4+2] = 255;
p[(y*FOG_S+x)*4+3] = 255*d;
}
}
tr.fogImage = R_CreateImage( "*fog", p, FOG_S, FOG_T, TF_RGBA8, IMG_NOPICMIP, TW_CLAMP_TO_EDGE );
}
static void R_CreateDefaultImage()
{
const int DEFAULT_SIZE = 16;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image is a box showing increasing s and t
Com_Memset( data, 32, sizeof( data ) );
for ( int i = 0; i < DEFAULT_SIZE; ++i ) {
byte b = (byte)( 64 + (128 * i / DEFAULT_SIZE) );
data[0][i][0] = b;
data[0][i][3] = 255;
data[i][0][1] = b;
data[i][0][3] = 255;
data[i][i][0] = data[i][i][1] = b;
data[i][i][3] = 255;
}
tr.defaultImage = R_CreateImage( "*default", (byte*)data, DEFAULT_SIZE, DEFAULT_SIZE, TF_RGBA8, IMG_NOPICMIP | IMG_NOAF, TW_REPEAT );
}
static void R_CreateBuiltinImages()
{
int i;
byte data[4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
Com_Memset( data, 255, 4 );
tr.whiteImage = R_CreateImage( "*white", data, 1, 1, TF_RGBA8, IMG_NOMIPMAP | IMG_NOAF, TW_REPEAT );
const byte mapBrightness = (byte)( min( r_mapBrightness->value, 1.0f ) * 255.0f );
data[0] = data[1] = data[2] = mapBrightness;
tr.fullBrightImage = R_CreateImage( "*fullBright", data, 1, 1, TF_RGBA8, IMG_NOMIPMAP | IMG_NOAF, TW_REPEAT );
// scratchimages usually used for cinematic drawing (signal-quality effects)
// these are just placeholders: RE_StretchRaw will regenerate them when it wants them
for (i = 0; i < ARRAY_LEN(tr.scratchImage); ++i)
tr.scratchImage[i] = R_CreateImage( "*scratch", data, 1, 1, TF_RGBA8, IMG_NOMIPMAP | IMG_NOPICMIP, TW_CLAMP_TO_EDGE );
R_CreateFogImage();
}
void R_SetColorMappings()
{
tr.identityLight = 1.0f / r_brightness->value;
tr.identityLightByte = (int)( 255.0f * tr.identityLight );
for (int i = 0; i < 256; ++i) {
s_intensitytable[i] = (byte)min( r_intensity->value * i, 255.0f );
}
}
void R_InitImages()
{
Com_Memset( hashTable, 0, sizeof(hashTable) );
R_SetColorMappings(); // build brightness translation tables
R_CreateBuiltinImages(); // create default textures (white, fog, etc)
}
/*
============================================================================
SKINS
============================================================================
*/
// unfortunatly, skin files aren't compatible with our normal parsing rules. oops :/
static const char* CommaParse( const char** data )
{
static char com_token[MAX_TOKEN_CHARS];
int c = 0;
const char* p = *data;
while (*p && (*p < 32))
++p;
while ((*p > 32) && (*p != ',') && (c < MAX_TOKEN_CHARS-1))
com_token[c++] = *p++;
*data = p;
com_token[c] = 0;
return com_token;
}
qhandle_t RE_RegisterSkin( const char* name )
{
if (!name || !name[0] || (strlen(name) >= MAX_QPATH))
ri.Error( ERR_DROP, "RE_RegisterSkin: invalid name [%s]\n", name ? name : "NULL" );
skin_t* skin;
qhandle_t hSkin;
// see if the skin is already loaded
for (hSkin = 1; hSkin < tr.numSkins; ++hSkin) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
return (skin->numSurfaces ? hSkin : 0);
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
tr.numSkins++;
skin = RI_New<skin_t>();
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
// make sure the render thread is stopped
// KHB why? we're not uploading anything... R_SyncRenderThread();
// if not a .skin file, load as a single shader
if ( Q_stricmpn( name + strlen( name ) - 5, ".skin", 6 ) ) {
skin->numSurfaces = 1;
skin->surfaces[0] = RI_New<skinSurface_t>();
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
return hSkin;
}
char* text;
// load and parse the skin file
ri.FS_ReadFile( name, (void **)&text );
if (!text)
return 0;
const char* token;
const char* p = text;
char surfName[MAX_QPATH];
while (p && *p) {
// get surface name
token = CommaParse( &p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] )
break;
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if (*p == ',')
++p;
if ( strstr( token, "tag_" ) )
continue;
// parse the shader name
token = CommaParse( &p );
skinSurface_t* surf = skin->surfaces[ skin->numSurfaces ] = RI_New<skinSurface_t>();
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
skin->numSurfaces++;
}
ri.FS_FreeFile( text );
return (skin->numSurfaces ? hSkin : 0); // never let a skin have 0 shaders
}
void R_InitSkins()
{
tr.numSkins = 1;
// make the default skin have all default shaders
tr.skins[0] = RI_New<skin_t>();
tr.skins[0]->numSurfaces = 1;
tr.skins[0]->surfaces[0] = RI_New<skinSurface_t>();
tr.skins[0]->surfaces[0]->shader = tr.defaultShader;
Q_strncpyz( tr.skins[0]->name, "<default skin>", sizeof( tr.skins[0]->name ) );
}
const skin_t* R_GetSkinByHandle( qhandle_t hSkin )
{
return ((hSkin > 0) && (hSkin < tr.numSkins) ? tr.skins[hSkin] : tr.skins[0]);
}
void R_SkinList_f( void )
{
ri.Printf( PRINT_ALL, "------------------\n" );
const char* const match = Cmd_Argc() > 1 ? Cmd_Argv( 1 ) : NULL;
int skinCount = 0;
for (int i = 0; i < tr.numSkins; ++i) {
const skin_t* skin = tr.skins[i];
if ( match && !Com_Filter( match, skin->name ) )
continue;
skinCount++;
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
for (int j = 0; j < skin->numSurfaces; ++j) {
ri.Printf( PRINT_ALL, " %s = %s\n",
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
}
}
ri.Printf( PRINT_ALL, "%i skins found\n", skinCount );
ri.Printf( PRINT_ALL, "------------------\n" );
}
void R_AddImageShader( image_t* image, shader_t* shader )
{
assert( shader != NULL );
if (image == NULL || shader == NULL)
return;
assert( tr.numImageShaders < ARRAY_LEN( tr.imageShaders ) );
if (tr.numImageShaders >= ARRAY_LEN( tr.imageShaders ))
return;
// we consider index 0 to be invalid
if (tr.numImageShaders == 0)
tr.numImageShaders++;
tr.imageShaders[tr.numImageShaders] = shader;
if (image->firstShaderIndex == 0)
image->firstShaderIndex = tr.numImageShaders;
image->numShaders++;
tr.numImageShaders++;
}