cnq3/code/botlib/be_aas_move.cpp

1102 lines
37 KiB
C++
Raw Normal View History

2016-12-18 04:43:04 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
/*****************************************************************************
* name: be_aas_move.c
*
* desc: AAS
*
* $Archive: /MissionPack/code/botlib/be_aas_move.c $
*
*****************************************************************************/
#include "../qcommon/q_shared.h"
#include "l_memory.h"
#include "l_script.h"
#include "l_precomp.h"
#include "l_struct.h"
#include "l_libvar.h"
#include "aasfile.h"
#include "botlib.h"
#include "be_aas.h"
#include "be_aas_funcs.h"
#include "be_aas_def.h"
extern botlib_import_t botimport;
aas_settings_t aassettings;
//#define AAS_MOVE_DEBUG
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_DropToFloor(vec3_t origin, vec3_t mins, vec3_t maxs)
{
vec3_t end;
bsp_trace_t trace;
VectorCopy(origin, end);
end[2] -= 100;
trace = AAS_Trace(origin, mins, maxs, end, 0, CONTENTS_SOLID);
if (trace.startsolid) return qfalse;
VectorCopy(trace.endpos, origin);
return qtrue;
} //end of the function AAS_DropToFloor
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void AAS_InitSettings(void)
{
aassettings.phys_gravitydirection[0] = 0;
aassettings.phys_gravitydirection[1] = 0;
aassettings.phys_gravitydirection[2] = -1;
aassettings.phys_friction = LibVarValue("phys_friction", "6");
aassettings.phys_stopspeed = LibVarValue("phys_stopspeed", "100");
aassettings.phys_gravity = LibVarValue("phys_gravity", "800");
aassettings.phys_waterfriction = LibVarValue("phys_waterfriction", "1");
aassettings.phys_watergravity = LibVarValue("phys_watergravity", "400");
aassettings.phys_maxvelocity = LibVarValue("phys_maxvelocity", "320");
aassettings.phys_maxwalkvelocity = LibVarValue("phys_maxwalkvelocity", "320");
aassettings.phys_maxcrouchvelocity = LibVarValue("phys_maxcrouchvelocity", "100");
aassettings.phys_maxswimvelocity = LibVarValue("phys_maxswimvelocity", "150");
aassettings.phys_walkaccelerate = LibVarValue("phys_walkaccelerate", "10");
aassettings.phys_airaccelerate = LibVarValue("phys_airaccelerate", "1");
aassettings.phys_swimaccelerate = LibVarValue("phys_swimaccelerate", "4");
aassettings.phys_maxstep = LibVarValue("phys_maxstep", "19");
aassettings.phys_maxsteepness = LibVarValue("phys_maxsteepness", "0.7");
aassettings.phys_maxwaterjump = LibVarValue("phys_maxwaterjump", "18");
aassettings.phys_maxbarrier = LibVarValue("phys_maxbarrier", "33");
aassettings.phys_jumpvel = LibVarValue("phys_jumpvel", "270");
aassettings.phys_falldelta5 = LibVarValue("phys_falldelta5", "40");
aassettings.phys_falldelta10 = LibVarValue("phys_falldelta10", "60");
aassettings.rs_waterjump = LibVarValue("rs_waterjump", "400");
aassettings.rs_teleport = LibVarValue("rs_teleport", "50");
aassettings.rs_barrierjump = LibVarValue("rs_barrierjump", "100");
aassettings.rs_startcrouch = LibVarValue("rs_startcrouch", "300");
aassettings.rs_startgrapple = LibVarValue("rs_startgrapple", "500");
aassettings.rs_startwalkoffledge = LibVarValue("rs_startwalkoffledge", "70");
aassettings.rs_startjump = LibVarValue("rs_startjump", "300");
aassettings.rs_rocketjump = LibVarValue("rs_rocketjump", "500");
aassettings.rs_bfgjump = LibVarValue("rs_bfgjump", "500");
aassettings.rs_jumppad = LibVarValue("rs_jumppad", "250");
aassettings.rs_aircontrolledjumppad = LibVarValue("rs_aircontrolledjumppad", "300");
aassettings.rs_funcbob = LibVarValue("rs_funcbob", "300");
aassettings.rs_startelevator = LibVarValue("rs_startelevator", "50");
aassettings.rs_falldamage5 = LibVarValue("rs_falldamage5", "300");
aassettings.rs_falldamage10 = LibVarValue("rs_falldamage10", "500");
aassettings.rs_maxfallheight = LibVarValue("rs_maxfallheight", "0");
aassettings.rs_maxjumpfallheight = LibVarValue("rs_maxjumpfallheight", "450");
} //end of the function AAS_InitSettings
//===========================================================================
// returns qtrue if the bot is against a ladder
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_AgainstLadder(vec3_t origin)
{
int areanum, i, facenum, side;
vec3_t org;
aas_plane_t *plane;
aas_face_t *face;
aas_area_t *area;
VectorCopy(origin, org);
areanum = AAS_PointAreaNum(org);
if (!areanum)
{
org[0] += 1;
areanum = AAS_PointAreaNum(org);
if (!areanum)
{
org[1] += 1;
areanum = AAS_PointAreaNum(org);
if (!areanum)
{
org[0] -= 2;
areanum = AAS_PointAreaNum(org);
if (!areanum)
{
org[1] -= 2;
areanum = AAS_PointAreaNum(org);
} //end if
} //end if
} //end if
} //end if
//if in solid... wrrr shouldn't happen
if (!areanum) return qfalse;
//if not in a ladder area
if (!(aasworld.areasettings[areanum].areaflags & AREA_LADDER)) return qfalse;
//if a crouch only area
if (!(aasworld.areasettings[areanum].presencetype & PRESENCE_NORMAL)) return qfalse;
//
area = &aasworld.areas[areanum];
for (i = 0; i < area->numfaces; i++)
{
facenum = aasworld.faceindex[area->firstface + i];
side = facenum < 0;
face = &aasworld.faces[abs(facenum)];
//if the face isn't a ladder face
if (!(face->faceflags & FACE_LADDER)) continue;
//get the plane the face is in
plane = &aasworld.planes[face->planenum ^ side];
//if the origin is pretty close to the plane
if (fabsf(DotProduct(plane->normal, origin) - plane->dist) < 3)
2016-12-18 04:43:04 +00:00
{
if (AAS_PointInsideFace(abs(facenum), origin, 0.1f)) return qtrue;
} //end if
} //end for
return qfalse;
} //end of the function AAS_AgainstLadder
//===========================================================================
// returns qtrue if the bot is on the ground
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_OnGround(vec3_t origin, int presencetype, int passent)
{
aas_trace_t trace;
vec3_t end, up = {0, 0, 1};
aas_plane_t *plane;
VectorCopy(origin, end);
end[2] -= 10;
trace = AAS_TraceClientBBox(origin, end, presencetype, passent);
//if in solid
if (trace.startsolid) return qfalse;
//if nothing hit at all
if (trace.fraction >= 1.0) return qfalse;
//if too far from the hit plane
if (origin[2] - trace.endpos[2] > 10) return qfalse;
//check if the plane isn't too steep
plane = AAS_PlaneFromNum(trace.planenum);
if (DotProduct(plane->normal, up) < aassettings.phys_maxsteepness) return qfalse;
//the bot is on the ground
return qtrue;
} //end of the function AAS_OnGround
//===========================================================================
// returns qtrue if a bot at the given position is swimming
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_Swimming(vec3_t origin)
{
vec3_t testorg;
VectorCopy(origin, testorg);
testorg[2] -= 2;
if (AAS_PointContents(testorg) & (CONTENTS_LAVA|CONTENTS_SLIME|CONTENTS_WATER)) return qtrue;
return qfalse;
} //end of the function AAS_Swimming
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
static vec3_t VEC_UP = {0, -1, 0};
static vec3_t MOVEDIR_UP = {0, 0, 1};
static vec3_t VEC_DOWN = {0, -2, 0};
static vec3_t MOVEDIR_DOWN = {0, 0, -1};
void AAS_SetMovedir(vec3_t angles, vec3_t movedir)
{
if (VectorCompare(angles, VEC_UP))
{
VectorCopy(MOVEDIR_UP, movedir);
} //end if
else if (VectorCompare(angles, VEC_DOWN))
{
VectorCopy(MOVEDIR_DOWN, movedir);
} //end else if
else
{
AngleVectors(angles, movedir, NULL, NULL);
} //end else
} //end of the function AAS_SetMovedir
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void AAS_JumpReachRunStart(const aas_reachability_t& reach, vec3_t runstart)
{
vec3_t hordir, start, cmdmove;
aas_clientmove_t move;
//
hordir[0] = reach.start[0] - reach.end[0];
hordir[1] = reach.start[1] - reach.end[1];
hordir[2] = 0;
VectorNormalize(hordir);
//start point
VectorCopy(reach.start, start);
start[2] += 1;
//get command movement
VectorScale(hordir, 400, cmdmove);
//
AAS_PredictClientMovement(&move, -1, start, PRESENCE_NORMAL, qtrue,
vec3_origin, cmdmove, 1, 2, 0.1f,
SE_ENTERWATER|SE_ENTERSLIME|SE_ENTERLAVA|
SE_HITGROUNDDAMAGE|SE_GAP, 0, qfalse);
VectorCopy(move.endpos, runstart);
//don't enter slime or lava and don't fall from too high
if (move.stopevent & (SE_ENTERSLIME|SE_ENTERLAVA|SE_HITGROUNDDAMAGE))
{
VectorCopy(start, runstart);
} //end if
} //end of the function AAS_JumpReachRunStart
//===========================================================================
// returns the Z velocity when rocket jumping at the origin
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
static float AAS_WeaponJumpZVelocity(const vec3_t origin, float radiusdamage)
{
vec3_t kvel, v, start, end, forward, right, viewangles, dir;
float mass, knockback, points;
vec3_t rocketoffset = {8, 8, -8};
vec3_t botmins = {-16, -16, -24};
vec3_t botmaxs = {16, 16, 32};
bsp_trace_t bsptrace;
//look down (90 degrees)
viewangles[PITCH] = 90;
viewangles[YAW] = 0;
viewangles[ROLL] = 0;
//get the start point shooting from
VectorCopy(origin, start);
start[2] += 8; //view offset Z
AngleVectors(viewangles, forward, right, NULL);
start[0] += forward[0] * rocketoffset[0] + right[0] * rocketoffset[1];
start[1] += forward[1] * rocketoffset[0] + right[1] * rocketoffset[1];
start[2] += forward[2] * rocketoffset[0] + right[2] * rocketoffset[1] + rocketoffset[2];
//end point of the trace
VectorMA(start, 500, forward, end);
//trace a line to get the impact point
bsptrace = AAS_Trace(start, NULL, NULL, end, 1, CONTENTS_SOLID);
//calculate the damage the bot will get from the rocket impact
VectorAdd(botmins, botmaxs, v);
VectorMA(origin, 0.5, v, v);
VectorSubtract(bsptrace.endpos, v, v);
//
points = radiusdamage - 0.5 * VectorLength(v);
if (points < 0) points = 0;
//the owner of the rocket gets half the damage
points *= 0.5;
//mass of the bot (p_client.c: PutClientInServer)
mass = 200;
//knockback is the same as the damage points
knockback = points;
//direction of the damage (from trace.endpos to bot origin)
VectorSubtract(origin, bsptrace.endpos, dir);
VectorNormalize(dir);
//damage velocity
VectorScale(dir, 1600.0 * (float)knockback / mass, kvel); //the rocket jump hack...
//rocket impact velocity + jump velocity
return kvel[2] + aassettings.phys_jumpvel;
} //end of the function AAS_WeaponJumpZVelocity
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
float AAS_RocketJumpZVelocity(const vec3_t origin)
{
//rocket radius damage is 120 (p_weapon.c: Weapon_RocketLauncher_Fire)
return AAS_WeaponJumpZVelocity(origin, 120);
} //end of the function AAS_RocketJumpZVelocity
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
float AAS_BFGJumpZVelocity(vec3_t origin)
{
//bfg radius damage is 1000 (p_weapon.c: weapon_bfg_fire)
return AAS_WeaponJumpZVelocity(origin, 120);
} //end of the function AAS_BFGJumpZVelocity
//===========================================================================
// applies ground friction to the given velocity
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void AAS_Accelerate(vec3_t velocity, float frametime, vec3_t wishdir, float wishspeed, float accel)
{
// q2 style
int i;
float addspeed, accelspeed, currentspeed;
currentspeed = DotProduct(velocity, wishdir);
addspeed = wishspeed - currentspeed;
if (addspeed <= 0) {
return;
}
accelspeed = accel*frametime*wishspeed;
if (accelspeed > addspeed) {
accelspeed = addspeed;
}
for (i=0 ; i<3 ; i++) {
velocity[i] += accelspeed*wishdir[i];
}
} //end of the function AAS_Accelerate
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void AAS_AirControl(vec3_t start, vec3_t end, vec3_t velocity, vec3_t cmdmove)
{
vec3_t dir;
VectorSubtract(end, start, dir);
} //end of the function AAS_AirControl
//===========================================================================
// applies ground friction to the given velocity
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void AAS_ApplyFriction(vec3_t vel, float friction, float stopspeed,
float frametime)
{
float speed;
//horizontal speed
speed = sqrt(vel[0] * vel[0] + vel[1] * vel[1]);
if (speed)
{
float control = speed < stopspeed ? stopspeed : speed;
float newspeed = speed - frametime * control * friction;
if (newspeed < 0) newspeed = 0;
newspeed /= speed;
vel[0] *= newspeed;
vel[1] *= newspeed;
} //end if
} //end of the function AAS_ApplyFriction
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_ClipToBBox(aas_trace_t *trace, vec3_t start, vec3_t end, int presencetype, vec3_t mins, vec3_t maxs)
{
int i, j, side;
float front, back, frac, planedist;
vec3_t bboxmins, bboxmaxs, absmins, absmaxs, dir, mid;
AAS_PresenceTypeBoundingBox(presencetype, bboxmins, bboxmaxs);
VectorSubtract(mins, bboxmaxs, absmins);
VectorSubtract(maxs, bboxmins, absmaxs);
//
VectorCopy(end, trace->endpos);
trace->fraction = 1;
for (i = 0; i < 3; i++)
{
if (start[i] < absmins[i] && end[i] < absmins[i]) return qfalse;
if (start[i] > absmaxs[i] && end[i] > absmaxs[i]) return qfalse;
} //end for
//check bounding box collision
VectorSubtract(end, start, dir);
frac = 1;
for (i = 0; i < 3; i++)
{
//get plane to test collision with for the current axis direction
if (dir[i] > 0) planedist = absmins[i];
else planedist = absmaxs[i];
//calculate collision fraction
front = start[i] - planedist;
back = end[i] - planedist;
frac = front / (front-back);
//check if between bounding planes of next axis
side = i + 1;
if (side > 2) side = 0;
mid[side] = start[side] + dir[side] * frac;
if (mid[side] > absmins[side] && mid[side] < absmaxs[side])
{
//check if between bounding planes of next axis
side++;
if (side > 2) side = 0;
mid[side] = start[side] + dir[side] * frac;
if (mid[side] > absmins[side] && mid[side] < absmaxs[side])
{
mid[i] = planedist;
break;
} //end if
} //end if
} //end for
//if there was a collision
if (i != 3)
{
trace->startsolid = qfalse;
trace->fraction = frac;
trace->ent = 0;
trace->planenum = 0;
trace->area = 0;
trace->lastarea = 0;
//trace endpos
for (j = 0; j < 3; j++) trace->endpos[j] = start[j] + dir[j] * frac;
return qtrue;
} //end if
return qfalse;
} //end of the function AAS_ClipToBBox
//===========================================================================
// predicts the movement
// assumes regular bounding box sizes
// NOTE: out of water jumping is not included
// NOTE: grappling hook is not included
//
// Parameter: origin : origin to start with
// presencetype : presence type to start with
// velocity : velocity to start with
// cmdmove : client command movement
// cmdframes : number of frame cmdmove is valid
// maxframes : maximum number of predicted frames
// frametime : duration of one predicted frame
// stopevent : events that stop the prediction
// stopareanum : stop as soon as entered this area
// Returns: aas_clientmove_t
// Changes Globals: -
//===========================================================================
int AAS_ClientMovementPrediction(struct aas_clientmove_s *move,
int entnum, vec3_t origin,
int presencetype, int onground,
const vec3_t velocity, vec3_t cmdmove,
int cmdframes,
int maxframes, float frametime,
int stopevent, int stopareanum,
vec3_t mins, vec3_t maxs, int visualize)
{
float phys_friction, phys_stopspeed, phys_gravity, phys_waterfriction;
float phys_watergravity;
float phys_walkaccelerate, phys_airaccelerate, phys_swimaccelerate;
float phys_maxwalkvelocity, phys_maxcrouchvelocity, phys_maxswimvelocity;
float phys_maxstep, phys_maxsteepness, phys_jumpvel, friction;
float gravity, delta, maxvel, wishspeed, accelerate;
//float velchange, newvel;
int n, i, j, pc, step, swimming, ax, crouch, event, jump_frame, areanum;
int areas[20], numareas;
vec3_t points[20];
vec3_t org, end, feet, start, stepend, lastorg, wishdir;
vec3_t frame_test_vel, old_frame_test_vel, left_test_vel;
vec3_t up = {0, 0, 1};
aas_plane_t *plane, *plane2;
aas_trace_t trace, steptrace;
if (frametime <= 0) frametime = 0.1f;
//
phys_friction = aassettings.phys_friction;
phys_stopspeed = aassettings.phys_stopspeed;
phys_gravity = aassettings.phys_gravity;
phys_waterfriction = aassettings.phys_waterfriction;
phys_watergravity = aassettings.phys_watergravity;
phys_maxwalkvelocity = aassettings.phys_maxwalkvelocity;// * frametime;
phys_maxcrouchvelocity = aassettings.phys_maxcrouchvelocity;// * frametime;
phys_maxswimvelocity = aassettings.phys_maxswimvelocity;// * frametime;
phys_walkaccelerate = aassettings.phys_walkaccelerate;
phys_airaccelerate = aassettings.phys_airaccelerate;
phys_swimaccelerate = aassettings.phys_swimaccelerate;
phys_maxstep = aassettings.phys_maxstep;
phys_maxsteepness = aassettings.phys_maxsteepness;
phys_jumpvel = aassettings.phys_jumpvel * frametime;
//
Com_Memset(move, 0, sizeof(aas_clientmove_t));
Com_Memset(&trace, 0, sizeof(aas_trace_t));
//start at the current origin
VectorCopy(origin, org);
org[2] += 0.25;
//velocity to test for the first frame
VectorScale(velocity, frametime, frame_test_vel);
//
jump_frame = -1;
//predict a maximum of 'maxframes' ahead
for (n = 0; n < maxframes; n++)
{
swimming = AAS_Swimming(org);
//get gravity depending on swimming or not
gravity = swimming ? phys_watergravity : phys_gravity;
//apply gravity at the START of the frame
frame_test_vel[2] = frame_test_vel[2] - (gravity * 0.1 * frametime);
//if on the ground or swimming
if (onground || swimming)
{
friction = swimming ? phys_friction : phys_waterfriction;
//apply friction
VectorScale(frame_test_vel, 1/frametime, frame_test_vel);
AAS_ApplyFriction(frame_test_vel, friction, phys_stopspeed, frametime);
VectorScale(frame_test_vel, frametime, frame_test_vel);
} //end if
crouch = qfalse;
//apply command movement
if (n < cmdframes)
{
ax = 0;
maxvel = phys_maxwalkvelocity;
accelerate = phys_airaccelerate;
VectorCopy(cmdmove, wishdir);
if (onground)
{
if (cmdmove[2] < -300)
{
crouch = qtrue;
maxvel = phys_maxcrouchvelocity;
} //end if
//if not swimming and upmove is positive then jump
if (!swimming && cmdmove[2] > 1)
{
//jump velocity minus the gravity for one frame + 5 for safety
frame_test_vel[2] = phys_jumpvel - (gravity * 0.1 * frametime) + 5;
jump_frame = n;
//jumping so air accelerate
accelerate = phys_airaccelerate;
} //end if
else
{
accelerate = phys_walkaccelerate;
} //end else
ax = 2;
} //end if
if (swimming)
{
maxvel = phys_maxswimvelocity;
accelerate = phys_swimaccelerate;
ax = 3;
} //end if
else
{
wishdir[2] = 0;
} //end else
//
wishspeed = VectorNormalize(wishdir);
if (wishspeed > maxvel) wishspeed = maxvel;
VectorScale(frame_test_vel, 1/frametime, frame_test_vel);
AAS_Accelerate(frame_test_vel, frametime, wishdir, wishspeed, accelerate);
VectorScale(frame_test_vel, frametime, frame_test_vel);
/*
for (i = 0; i < ax; i++)
{
velchange = (cmdmove[i] * frametime) - frame_test_vel[i];
if (velchange > phys_maxacceleration) velchange = phys_maxacceleration;
else if (velchange < -phys_maxacceleration) velchange = -phys_maxacceleration;
newvel = frame_test_vel[i] + velchange;
//
if (frame_test_vel[i] <= maxvel && newvel > maxvel) frame_test_vel[i] = maxvel;
else if (frame_test_vel[i] >= -maxvel && newvel < -maxvel) frame_test_vel[i] = -maxvel;
else frame_test_vel[i] = newvel;
} //end for
*/
} //end if
if (crouch)
{
presencetype = PRESENCE_CROUCH;
} //end if
else if (presencetype == PRESENCE_CROUCH)
{
if (AAS_PointPresenceType(org) & PRESENCE_NORMAL)
{
presencetype = PRESENCE_NORMAL;
} //end if
} //end else
//save the current origin
VectorCopy(org, lastorg);
//move linear during one frame
VectorCopy(frame_test_vel, left_test_vel);
j = 0;
do
{
VectorAdd(org, left_test_vel, end);
//trace a bounding box
trace = AAS_TraceClientBBox(org, end, presencetype, entnum);
//
//#ifdef AAS_MOVE_DEBUG
if (visualize)
{
if (trace.startsolid) botimport.Print(PRT_MESSAGE, "PredictMovement: start solid\n");
AAS_DebugLine(org, trace.endpos, LINECOLOR_RED);
} //end if
//#endif //AAS_MOVE_DEBUG
//
if (stopevent & (SE_ENTERAREA|SE_TOUCHJUMPPAD|SE_TOUCHTELEPORTER|SE_TOUCHCLUSTERPORTAL))
{
numareas = AAS_TraceAreas(org, trace.endpos, areas, points, 20);
for (i = 0; i < numareas; i++)
{
if (stopevent & SE_ENTERAREA)
{
if (areas[i] == stopareanum)
{
VectorCopy(points[i], move->endpos);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->endarea = areas[i];
move->trace = trace;
move->stopevent = SE_ENTERAREA;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
//NOTE: if not the first frame
if ((stopevent & SE_TOUCHJUMPPAD) && n)
{
if (aasworld.areasettings[areas[i]].contents & AREACONTENTS_JUMPPAD)
{
VectorCopy(points[i], move->endpos);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->endarea = areas[i];
move->trace = trace;
move->stopevent = SE_TOUCHJUMPPAD;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
if (stopevent & SE_TOUCHTELEPORTER)
{
if (aasworld.areasettings[areas[i]].contents & AREACONTENTS_TELEPORTER)
{
VectorCopy(points[i], move->endpos);
move->endarea = areas[i];
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_TOUCHTELEPORTER;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
if (stopevent & SE_TOUCHCLUSTERPORTAL)
{
if (aasworld.areasettings[areas[i]].contents & AREACONTENTS_CLUSTERPORTAL)
{
VectorCopy(points[i], move->endpos);
move->endarea = areas[i];
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_TOUCHCLUSTERPORTAL;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
} //end for
} //end if
//
if (stopevent & SE_HITBOUNDINGBOX)
{
if (AAS_ClipToBBox(&trace, org, trace.endpos, presencetype, mins, maxs))
{
VectorCopy(trace.endpos, move->endpos);
move->endarea = AAS_PointAreaNum(move->endpos);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_HITBOUNDINGBOX;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
//move the entity to the trace end point
VectorCopy(trace.endpos, org);
//if there was a collision
if (trace.fraction < 1.0)
{
//get the plane the bounding box collided with
plane = AAS_PlaneFromNum(trace.planenum);
//
if (stopevent & SE_HITGROUNDAREA)
{
if (DotProduct(plane->normal, up) > phys_maxsteepness)
{
VectorCopy(org, start);
start[2] += 0.5;
if (AAS_PointAreaNum(start) == stopareanum)
{
VectorCopy(start, move->endpos);
move->endarea = stopareanum;
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_HITGROUNDAREA;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
} //end if
//assume there's no step
step = qfalse;
//if it is a vertical plane and the bot didn't jump recently
if (plane->normal[2] == 0 && (jump_frame < 0 || n - jump_frame > 2))
{
//check for a step
VectorMA(org, -0.25, plane->normal, start);
VectorCopy(start, stepend);
start[2] += phys_maxstep;
steptrace = AAS_TraceClientBBox(start, stepend, presencetype, entnum);
//
if (!steptrace.startsolid)
{
plane2 = AAS_PlaneFromNum(steptrace.planenum);
if (DotProduct(plane2->normal, up) > phys_maxsteepness)
{
VectorSubtract(end, steptrace.endpos, left_test_vel);
left_test_vel[2] = 0;
frame_test_vel[2] = 0;
//#ifdef AAS_MOVE_DEBUG
if (visualize)
{
if (steptrace.endpos[2] - org[2] > 0.125)
{
VectorCopy(org, start);
start[2] = steptrace.endpos[2];
AAS_DebugLine(org, start, LINECOLOR_BLUE);
} //end if
} //end if
//#endif //AAS_MOVE_DEBUG
org[2] = steptrace.endpos[2];
step = qtrue;
} //end if
} //end if
} //end if
//
if (!step)
{
//velocity left to test for this frame is the projection
//of the current test velocity into the hit plane
VectorMA(left_test_vel, -DotProduct(left_test_vel, plane->normal),
plane->normal, left_test_vel);
//store the old velocity for landing check
VectorCopy(frame_test_vel, old_frame_test_vel);
//test velocity for the next frame is the projection
//of the velocity of the current frame into the hit plane
VectorMA(frame_test_vel, -DotProduct(frame_test_vel, plane->normal),
plane->normal, frame_test_vel);
//check for a landing on an almost horizontal floor
if (DotProduct(plane->normal, up) > phys_maxsteepness)
{
onground = qtrue;
} //end if
if (stopevent & SE_HITGROUNDDAMAGE)
{
delta = 0;
if (old_frame_test_vel[2] < 0 &&
frame_test_vel[2] > old_frame_test_vel[2] &&
!onground)
{
delta = old_frame_test_vel[2];
} //end if
else if (onground)
{
delta = frame_test_vel[2] - old_frame_test_vel[2];
} //end else
if (delta)
{
delta = delta * 10;
delta = delta * delta * 0.0001;
if (swimming) delta = 0;
// never take falling damage if completely underwater
/*
if (ent->waterlevel == 3) return;
if (ent->waterlevel == 2) delta *= 0.25;
if (ent->waterlevel == 1) delta *= 0.5;
*/
if (delta > 40)
{
VectorCopy(org, move->endpos);
move->endarea = AAS_PointAreaNum(org);
VectorCopy(frame_test_vel, move->velocity);
move->trace = trace;
move->stopevent = SE_HITGROUNDDAMAGE;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
} //end if
} //end if
} //end if
//extra check to prevent endless loop
if (++j > 20) return qfalse;
//while there is a plane hit
} while(trace.fraction < 1.0);
//if going down
if (frame_test_vel[2] <= 10)
{
//check for a liquid at the feet of the bot
VectorCopy(org, feet);
feet[2] -= 22;
pc = AAS_PointContents(feet);
//get event from pc
event = SE_NONE;
if (pc & CONTENTS_LAVA) event |= SE_ENTERLAVA;
if (pc & CONTENTS_SLIME) event |= SE_ENTERSLIME;
if (pc & CONTENTS_WATER) event |= SE_ENTERWATER;
//
areanum = AAS_PointAreaNum(org);
if (aasworld.areasettings[areanum].contents & AREACONTENTS_LAVA)
event |= SE_ENTERLAVA;
if (aasworld.areasettings[areanum].contents & AREACONTENTS_SLIME)
event |= SE_ENTERSLIME;
if (aasworld.areasettings[areanum].contents & AREACONTENTS_WATER)
event |= SE_ENTERWATER;
//if in lava or slime
if (event & stopevent)
{
VectorCopy(org, move->endpos);
move->endarea = areanum;
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->stopevent = event & stopevent;
move->presencetype = presencetype;
move->endcontents = pc;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
//
onground = AAS_OnGround(org, presencetype, entnum);
//if onground and on the ground for at least one whole frame
if (onground)
{
if (stopevent & SE_HITGROUND)
{
VectorCopy(org, move->endpos);
move->endarea = AAS_PointAreaNum(org);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_HITGROUND;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
else if (stopevent & SE_LEAVEGROUND)
{
VectorCopy(org, move->endpos);
move->endarea = AAS_PointAreaNum(org);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_LEAVEGROUND;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end else if
else if (stopevent & SE_GAP)
{
aas_trace_t gaptrace;
VectorCopy(org, start);
VectorCopy(start, end);
end[2] -= 48 + aassettings.phys_maxbarrier;
gaptrace = AAS_TraceClientBBox(start, end, PRESENCE_CROUCH, -1);
//if solid is found the bot cannot walk any further and will not fall into a gap
if (!gaptrace.startsolid)
{
//if it is a gap (lower than one step height)
if (gaptrace.endpos[2] < org[2] - aassettings.phys_maxstep - 1)
{
if (!(AAS_PointContents(end) & CONTENTS_WATER))
{
VectorCopy(lastorg, move->endpos);
move->endarea = AAS_PointAreaNum(lastorg);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->trace = trace;
move->stopevent = SE_GAP;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
return qtrue;
} //end if
} //end if
} //end if
} //end else if
} //end for
//
VectorCopy(org, move->endpos);
move->endarea = AAS_PointAreaNum(org);
VectorScale(frame_test_vel, 1/frametime, move->velocity);
move->stopevent = SE_NONE;
move->presencetype = presencetype;
move->endcontents = 0;
move->time = n * frametime;
move->frames = n;
//
return qtrue;
} //end of the function AAS_ClientMovementPrediction
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_PredictClientMovement(struct aas_clientmove_s *move,
int entnum, vec3_t origin,
int presencetype, int onground,
const vec3_t velocity, vec3_t cmdmove,
int cmdframes,
int maxframes, float frametime,
int stopevent, int stopareanum, int visualize)
{
vec3_t mins, maxs;
return AAS_ClientMovementPrediction(move, entnum, origin, presencetype, onground,
velocity, cmdmove, cmdframes, maxframes,
frametime, stopevent, stopareanum,
mins, maxs, visualize);
} //end of the function AAS_PredictClientMovement
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int AAS_ClientMovementHitBBox(struct aas_clientmove_s *move,
int entnum, vec3_t origin,
int presencetype, int onground,
vec3_t velocity, vec3_t cmdmove,
int cmdframes,
int maxframes, float frametime,
vec3_t mins, vec3_t maxs, int visualize)
{
return AAS_ClientMovementPrediction(move, entnum, origin, presencetype, onground,
velocity, cmdmove, cmdframes, maxframes,
frametime, SE_HITBOUNDINGBOX, 0,
mins, maxs, visualize);
} //end of the function AAS_ClientMovementHitBBox
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void AAS_TestMovementPrediction(int entnum, vec3_t origin, vec3_t dir)
{
vec3_t velocity, cmdmove;
aas_clientmove_t move;
VectorClear(velocity);
if (!AAS_Swimming(origin)) dir[2] = 0;
VectorNormalize(dir);
VectorScale(dir, 400, cmdmove);
cmdmove[2] = 224;
AAS_ClearShownDebugLines();
AAS_PredictClientMovement(&move, entnum, origin, PRESENCE_NORMAL, qtrue,
velocity, cmdmove, 13, 13, 0.1f, SE_HITGROUND, 0, qtrue);//SE_LEAVEGROUND);
if (move.stopevent & SE_LEAVEGROUND)
{
botimport.Print(PRT_MESSAGE, "leave ground\n");
} //end if
} //end of the function TestMovementPrediction
//===========================================================================
// calculates the horizontal velocity needed to perform a jump from start
// to end
//
// Parameter: zvel : z velocity for jump
// start : start position of jump
// end : end position of jump
// *speed : returned speed for jump
// Returns: qfalse if too high or too far from start to end
// Changes Globals: -
//===========================================================================
int AAS_HorizontalVelocityForJump(float zvel, const vec3_t start, const vec3_t end, float& velocity)
{
float phys_gravity, phys_maxvelocity;
float maxjump, height2fall, t, top;
phys_gravity = aassettings.phys_gravity;
phys_maxvelocity = aassettings.phys_maxvelocity;
//maximum height a player can jump with the given initial z velocity
maxjump = 0.5 * phys_gravity * (zvel / phys_gravity) * (zvel / phys_gravity);
//top of the parabolic jump
top = start[2] + maxjump;
//height the bot will fall from the top
height2fall = top - end[2];
//if the goal is to high to jump to
if (height2fall < 0)
{
velocity = phys_maxvelocity;
return 0;
} //end if
//time a player takes to fall the height
t = sqrt(height2fall / (0.5 * phys_gravity));
//direction from start to end
vec3_t dir;
VectorSubtract(end, start, dir);
//
if ( (t + zvel / phys_gravity) == 0.0f ) {
velocity = phys_maxvelocity;
return 0;
}
//calculate horizontal speed
velocity = sqrt(dir[0]*dir[0] + dir[1]*dir[1]) / (t + zvel / phys_gravity);
//the horizontal speed must be lower than the max speed
if (velocity > phys_maxvelocity)
{
velocity = phys_maxvelocity;
return 0;
} //end if
return 1;
} //end of the function AAS_HorizontalVelocityForJump