thirtyflightsofloving/game/acebot_movement.c

696 lines
19 KiB
C
Raw Normal View History

2019-03-13 19:20:07 +00:00
/*
Copyright (C) 1998 Steve Yeager
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
///////////////////////////////////////////////////////////////////////
//
// ACE - Quake II Bot Base Code
//
// Version 1.0
//
// This file is Copyright(c), Steve Yeager 1998, All Rights Reserved
//
//
// All other files are Copyright(c) Id Software, Inc.
//
// Please see liscense.txt in the source directory for the copyright
// information regarding those files belonging to Id Software, Inc.
//
// Should you decide to release a modified version of ACE, you MUST
// include the following text (minus the BEGIN and END lines) in the
// documentation for your modification.
//
// --- BEGIN ---
//
// The ACE Bot is a product of Steve Yeager, and is available from
// the ACE Bot homepage, at http://www.axionfx.com/ace.
//
// This program is a modification of the ACE Bot, and is therefore
// in NO WAY supported by Steve Yeager.
//
// --- END ---
//
// I, Steve Yeager, hold no responsibility for any harm caused by the
// use of this source code, especially to small children and animals.
// It is provided as-is with no implied warranty or support.
//
// I also wish to thank and acknowledge the great work of others
// that has helped me to develop this code.
//
// John Cricket - For ideas and swapping code.
// Ryan Feltrin - For ideas and swapping code.
// SABIN - For showing how to do true client based movement.
// BotEpidemic - For keeping us up to date.
// Telefragged.com - For giving ACE a home.
// Microsoft - For giving us such a wonderful crash free OS.
// id - Need I say more.
//
// And to all the other testers, pathers, and players and people
// who I can't remember who the heck they were, but helped out.
//
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
// acebot_movement.c - This file contains all of the
// movement routines for the ACE bot
//
///////////////////////////////////////////////////////////////////////
#include "g_local.h"
#include "acebot.h"
// Platform states
#define STATE_TOP 0
#define STATE_BOTTOM 1
#define STATE_UP 2
#define STATE_DOWN 3
///////////////////////////////////////////////////////////////////////
// Checks if bot can move (really just checking the ground)
// Also, this is not a real accurate check, but does a
// pretty good job and looks for lava/slime.
///////////////////////////////////////////////////////////////////////
qboolean ACEMV_CanMove(edict_t *self, int direction)
{
vec3_t forward, right;
vec3_t offset,start,end;
vec3_t angles;
trace_t tr;
// Now check to see if move will move us off an edge
VectorCopy(self->s.angles,angles);
if(direction == MOVE_LEFT)
angles[1] += 90;
else if(direction == MOVE_RIGHT)
angles[1] -= 90;
else if(direction == MOVE_BACK)
angles[1] -=180;
// Set up the vectors
AngleVectors (angles, forward, right, NULL);
VectorSet(offset, 36, 0, 24);
G_ProjectSource (self->s.origin, offset, forward, right, start);
VectorSet(offset, 36, 0, -400);
G_ProjectSource (self->s.origin, offset, forward, right, end);
tr = gi.trace(start, NULL, NULL, end, self, MASK_OPAQUE);
if(tr.fraction > 0.3 && tr.fraction != 1 || tr.contents & (CONTENTS_LAVA|CONTENTS_SLIME))
{
if(debug_mode)
debug_printf("%s: move blocked\n",self->client->pers.netname);
return false;
}
return true; // yup, can move
}
///////////////////////////////////////////////////////////////////////
// Handle special cases of crouch/jump
//
// If the move is resolved here, this function returns
// true.
///////////////////////////////////////////////////////////////////////
qboolean ACEMV_SpecialMove(edict_t *self, usercmd_t *ucmd)
{
vec3_t dir,forward,right,start,end,offset;
vec3_t top;
trace_t tr;
// Get current direction
VectorCopy(self->client->ps.viewangles,dir);
dir[YAW] = self->s.angles[YAW];
AngleVectors (dir, forward, right, NULL);
VectorSet(offset, 18, 0, 0);
G_ProjectSource (self->s.origin, offset, forward, right, start);
offset[0] += 18;
G_ProjectSource (self->s.origin, offset, forward, right, end);
// trace it
start[2] += 18; // so they are not jumping all the time
end[2] += 18;
tr = gi.trace (start, self->mins, self->maxs, end, self, MASK_MONSTERSOLID);
if(tr.allsolid)
{
// Check for crouching
start[2] -= 14;
end[2] -= 14;
// Set up for crouching check
VectorCopy(self->maxs,top);
top[2] = 0.0; // crouching height
tr = gi.trace (start, self->mins, top, end, self, MASK_PLAYERSOLID);
// Crouch
if(!tr.allsolid)
{
ucmd->forwardmove = 400;
ucmd->upmove = -400;
return true;
}
// Check for jump
start[2] += 32;
end[2] += 32;
tr = gi.trace (start, self->mins, self->maxs, end, self, MASK_MONSTERSOLID);
if(!tr.allsolid)
{
ucmd->forwardmove = 400;
ucmd->upmove = 400;
return true;
}
}
return false; // We did not resolve a move here
}
///////////////////////////////////////////////////////////////////////
// Checks for obstructions in front of bot
//
// This is a function I created origianlly for ACE that
// tries to help steer the bot around obstructions.
//
// If the move is resolved here, this function returns true.
///////////////////////////////////////////////////////////////////////
qboolean ACEMV_CheckEyes(edict_t *self, usercmd_t *ucmd)
{
vec3_t forward, right;
vec3_t leftstart, rightstart,focalpoint;
vec3_t upstart,upend;
vec3_t dir,offset;
trace_t traceRight,traceLeft,traceUp, traceFront; // for eyesight
// Get current angle and set up "eyes"
VectorCopy(self->s.angles,dir);
AngleVectors (dir, forward, right, NULL);
// Let them move to targets by walls
if(!self->movetarget)
VectorSet(offset,200,0,4); // focalpoint
else
VectorSet(offset,36,0,4); // focalpoint
G_ProjectSource (self->s.origin, offset, forward, right, focalpoint);
// Check from self to focalpoint
// Ladder code
VectorSet(offset,36,0,0); // set as high as possible
G_ProjectSource (self->s.origin, offset, forward, right, upend);
traceFront = gi.trace(self->s.origin, self->mins, self->maxs, upend, self, MASK_OPAQUE);
if(traceFront.contents & 0x8000000) // using detail brush here cuz sometimes it does not pick up ladders...??
{
ucmd->upmove = 400;
ucmd->forwardmove = 400;
return true;
}
// If this check fails we need to continue on with more detailed checks
if(traceFront.fraction == 1)
{
ucmd->forwardmove = 400;
return true;
}
VectorSet(offset, 0, 18, 4);
G_ProjectSource (self->s.origin, offset, forward, right, leftstart);
offset[1] -= 36; // want to make sure this is correct
//VectorSet(offset, 0, -18, 4);
G_ProjectSource (self->s.origin, offset, forward, right, rightstart);
traceRight = gi.trace(rightstart, NULL, NULL, focalpoint, self, MASK_OPAQUE);
traceLeft = gi.trace(leftstart, NULL, NULL, focalpoint, self, MASK_OPAQUE);
// Wall checking code, this will degenerate progressivly so the least cost
// check will be done first.
// If open space move ok
if(traceRight.fraction != 1 || traceLeft.fraction != 1 || strcmp(traceLeft.ent->classname,"func_door")!=0)
{
// Special uppoint logic to check for slopes/stairs/jumping etc.
VectorSet(offset, 0, 18, 24);
G_ProjectSource (self->s.origin, offset, forward, right, upstart);
VectorSet(offset,0,0,200); // scan for height above head
G_ProjectSource (self->s.origin, offset, forward, right, upend);
traceUp = gi.trace(upstart, NULL, NULL, upend, self, MASK_OPAQUE);
VectorSet(offset,200,0,200*traceUp.fraction-5); // set as high as possible
G_ProjectSource (self->s.origin, offset, forward, right, upend);
traceUp = gi.trace(upstart, NULL, NULL, upend, self, MASK_OPAQUE);
// If the upper trace is not open, we need to turn.
if(traceUp.fraction != 1)
{
if(traceRight.fraction > traceLeft.fraction)
self->s.angles[YAW] += (1.0 - traceLeft.fraction) * 45.0;
else
self->s.angles[YAW] += -(1.0 - traceRight.fraction) * 45.0;
ucmd->forwardmove = 400;
return true;
}
}
return false;
}
///////////////////////////////////////////////////////////////////////
// Make the change in angles a little more gradual, not so snappy
// Subtle, but noticeable.
//
// Modified from the original id ChangeYaw code...
///////////////////////////////////////////////////////////////////////
void ACEMV_ChangeBotAngle (edict_t *ent)
{
float ideal_yaw;
float ideal_pitch;
float current_yaw;
float current_pitch;
float move;
float speed;
vec3_t ideal_angle;
// Normalize the move angle first
VectorNormalize(ent->move_vector);
current_yaw = anglemod(ent->s.angles[YAW]);
current_pitch = anglemod(ent->s.angles[PITCH]);
vectoangles (ent->move_vector, ideal_angle);
ideal_yaw = anglemod(ideal_angle[YAW]);
ideal_pitch = anglemod(ideal_angle[PITCH]);
// Yaw
if (current_yaw != ideal_yaw)
{
move = ideal_yaw - current_yaw;
speed = ent->yaw_speed;
if (ideal_yaw > current_yaw)
{
if (move >= 180)
move = move - 360;
}
else
{
if (move <= -180)
move = move + 360;
}
if (move > 0)
{
if (move > speed)
move = speed;
}
else
{
if (move < -speed)
move = -speed;
}
ent->s.angles[YAW] = anglemod (current_yaw + move);
}
// Pitch
if (current_pitch != ideal_pitch)
{
move = ideal_pitch - current_pitch;
speed = ent->yaw_speed;
if (ideal_pitch > current_pitch)
{
if (move >= 180)
move = move - 360;
}
else
{
if (move <= -180)
move = move + 360;
}
if (move > 0)
{
if (move > speed)
move = speed;
}
else
{
if (move < -speed)
move = -speed;
}
ent->s.angles[PITCH] = anglemod (current_pitch + move);
}
}
///////////////////////////////////////////////////////////////////////
// Set bot to move to it's movetarget. (following node path)
///////////////////////////////////////////////////////////////////////
void ACEMV_MoveToGoal(edict_t *self, usercmd_t *ucmd)
{
// If a rocket or grenade is around deal with it
// Simple, but effective (could be rewritten to be more accurate)
if(strcmp(self->movetarget->classname,"rocket")==0 ||
strcmp(self->movetarget->classname,"grenade")==0 ||
strcmp(self->movetarget->classname,"homing rocket")==0)
{
VectorSubtract (self->movetarget->s.origin, self->s.origin, self->move_vector);
ACEMV_ChangeBotAngle(self);
if(debug_mode)
debug_printf("%s: Oh crap a rocket!\n",self->client->pers.netname);
// strafe left/right
if(rand()%1 && ACEMV_CanMove(self, MOVE_LEFT))
ucmd->sidemove = -400;
else if(ACEMV_CanMove(self, MOVE_RIGHT))
ucmd->sidemove = 400;
return;
}
else
{
// Set bot's movement direction
VectorSubtract (self->movetarget->s.origin, self->s.origin, self->move_vector);
ACEMV_ChangeBotAngle(self);
ucmd->forwardmove = 400;
return;
}
}
///////////////////////////////////////////////////////////////////////
// Main movement code. (following node path)
///////////////////////////////////////////////////////////////////////
void ACEMV_Move(edict_t *self, usercmd_t *ucmd)
{
vec3_t dist;
int current_node_type=-1;
int next_node_type=-1;
int i;
// Get current and next node back from nav code.
if(!ACEND_FollowPath(self))
{
self->state = STATE_WANDER;
self->wander_timeout = level.time + 1.0;
return;
}
current_node_type = nodes[self->current_node].type;
next_node_type = nodes[self->next_node].type;
///////////////////////////
// Move To Goal
///////////////////////////
if (self->movetarget)
ACEMV_MoveToGoal(self,ucmd);
////////////////////////////////////////////////////////
// Grapple
///////////////////////////////////////////////////////
if(next_node_type == NODE_GRAPPLE)
{
ACEMV_ChangeBotAngle(self);
ACEIT_ChangeWeapon(self,FindItem("grapple"));
ucmd->buttons = BUTTON_ATTACK;
return;
}
// Reset the grapple if hangin on a graple node
if(current_node_type == NODE_GRAPPLE)
{
CTFPlayerResetGrapple(self);
return;
}
////////////////////////////////////////////////////////
// Platforms
///////////////////////////////////////////////////////
if(current_node_type != NODE_PLATFORM && next_node_type == NODE_PLATFORM)
{
// check to see if lift is down?
for(i=0;i<num_items;i++)
if(item_table[i].node == self->next_node)
if(item_table[i].ent && // Knightmare- fix crash
item_table[i].ent->moveinfo.state != STATE_BOTTOM) // crashes here
return; // Wait for elevator
}
if(current_node_type == NODE_PLATFORM && next_node_type == NODE_PLATFORM)
{
// Move to the center
self->move_vector[2] = 0; // kill z movement
if(VectorLength(self->move_vector) > 10)
ucmd->forwardmove = 200; // walk to center
ACEMV_ChangeBotAngle(self);
return; // No move, riding elevator
}
////////////////////////////////////////////////////////
// Jumpto Nodes
///////////////////////////////////////////////////////
if(next_node_type == NODE_JUMP ||
(current_node_type == NODE_JUMP && next_node_type != NODE_ITEM && nodes[self->next_node].origin[2] > self->s.origin[2]))
{
// Set up a jump move
ucmd->forwardmove = 400;
ucmd->upmove = 400;
ACEMV_ChangeBotAngle(self);
VectorCopy(self->move_vector,dist);
VectorScale(dist,440,self->velocity);
return;
}
////////////////////////////////////////////////////////
// Ladder Nodes
///////////////////////////////////////////////////////
if(next_node_type == NODE_LADDER && nodes[self->next_node].origin[2] > self->s.origin[2])
{
// Otherwise move as fast as we can
ucmd->forwardmove = 400;
self->velocity[2] = 320;
ACEMV_ChangeBotAngle(self);
return;
}
// If getting off the ladder
if(current_node_type == NODE_LADDER && next_node_type != NODE_LADDER &&
nodes[self->next_node].origin[2] > self->s.origin[2])
{
ucmd->forwardmove = 400;
ucmd->upmove = 200;
self->velocity[2] = 200;
ACEMV_ChangeBotAngle(self);
return;
}
////////////////////////////////////////////////////////
// Water Nodes
///////////////////////////////////////////////////////
if(current_node_type == NODE_WATER)
{
// We need to be pointed up/down
ACEMV_ChangeBotAngle(self);
// If the next node is not in the water, then move up to get out.
if(next_node_type != NODE_WATER && !(gi.pointcontents(nodes[self->next_node].origin) & MASK_WATER)) // Exit water
ucmd->upmove = 400;
ucmd->forwardmove = 300;
return;
}
// Falling off ledge?
if(!self->groundentity)
{
ACEMV_ChangeBotAngle(self);
self->velocity[0] = self->move_vector[0] * 360;
self->velocity[1] = self->move_vector[1] * 360;
return;
}
// Check to see if stuck, and if so try to free us
// Also handles crouching
if(VectorLength(self->velocity) < 37)
{
// Keep a random factor just in case....
if(random() > 0.1 && ACEMV_SpecialMove(self, ucmd))
return;
self->s.angles[YAW] += random() * 180 - 90;
ucmd->forwardmove = 400;
return;
}
// Otherwise move as fast as we can
ucmd->forwardmove = 400;
ACEMV_ChangeBotAngle(self);
}
///////////////////////////////////////////////////////////////////////
// Wandering code (based on old ACE movement code)
///////////////////////////////////////////////////////////////////////
void ACEMV_Wander(edict_t *self, usercmd_t *ucmd)
{
vec3_t temp;
// Do not move
if(self->next_move_time > level.time)
return;
// Special check for elevators, stand still until the ride comes to a complete stop.
if(self->groundentity != NULL && self->groundentity->use == Use_Plat)
if(self->groundentity->moveinfo.state == STATE_UP ||
self->groundentity->moveinfo.state == STATE_DOWN) // only move when platform not
{
self->velocity[0] = 0;
self->velocity[1] = 0;
self->velocity[2] = 0;
self->next_move_time = level.time + 0.5;
return;
}
// Is there a target to move to
if (self->movetarget)
ACEMV_MoveToGoal(self,ucmd);
////////////////////////////////
// Swimming?
////////////////////////////////
VectorCopy(self->s.origin,temp);
temp[2]+=24;
if(gi.pointcontents (temp) & MASK_WATER)
{
// If drowning and no node, move up
if(self->client->next_drown_time > 0)
{
ucmd->upmove = 1;
self->s.angles[PITCH] = -45;
}
else
ucmd->upmove = 15;
ucmd->forwardmove = 300;
}
else
self->client->next_drown_time = 0; // probably shound not be messing with this, but
////////////////////////////////
// Lava?
////////////////////////////////
temp[2]-=48;
if(gi.pointcontents(temp) & (CONTENTS_LAVA|CONTENTS_SLIME))
{
// safe_bprintf(PRINT_MEDIUM,"lava jump\n");
self->s.angles[YAW] += random() * 360 - 180;
ucmd->forwardmove = 400;
ucmd->upmove = 400;
return;
}
if(ACEMV_CheckEyes(self,ucmd))
return;
// Check for special movement if we have a normal move (have to test)
if(VectorLength(self->velocity) < 37)
{
if(random() > 0.1 && ACEMV_SpecialMove(self,ucmd))
return;
self->s.angles[YAW] += random() * 180 - 90;
if(!M_CheckBottom(self) || !self->groundentity) // if there is ground continue otherwise wait for next move
ucmd->forwardmove = 400;
return;
}
ucmd->forwardmove = 400;
}
///////////////////////////////////////////////////////////////////////
// Attack movement routine
//
// NOTE: Very simple for now, just a basic move about avoidance.
// Change this routine for more advanced attack movement.
///////////////////////////////////////////////////////////////////////
void ACEMV_Attack (edict_t *self, usercmd_t *ucmd)
{
float c;
vec3_t target;
vec3_t angles;
// Randomly choose a movement direction
c = random();
if(c < 0.2 && ACEMV_CanMove(self,MOVE_LEFT))
ucmd->sidemove -= 400;
else if(c < 0.4 && ACEMV_CanMove(self,MOVE_RIGHT))
ucmd->sidemove += 400;
if(c < 0.6 && ACEMV_CanMove(self,MOVE_FORWARD))
ucmd->forwardmove += 400;
else if(c < 0.8 && ACEMV_CanMove(self,MOVE_FORWARD))
ucmd->forwardmove -= 400;
if(c < 0.95)
ucmd->upmove -= 200;
else
ucmd->upmove += 200;
// Set the attack
ucmd->buttons = BUTTON_ATTACK;
// Aim
VectorCopy(self->enemy->s.origin,target);
// modify attack angles based on accuracy (mess this up to make the bot's aim not so deadly)
// target[0] += (random()-0.5) * 20;
// target[1] += (random()-0.5) * 20;
// Set direction
VectorSubtract (target, self->s.origin, self->move_vector);
vectoangles (self->move_vector, angles);
VectorCopy(angles,self->s.angles);
// if(debug_mode)
// debug_printf("%s attacking %s\n",self->client->pers.netname,self->enemy->client->pers.netname);
}