thirtyflightsofloving/renderer/r_light.c
2019-03-13 15:20:07 -04:00

1161 lines
24 KiB
C

/*
Copyright (C) 1997-2001 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_light.c
#include "r_local.h"
int r_dlightframecount;
void vectoangles (vec3_t value1, vec3_t angles);
//#define DLIGHT_CUTOFF 64 // Knightmare- no longer hard-coded
/*
=============================================================================
DYNAMIC LIGHTS BLEND RENDERING
=============================================================================
*/
#define DLIGHTRADUIS 16.0 // was 32.0
/*
=============
R_AddDlight
=============
*/
void R_AddDlight (dlight_t *light)
{
int i, j;
float a;
vec3_t v;
float rad;
rad = light->intensity * 0.35;
VectorSubtract (light->origin, r_origin, v);
for (i=0; i<3; i++)
v[i] = light->origin[i] - vpn[i]*rad;
if (RB_CheckArrayOverflow (DLIGHTRADUIS+1, DLIGHTRADUIS*3))
RB_RenderMeshGeneric (true);
for (i = 1; i <= DLIGHTRADUIS; i++) {
indexArray[rb_index++] = rb_vertex;
indexArray[rb_index++] = rb_vertex+i;
indexArray[rb_index++] = rb_vertex+1+((i<DLIGHTRADUIS)?i:0);
}
VA_SetElem3(vertexArray[rb_vertex], v[0], v[1], v[2]);
VA_SetElem4(colorArray[rb_vertex], light->color[0]*0.2, light->color[1]*0.2, light->color[2]*0.2, 1.0);
rb_vertex++;
for (i=DLIGHTRADUIS; i>0; i--)
{
a = i/DLIGHTRADUIS * M_PI*2;
for (j=0; j<3; j++)
v[j] = light->origin[j] + vright[j]*cos(a)*rad + vup[j]*sin(a)*rad;
VA_SetElem3(vertexArray[rb_vertex], v[0], v[1], v[2]);
VA_SetElem4(colorArray[rb_vertex], 0, 0, 0, 1.0);
rb_vertex++;
}
}
/*
=============
R_RenderDlights
=============
*/
void R_RenderDlights (void)
{
int i;
dlight_t *l;
if (!r_flashblend->value)
return;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
GL_DepthMask (0);
GL_DisableTexture (0);
GL_ShadeModel (GL_SMOOTH);
GL_Enable (GL_BLEND);
GL_BlendFunc (GL_ONE, GL_ONE);
rb_vertex = rb_index = 0;
l = r_newrefdef.dlights;
for (i=0; i<r_newrefdef.num_dlights; i++, l++)
R_AddDlight (l);
RB_RenderMeshGeneric (true);
GL_BlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
GL_Disable (GL_BLEND);
GL_ShadeModel (GL_FLAT);
GL_EnableTexture (0);
GL_DepthMask (1);
}
/*
=============================================================================
DYNAMIC LIGHTS
=============================================================================
*/
/*
=============
R_MarkLights
=============
*/
extern cvar_t *r_dlights_normal;
void R_MarkLights (dlight_t *light, int num, mnode_t *node)
{
cplane_t *splitplane;
float dist;
msurface_t *surf;
int i;
int sidebit; //Knightmare added
if (node->contents != -1)
return;
splitplane = node->plane;
dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist;
if (dist > light->intensity - r_lightcutoff->value) //** DMP var dynalight cutoff
{
R_MarkLights (light, num, node->children[0]);
return;
}
if (dist < -light->intensity + r_lightcutoff->value) //** DMP var dynalight cutoff
{
R_MarkLights (light, num, node->children[1]);
return;
}
// mark the polygons
surf = r_worldmodel->surfaces + node->firstsurface;
for (i=0; i<node->numsurfaces; i++, surf++)
{
// Knightmare- Discoloda's dynamic light clipping
if (r_dlights_normal->value)
{
dist = DotProduct (light->origin, surf->plane->normal) - surf->plane->dist;
if (dist >= 0)
sidebit = 0;
else
sidebit = SURF_PLANEBACK;
if ( (surf->flags & SURF_PLANEBACK) != sidebit)
continue;
}
// end Knightmare
if (surf->dlightframe != r_dlightframecount)
{
// surf->dlightbits = bit; // was 0
memset (surf->dlightbits, 0, sizeof(surf->dlightbits));
surf->dlightbits[num >> 5] = 1 << (num & 31); // was 0, fixes hyperblaster tearing
surf->dlightframe = r_dlightframecount;
}
else
// surf->dlightbits |= bit;
surf->dlightbits[num >> 5] |= 1 << (num & 31);
}
R_MarkLights (light, num, node->children[0]);
R_MarkLights (light, num, node->children[1]);
}
/*
=============
R_PushDlights
=============
*/
void R_PushDlights (void)
{
int i;
dlight_t *l;
if (r_flashblend->value)
return;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
l = r_newrefdef.dlights;
for (i=0; i<r_newrefdef.num_dlights; i++, l++)
R_MarkLights ( l, i, r_worldmodel->nodes );
}
/*
=============================================================================
LIGHT SAMPLING
=============================================================================
*/
vec3_t pointcolor;
cplane_t *lightplane; // used as shadow plane
vec3_t lightspot;
/*
===============
RecursiveLightPoint
===============
*/
int RecursiveLightPoint (mnode_t *node, vec3_t start, vec3_t end)
{
float front, back, frac;
int side;
cplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
byte *lightmap;
int maps;
int r;
if (node->contents != -1)
return -1; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return RecursiveLightPoint (node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = RecursiveLightPoint (node->children[side], start, mid);
if (r >= 0)
return r; // hit something
if ( (back < 0) == side )
return -1; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = r_worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & (SURF_DRAWTURB|SURF_DRAWSKY))
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];;
if (s < surf->texturemins[0] ||
t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
return 0;
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
VectorCopy (vec3_origin, pointcolor);
if (lightmap)
{
vec3_t scale;
lightmap += 3*(dt * ((surf->extents[0]>>4)+1) + ds);
for (maps=0; maps < MAXLIGHTMAPS && surf->styles[maps]!=255; maps++)
{
if (!r_newrefdef.lightstyles || !surf->styles)
break;
for (i=0; i<3; i++)
scale[i] = r_modulate->value*r_newrefdef.lightstyles[surf->styles[maps]].rgb[i];
pointcolor[0] += lightmap[0] * scale[0] * (1.0/255);
pointcolor[1] += lightmap[1] * scale[1] * (1.0/255);
pointcolor[2] += lightmap[2] * scale[2] * (1.0/255);
lightmap += 3*((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
}
}
return 1;
}
// go down back side
return RecursiveLightPoint (node->children[!side], mid, end);
}
/*
===============
R_MaxColorVec
Psychospaz's lighting on alpha surfaces
===============
*/
void R_MaxColorVec (vec3_t color)
{
int j;
float lightest = 0.0f;
for (j=0;j<3;j++)
if (color[j]>lightest)
lightest= color[j];
if (lightest>255)
for (j=0;j<3;j++)
color[j]*= 255/lightest;
for (j=0;j<3;j++)
{
if (color[j]>1) color[j] = 1;
if (color[j]<0) color[j] = 0;
}
}
/*
===============
R_LightPoint
===============
*/
void R_LightPoint (vec3_t p, vec3_t color, qboolean isEnt)
{
vec3_t end;
float r;
int lnum, i;
dlight_t *dl;
float light;
vec3_t dist;
float add;
if (!r_worldmodel->lightdata)
{
color[0] = color[1] = color[2] = 1.0;
return;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = RecursiveLightPoint (r_worldmodel->nodes, p, end);
if (r == -1)
{
VectorCopy (vec3_origin, color);
}
else
{
VectorCopy (pointcolor, color);
}
// this catches too bright modulated color
for (i=0;i<3;i++)
if (color[i]>1) color[i] = 1;
//
// add dynamic lights
//
light = 0;
dl = r_newrefdef.dlights;
for (lnum=0; lnum < r_newrefdef.num_dlights; lnum++, dl++)
{
if (dl->spotlight) // spotlights
continue;
if (isEnt)
VectorSubtract (currententity->origin, dl->origin, dist);
else
VectorSubtract (p, dl->origin, dist);
add = dl->intensity - VectorLength(dist);
add *= (1.0/256);
if (add > 0)
VectorMA (color, add, dl->color, color);
}
//VectorScale (color, r_modulate->value, color); // Knightmare- this makes ents too bright
//VectorScale (color, r_modulate->value*1.5f, color); // Knightmare- this makes ents too bright
}
/*
===============
R_LightPointDynamics
===============
*/
void R_LightPointDynamics (vec3_t p, vec3_t color, m_dlight_t *list, int *amount, int max)
{
vec3_t end;
float r;
int lnum, i, m_dl;
dlight_t *dl;
vec3_t dist, dlColor;
float add;
if (!r_worldmodel->lightdata)
{
color[0] = color[1] = color[2] = 1.0;
return;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = RecursiveLightPoint (r_worldmodel->nodes, p, end);
if (r == -1)
{
VectorCopy (vec3_origin, color);
}
else
{
VectorCopy (pointcolor, color);
}
//this catches too bright modulated color
for (i=0;i<3;i++)
if (color[i]>1) color[i] = 1;
//
// add dynamic lights
//
m_dl = 0;
dl = r_newrefdef.dlights;
for (lnum=0 ; lnum<r_newrefdef.num_dlights ; lnum++, dl++)
{
if (dl->spotlight) // spotlights
continue;
VectorSubtract (dl->origin, p, dist);
add = dl->intensity - VectorNormalize(dist);
add *= (DIV256);
if (add > 0)
{
float highest = -1;
VectorScale(dl->color, add, dlColor);
for (i=0;i<3;i++)
if (highest<dlColor[i]) highest = dlColor[i];
if (m_dl<max)
{
list[m_dl].strength = highest;
VectorCopy(dist, list[m_dl].direction);
VectorCopy(dlColor, list[m_dl].color);
m_dl++;
}
else
{
float least_val = 10;
int least_index = 0;
for (i=0;i<m_dl;i++)
if (list[i].strength<least_val)
{
least_val = list[i].strength;
least_index = i;
}
VectorAdd (color, list[least_index].color, color);
list[least_index].strength = highest;
VectorCopy(dist, list[least_index].direction);
VectorCopy(dlColor, list[least_index].color);
}
}
}
*amount = m_dl;
}
/*
===============
R_SurfLightPoint
===============
*/
void R_SurfLightPoint (msurface_t *surf, vec3_t p, vec3_t color, qboolean baselight)
{
vec3_t start, end, dist;
vec3_t dlorigin, temp, forward, right, up;
vec3_t startOffset[4] = { {0,0,0}, {-1,0,0}, {0,-1,0}, {-1,-1,0} };
float r, light, add;
int lnum, i;
dlight_t *dl;
// Knightmare- fix for moving surfaces
qboolean rotated = false;
entity_t *hostent = NULL;
if (!r_worldmodel->lightdata)
{
color[0] = color[1] = color[2] = 1.0;
return;
}
// Knightmare- fix for moving surfaces
if (surf)
hostent = surf->entity;
if (hostent && (hostent->angles[0] || hostent->angles[1] || hostent->angles[2]))
{
rotated = true;
AngleVectors (hostent->angles, forward, right, up);
}
if (baselight)
{
for (i=0; i<4; i++) // test multiple points to avoid dark corners
{
VectorCopy (p, start);
VectorAdd (start, startOffset[i], start);
end[0] = start[0];
end[1] = start[1];
end[2] = start[2] - 2048;
r = RecursiveLightPoint (r_worldmodel->nodes, start, end);
if (r != -1) break;
}
/*
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = RecursiveLightPoint (r_worldmodel->nodes, p, end);
*/
if (r == -1)
VectorCopy (vec3_origin, color);
else
VectorCopy (pointcolor, color);
// this catches too bright modulated color
for (i=0; i<3; i++)
if (color[i]>1) color[i] = 1;
}
else
{
VectorClear(color);
//
// add dynamic lights
//
light = 0;
dl = r_newrefdef.dlights;
for (lnum=0; lnum<r_newrefdef.num_dlights; lnum++, dl++)
{
if (dl->spotlight) // spotlights
continue;
if (r_flashblend->value || !r_dynamic->value) // no dlight casting
continue;
// Knightmare- fix for moving surfaces
VectorCopy (dl->origin, dlorigin);
if (hostent)
VectorSubtract (dlorigin, hostent->origin, dlorigin);
if (rotated)
{
VectorCopy (dlorigin, temp);
dlorigin[0] = DotProduct (temp, forward);
dlorigin[1] = -DotProduct (temp, right);
dlorigin[2] = DotProduct (temp, up);
}
VectorSubtract (p, dlorigin, dist);
// end Knightmare
//VectorSubtract (p, dl->origin, dist);
add = dl->intensity - VectorLength(dist);
add *= (DIV256);
if (add > 0)
{
VectorMA (color, add, dl->color, color);
}
}
}
}
//===================================================================
// Knightmare- added Psychospaz's dynamic light-based shadows
/*
===============
R_ShadowLight
===============
*/
void R_ShadowLight (vec3_t pos, vec3_t lightAdd)
{
int lnum;
dlight_t *dl;
vec3_t dist, angle;
float add, shadowdist;
if (!r_worldmodel)
return;
if (!r_worldmodel->lightdata) // keep old lame shadow
return;
VectorClear(lightAdd);
//
// add dynamic light shadow angles
//
if (r_shadows->value == 2)
{
dl = r_newrefdef.dlights;
for (lnum=0; lnum<r_newrefdef.num_dlights; lnum++, dl++)
{
if (dl->spotlight) //spotlights
continue;
VectorSubtract (dl->origin, pos, dist);
add = 0.20*sqrt(dl->intensity - VectorLength(dist));
if (add > 0) {
VectorNormalize(dist);
VectorScale(dist, add, dist);
VectorAdd (lightAdd, dist, lightAdd);
}
}
}
#if 0
shadowdist = VectorNormalize(lightAdd);
if (shadowdist>2048) shadowdist=2048;
if (shadowdist<=0) return;
// now rotate according to model yaw
vectoangles (lightAdd, angle);
angle[YAW] = -(currententity->angles[YAW]-angle[YAW]);
AngleVectors (angle, dist, NULL, NULL);
VectorScale (dist, shadowdist, lightAdd);
#else
// Barnes improved code
shadowdist = VectorNormalize(lightAdd);
if (shadowdist > 4) shadowdist = 4;
if (shadowdist < 1) // old style static shadow
{
//angle[PITCH] = currententity->angles[PITCH];
//angle[YAW] = -currententity->angles[YAW];
//angle[ROLL] = currententity->angles[ROLL];
add = currententity->angles[1]/180*M_PI;
dist[0] = cos(-add);
dist[1] = sin(-add);
dist[2] = 1;
VectorNormalize (dist);
shadowdist = 1;
}
else // shadow from dynamic lights
{
vectoangles (lightAdd, angle);
angle[YAW] -= currententity->angles[YAW];
AngleVectors (angle, dist, NULL, NULL);
}
VectorScale (dist, shadowdist, lightAdd);
#endif
}
//===================================================================
static float s_blocklights[128*128*4]; //Knightmare- was [34*34*3], supports max chop size of 2048?
/*
===============
R_AddDynamicLights
===============
*/
void R_AddDynamicLights (msurface_t *surf)
{
int lnum;
int sd, td;
float fdist, frad, fminlight;
vec3_t impact, local, dlorigin, temp, entOrigin, entAngles;
int s, t;
int i;
int smax, tmax;
mtexinfo_t *tex;
dlight_t *dl;
float *pfBL;
float fsacc, ftacc;
qboolean rotated = false;
vec3_t forward, right, up;
smax = (surf->extents[0]>>4)+1;
tmax = (surf->extents[1]>>4)+1;
tex = surf->texinfo;
// currententity is not valid for trans surfaces
if (tex->flags & (SURF_TRANS33|SURF_TRANS66)) {
if (surf->entity) {
VectorCopy (surf->entity->origin, entOrigin);
VectorCopy (surf->entity->angles, entAngles);
}
else {
VectorCopy (vec3_origin, entOrigin);
VectorCopy (vec3_origin, entAngles);
}
}
else {
VectorCopy (currententity->origin, entOrigin);
VectorCopy (currententity->angles, entAngles);
}
// if (currententity->angles[0] || currententity->angles[1] || currententity->angles[2])
if (entAngles[0] || entAngles[1] || entAngles[2])
{
rotated = true;
// AngleVectors (currententity->angles, forward, right, up);
AngleVectors (entAngles, forward, right, up);
}
for (lnum=0; lnum<r_newrefdef.num_dlights; lnum++)
{
// if ( !(surf->dlightbits & (1<<lnum) ) )
if ( !(surf->dlightbits[lnum >> 5] & (1 << (lnum & 31)) ) )
continue; // not lit by this light
dl = &r_newrefdef.dlights[lnum];
if (dl->spotlight) //spotlights
continue;
frad = dl->intensity;
VectorCopy (dl->origin, dlorigin);
// VectorSubtract (dlorigin, currententity->origin, dlorigin);
VectorSubtract (dlorigin, entOrigin, dlorigin);
if (rotated)
{
VectorCopy (dlorigin, temp);
dlorigin[0] = DotProduct (temp, forward);
dlorigin[1] = -DotProduct (temp, right);
dlorigin[2] = DotProduct (temp, up);
}
fdist = DotProduct (dlorigin, surf->plane->normal) -
surf->plane->dist;
frad -= fabs(fdist);
// rad is now the highest intensity on the plane
fminlight = r_lightcutoff->value; //** DMP var dynalight cutoff
if (frad < fminlight)
continue;
fminlight = frad - fminlight;
for (i=0 ; i<3 ; i++)
{
impact[i] = dlorigin[i] -
surf->plane->normal[i]*fdist;
}
local[0] = DotProduct (impact, tex->vecs[0]) + tex->vecs[0][3] - surf->texturemins[0];
local[1] = DotProduct (impact, tex->vecs[1]) + tex->vecs[1][3] - surf->texturemins[1];
pfBL = s_blocklights;
for (t = 0, ftacc = 0; t<tmax; t++, ftacc += 16)
{
td = local[1] - ftacc;
if ( td < 0 )
td = -td;
for ( s=0, fsacc = 0; s<smax; s++, fsacc += 16, pfBL += 3)
{
sd = Q_ftol( local[0] - fsacc );
if ( sd < 0 )
sd = -sd;
if (sd > td)
fdist = sd + (td>>1);
else
fdist = td + (sd>>1);
if ( fdist < fminlight )
{
pfBL[0] += ( frad - fdist ) * dl->color[0];
pfBL[1] += ( frad - fdist ) * dl->color[1];
pfBL[2] += ( frad - fdist ) * dl->color[2];
}
}
}
}
}
/*
===============
R_SetCacheState
===============
*/
void R_SetCacheState (msurface_t *surf)
{
int maps;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
surf->cached_light[maps] = r_newrefdef.lightstyles[surf->styles[maps]].white;
}
#ifdef BATCH_LM_UPDATES
// mark if dynamicly lit
surf->cached_dlight = (surf->dlightframe == r_framecount);
#endif
}
/*
===============
R_BuildLightMap
Combine and scale multiple lightmaps into the floating format in blocklights
===============
*/
void R_BuildLightMap (msurface_t *surf, byte *dest, int stride)
{
int smax, tmax;
int r, g, b, a, max;
int i, j, size;
byte *lightmap;
float scale[4];
int nummaps;
float *bl;
lightstyle_t *style;
int monolightmap;
// if ( surf->texinfo->flags & (SURF_SKY|SURF_TRANS33|SURF_TRANS66|SURF_WARP) )
if ( surf->texinfo->flags & (SURF_SKY|SURF_WARP) )
VID_Error (ERR_DROP, "R_BuildLightMap called for non-lit surface");
smax = (surf->extents[0]>>4)+1;
tmax = (surf->extents[1]>>4)+1;
size = smax*tmax;
// FIXME- can this limit be directly increased? Yep - Knightmare
if (size > (sizeof(s_blocklights)>>4) )
VID_Error (ERR_DROP, "Bad s_blocklights size: %d", size);
// set to full bright if no light data
if (!surf->samples)
{
int maps;
for (i=0 ; i<size*3 ; i++)
s_blocklights[i] = 255;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
style = &r_newrefdef.lightstyles[surf->styles[maps]];
}
goto store;
}
// count the # of maps
for ( nummaps = 0 ; nummaps < MAXLIGHTMAPS && surf->styles[nummaps] != 255 ;
nummaps++)
;
lightmap = surf->samples;
// add all the lightmaps
if ( nummaps == 1 )
{
int maps;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
bl = s_blocklights;
for (i=0 ; i<3 ; i++)
scale[i] = r_modulate->value*r_newrefdef.lightstyles[surf->styles[maps]].rgb[i];
if ( scale[0] == 1.0F &&
scale[1] == 1.0F &&
scale[2] == 1.0F )
{
for (i=0 ; i<size ; i++, bl+=3)
{
bl[0] = lightmap[i*3+0];
bl[1] = lightmap[i*3+1];
bl[2] = lightmap[i*3+2];
}
}
else
{
for (i=0 ; i<size ; i++, bl+=3)
{
bl[0] = lightmap[i*3+0] * scale[0];
bl[1] = lightmap[i*3+1] * scale[1];
bl[2] = lightmap[i*3+2] * scale[2];
}
}
lightmap += size*3; // skip to next lightmap
}
}
else
{
int maps;
memset( s_blocklights, 0, sizeof( s_blocklights[0] ) * size * 3 );
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
bl = s_blocklights;
for (i=0 ; i<3 ; i++)
scale[i] = r_modulate->value*r_newrefdef.lightstyles[surf->styles[maps]].rgb[i];
if ( scale[0] == 1.0F &&
scale[1] == 1.0F &&
scale[2] == 1.0F )
{
for (i=0 ; i<size ; i++, bl+=3 )
{
bl[0] += lightmap[i*3+0];
bl[1] += lightmap[i*3+1];
bl[2] += lightmap[i*3+2];
}
}
else
{
for (i=0 ; i<size ; i++, bl+=3)
{
bl[0] += lightmap[i*3+0] * scale[0];
bl[1] += lightmap[i*3+1] * scale[1];
bl[2] += lightmap[i*3+2] * scale[2];
}
}
lightmap += size*3; // skip to next lightmap
}
}
// add all the dynamic lights
if (surf->dlightframe == r_framecount)
R_AddDynamicLights (surf);
// put into texture format
store:
stride -= (smax<<2);
bl = s_blocklights;
monolightmap = r_monolightmap->string[0];
if ( monolightmap == '0' )
{
for (i=0 ; i<tmax ; i++, dest += stride)
{
for (j=0 ; j<smax ; j++)
{
r = Q_ftol( bl[0] );
g = Q_ftol( bl[1] );
b = Q_ftol( bl[2] );
// catch negative lights
if (r < 0)
r = 0;
if (g < 0)
g = 0;
if (b < 0)
b = 0;
//
// determine the brightest of the three color components
//
if (r > g)
max = r;
else
max = g;
if (b > max)
max = b;
//
// alpha is ONLY used for the mono lightmap case. For this reason
// we set it to the brightest of the color components so that
// things don't get too dim.
//
a = max;
//
// rescale all the color components if the intensity of the greatest
// channel exceeds 1.0
//
if (max > 255)
{
float t = 255.0F / max;
r = r*t;
g = g*t;
b = b*t;
a = a*t;
}
a = 255; // fix for alpha test
if (gl_lms.format == GL_BGRA)
{
dest[0] = b;
dest[1] = g;
dest[2] = r;
dest[3] = a;
}
else
{
dest[0] = r;
dest[1] = g;
dest[2] = b;
dest[3] = a;
}
bl += 3;
dest += 4;
}
}
}
else
{
for (i=0 ; i<tmax ; i++, dest += stride)
{
for (j=0 ; j<smax ; j++)
{
r = Q_ftol( bl[0] );
g = Q_ftol( bl[1] );
b = Q_ftol( bl[2] );
// catch negative lights
if (r < 0)
r = 0;
if (g < 0)
g = 0;
if (b < 0)
b = 0;
//
// determine the brightest of the three color components
//
if (r > g)
max = r;
else
max = g;
if (b > max)
max = b;
//
// alpha is ONLY used for the mono lightmap case. For this reason
// we set it to the brightest of the color components so that
// things don't get too dim.
//
a = max;
//
// rescale all the color components if the intensity of the greatest
// channel exceeds 1.0
//
if (max > 255)
{
float t = 255.0F / max;
r = r*t;
g = g*t;
b = b*t;
a = a*t;
}
//
// So if we are doing alpha lightmaps we need to set the R, G, and B
// components to 0 and we need to set alpha to 1-alpha.
//
switch ( monolightmap )
{
case 'L':
case 'I':
r = a;
g = b = 0;
a = 255; // fix for alpha test
break;
case 'C':
// try faking colored lighting
a = 255 - ((r+g+b)/3); //Knightmare changed
r *= a*0.003921568627450980392156862745098; // /255.0;
g *= a*0.003921568627450980392156862745098; // /255.0;
b *= a*0.003921568627450980392156862745098; // /255.0;
a = 255; // fix for alpha test
break;
case 'A':
// r = g = b = 0;
a = 255 - a;
r = g = b = a;
break;
default:
r = g = b = a;
a = 255; // fix for alpha test
break;
}
if (gl_lms.format == GL_BGRA)
{
dest[0] = b;
dest[1] = g;
dest[2] = r;
dest[3] = a;
}
else
{
dest[0] = r;
dest[1] = g;
dest[2] = b;
dest[3] = a;
}
bl += 3;
dest += 4;
}
}
}
}