quadrilateralcowboy/idlib/Heap.cpp

1732 lines
39 KiB
C++

/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "../idlib/precompiled.h"
#pragma hdrstop
#ifndef USE_LIBC_MALLOC
#define USE_LIBC_MALLOC 0
#endif
#ifndef CRASH_ON_STATIC_ALLOCATION
// #define CRASH_ON_STATIC_ALLOCATION
#endif
//===============================================================
//
// idHeap
//
//===============================================================
#define SMALL_HEADER_SIZE ( (intptr_t) ( sizeof( byte ) + sizeof( byte ) ) )
#define MEDIUM_HEADER_SIZE ( (intptr_t) ( sizeof( mediumHeapEntry_s ) + sizeof( byte ) ) )
#define LARGE_HEADER_SIZE ( (intptr_t) ( sizeof( dword * ) + sizeof( byte ) ) )
#define ALIGN_SIZE( bytes ) ( ( (bytes) + ALIGN - 1 ) & ~(ALIGN - 1) )
#define SMALL_ALIGN( bytes ) ( ALIGN_SIZE( (bytes) + SMALL_HEADER_SIZE ) - SMALL_HEADER_SIZE )
#define MEDIUM_SMALLEST_SIZE ( ALIGN_SIZE( 256 ) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ) )
class idHeap {
public:
idHeap( void );
~idHeap( void ); // frees all associated data
void Init( void ); // initialize
void * Allocate( const dword bytes ); // allocate memory
void Free( void *p ); // free memory
void * Allocate16( const dword bytes );// allocate 16 byte aligned memory
void Free16( void *p ); // free 16 byte aligned memory
dword Msize( void *p ); // return size of data block
void Dump( void );
void AllocDefragBlock( void ); // hack for huge renderbumps
private:
enum {
ALIGN = 8 // memory alignment in bytes
};
enum {
INVALID_ALLOC = 0xdd,
SMALL_ALLOC = 0xaa, // small allocation
MEDIUM_ALLOC = 0xbb, // medium allocaction
LARGE_ALLOC = 0xcc // large allocaction
};
struct page_s { // allocation page
void * data; // data pointer to allocated memory
dword dataSize; // number of bytes of memory 'data' points to
page_s * next; // next free page in same page manager
page_s * prev; // used only when allocated
dword largestFree; // this data used by the medium-size heap manager
void * firstFree; // pointer to first free entry
};
struct mediumHeapEntry_s {
page_s * page; // pointer to page
dword size; // size of block
mediumHeapEntry_s * prev; // previous block
mediumHeapEntry_s * next; // next block
mediumHeapEntry_s * prevFree; // previous free block
mediumHeapEntry_s * nextFree; // next free block
dword freeBlock; // non-zero if free block
};
// variables
void * smallFirstFree[256/ALIGN+1]; // small heap allocator lists (for allocs of 1-255 bytes)
page_s * smallCurPage; // current page for small allocations
dword smallCurPageOffset; // byte offset in current page
page_s * smallFirstUsedPage; // first used page of the small heap manager
page_s * mediumFirstFreePage; // first partially free page
page_s * mediumLastFreePage; // last partially free page
page_s * mediumFirstUsedPage; // completely used page
page_s * largeFirstUsedPage; // first page used by the large heap manager
page_s * swapPage;
dword pagesAllocated; // number of pages currently allocated
dword pageSize; // size of one alloc page in bytes
dword pageRequests; // page requests
dword OSAllocs; // number of allocs made to the OS
int c_heapAllocRunningCount;
void *defragBlock; // a single huge block that can be allocated
// at startup, then freed when needed
// methods
page_s * AllocatePage( dword bytes ); // allocate page from the OS
void FreePage( idHeap::page_s *p ); // free an OS allocated page
void * SmallAllocate( dword bytes ); // allocate memory (1-255 bytes) from small heap manager
void SmallFree( void *ptr ); // free memory allocated by small heap manager
void * MediumAllocateFromPage( idHeap::page_s *p, dword sizeNeeded );
void * MediumAllocate( dword bytes ); // allocate memory (256-32768 bytes) from medium heap manager
void MediumFree( void *ptr ); // free memory allocated by medium heap manager
void * LargeAllocate( dword bytes ); // allocate large block from OS directly
void LargeFree( void *ptr ); // free memory allocated by large heap manager
void ReleaseSwappedPages( void );
void FreePageReal( idHeap::page_s *p );
};
/*
================
idHeap::Init
================
*/
void idHeap::Init () {
OSAllocs = 0;
pageRequests = 0;
pageSize = 65536 - sizeof( idHeap::page_s );
pagesAllocated = 0; // reset page allocation counter
largeFirstUsedPage = NULL; // init large heap manager
swapPage = NULL;
memset( smallFirstFree, 0, sizeof(smallFirstFree) ); // init small heap manager
smallFirstUsedPage = NULL;
smallCurPage = AllocatePage( pageSize );
assert( smallCurPage );
smallCurPageOffset = SMALL_ALIGN( 0 );
defragBlock = NULL;
mediumFirstFreePage = NULL; // init medium heap manager
mediumLastFreePage = NULL;
mediumFirstUsedPage = NULL;
c_heapAllocRunningCount = 0;
}
/*
================
idHeap::idHeap
================
*/
idHeap::idHeap( void ) {
Init();
}
/*
================
idHeap::~idHeap
returns all allocated memory back to OS
================
*/
idHeap::~idHeap( void ) {
idHeap::page_s *p;
if ( smallCurPage ) {
FreePage( smallCurPage ); // free small-heap current allocation page
}
p = smallFirstUsedPage; // free small-heap allocated pages
while( p ) {
idHeap::page_s *next = p->next;
FreePage( p );
p= next;
}
p = largeFirstUsedPage; // free large-heap allocated pages
while( p ) {
idHeap::page_s *next = p->next;
FreePage( p );
p = next;
}
p = mediumFirstFreePage; // free medium-heap allocated pages
while( p ) {
idHeap::page_s *next = p->next;
FreePage( p );
p = next;
}
p = mediumFirstUsedPage; // free medium-heap allocated completely used pages
while( p ) {
idHeap::page_s *next = p->next;
FreePage( p );
p = next;
}
ReleaseSwappedPages();
if ( defragBlock ) {
free( defragBlock );
}
assert( pagesAllocated == 0 );
}
/*
================
idHeap::AllocDefragBlock
================
*/
void idHeap::AllocDefragBlock( void ) {
int size = 0x40000000;
if ( defragBlock ) {
return;
}
while( 1 ) {
defragBlock = malloc( size );
if ( defragBlock ) {
break;
}
size >>= 1;
}
idLib::common->Printf( "Allocated a %i mb defrag block\n", size / (1024*1024) );
}
/*
================
idHeap::Allocate
================
*/
void *idHeap::Allocate( const dword bytes ) {
if ( !bytes ) {
return NULL;
}
c_heapAllocRunningCount++;
#if USE_LIBC_MALLOC
return malloc( bytes );
#else
if ( !(bytes & ~255) ) {
return SmallAllocate( bytes );
}
if ( !(bytes & ~32767) ) {
return MediumAllocate( bytes );
}
return LargeAllocate( bytes );
#endif
}
/*
================
idHeap::Free
================
*/
void idHeap::Free( void *p ) {
if ( !p ) {
return;
}
c_heapAllocRunningCount--;
#if USE_LIBC_MALLOC
free( p );
#else
switch( ((byte *)(p))[-1] ) {
case SMALL_ALLOC: {
SmallFree( p );
break;
}
case MEDIUM_ALLOC: {
MediumFree( p );
break;
}
case LARGE_ALLOC: {
LargeFree( p );
break;
}
default: {
idLib::common->FatalError( "idHeap::Free: invalid memory block" );
break;
}
}
#endif
}
/*
================
idHeap::Allocate16
================
*/
void *idHeap::Allocate16( const dword bytes ) {
byte *ptr, *alignedPtr;
ptr = (byte *) malloc( bytes + 16 + sizeof(intptr_t) );
if ( !ptr ) {
if ( defragBlock ) {
idLib::common->Printf( "Freeing defragBlock on alloc of %i.\n", bytes );
free( defragBlock );
defragBlock = NULL;
ptr = (byte *) malloc( bytes + 16 + sizeof(intptr_t) );
AllocDefragBlock();
}
if ( !ptr ) {
common->FatalError( "malloc failure for %i", bytes );
}
}
alignedPtr = (byte *) ( ( ( (intptr_t) ptr ) + 15) & ~15 );
if ( alignedPtr - ptr < sizeof(intptr_t) ) {
alignedPtr += 16;
}
*((intptr_t *)(alignedPtr - sizeof(intptr_t))) = (intptr_t) ptr;
return (void *) alignedPtr;
}
/*
================
idHeap::Free16
================
*/
void idHeap::Free16( void *p ) {
free( (void *) *((intptr_t *) (( (byte *) p ) - sizeof(intptr_t))) );
}
/*
================
idHeap::Msize
returns size of allocated memory block
p = pointer to memory block
Notes: size may not be the same as the size in the original
allocation request (due to block alignment reasons).
================
*/
dword idHeap::Msize( void *p ) {
if ( !p ) {
return 0;
}
#if USE_LIBC_MALLOC
#ifdef _WIN32
return _msize( p );
#else
return 0;
#endif
#else
switch( ((byte *)(p))[-1] ) {
case SMALL_ALLOC: {
return SMALL_ALIGN( ((byte *)(p))[-SMALL_HEADER_SIZE] * ALIGN );
}
case MEDIUM_ALLOC: {
return ((mediumHeapEntry_s *)(((byte *)(p)) - ALIGN_SIZE( MEDIUM_HEADER_SIZE )))->size - ALIGN_SIZE( MEDIUM_HEADER_SIZE );
}
case LARGE_ALLOC: {
return ((idHeap::page_s*)(*((intptr_t *)(((byte *)p) - ALIGN_SIZE( LARGE_HEADER_SIZE )))))->dataSize - ALIGN_SIZE( LARGE_HEADER_SIZE );
}
default: {
idLib::common->FatalError( "idHeap::Msize: invalid memory block" );
return 0;
}
}
#endif
}
/*
================
idHeap::Dump
dump contents of the heap
================
*/
void idHeap::Dump( void ) {
idHeap::page_s *pg;
for ( pg = smallFirstUsedPage; pg; pg = pg->next ) {
idLib::common->Printf( "%p bytes %-8d (in use by small heap)\n", pg->data, pg->dataSize);
}
if ( smallCurPage ) {
pg = smallCurPage;
idLib::common->Printf( "%p bytes %-8d (small heap active page)\n", pg->data, pg->dataSize );
}
for ( pg = mediumFirstUsedPage; pg; pg = pg->next ) {
idLib::common->Printf( "%p bytes %-8d (completely used by medium heap)\n", pg->data, pg->dataSize );
}
for ( pg = mediumFirstFreePage; pg; pg = pg->next ) {
idLib::common->Printf( "%p bytes %-8d (partially used by medium heap)\n", pg->data, pg->dataSize );
}
for ( pg = largeFirstUsedPage; pg; pg = pg->next ) {
idLib::common->Printf( "%p bytes %-8d (fully used by large heap)\n", pg->data, pg->dataSize );
}
idLib::common->Printf( "pages allocated : %d\n", pagesAllocated );
}
/*
================
idHeap::FreePageReal
frees page to be used by the OS
p = page to free
================
*/
void idHeap::FreePageReal( idHeap::page_s *p ) {
assert( p );
::free( p );
}
/*
================
idHeap::ReleaseSwappedPages
releases the swap page to OS
================
*/
void idHeap::ReleaseSwappedPages () {
if ( swapPage ) {
FreePageReal( swapPage );
}
swapPage = NULL;
}
/*
================
idHeap::AllocatePage
allocates memory from the OS
bytes = page size in bytes
returns pointer to page
================
*/
idHeap::page_s* idHeap::AllocatePage( dword bytes ) {
idHeap::page_s* p;
pageRequests++;
if ( swapPage && swapPage->dataSize == bytes ) { // if we've got a swap page somewhere
p = swapPage;
swapPage = NULL;
}
else {
dword size;
size = bytes + sizeof(idHeap::page_s);
p = (idHeap::page_s *) ::malloc( size + ALIGN - 1 );
if ( !p ) {
if ( defragBlock ) {
idLib::common->Printf( "Freeing defragBlock on alloc of %i.\n", size + ALIGN - 1 );
free( defragBlock );
defragBlock = NULL;
p = (idHeap::page_s *) ::malloc( size + ALIGN - 1 );
AllocDefragBlock();
}
if ( !p ) {
common->FatalError( "malloc failure for %i", bytes );
}
}
p->data = (void *) ALIGN_SIZE( (intptr_t)((byte *)(p)) + sizeof( idHeap::page_s ) );
p->dataSize = size - sizeof(idHeap::page_s);
p->firstFree = NULL;
p->largestFree = 0;
OSAllocs++;
}
p->prev = NULL;
p->next = NULL;
pagesAllocated++;
return p;
}
/*
================
idHeap::FreePage
frees a page back to the operating system
p = pointer to page
================
*/
void idHeap::FreePage( idHeap::page_s *p ) {
assert( p );
if ( p->dataSize == pageSize && !swapPage ) { // add to swap list?
swapPage = p;
}
else {
FreePageReal( p );
}
pagesAllocated--;
}
//===============================================================
//
// small heap code
//
//===============================================================
/*
================
idHeap::SmallAllocate
allocate memory (1-255 bytes) from the small heap manager
bytes = number of bytes to allocate
returns pointer to allocated memory
================
*/
void *idHeap::SmallAllocate( dword bytes ) {
// we need the at least sizeof( dword ) bytes for the free list
if ( bytes < sizeof( intptr_t ) ) {
bytes = sizeof( intptr_t );
}
// increase the number of bytes if necessary to make sure the next small allocation is aligned
bytes = SMALL_ALIGN( bytes );
byte *smallBlock = (byte *)(smallFirstFree[bytes / ALIGN]);
if ( smallBlock ) {
intptr_t *link = (intptr_t *)(smallBlock + SMALL_HEADER_SIZE);
smallBlock[1] = SMALL_ALLOC; // allocation identifier
smallFirstFree[bytes / ALIGN] = (void *)(*link);
return (void *)(link);
}
dword bytesLeft = (size_t)(pageSize) - smallCurPageOffset;
// if we need to allocate a new page
if ( bytes >= bytesLeft ) {
smallCurPage->next = smallFirstUsedPage;
smallFirstUsedPage = smallCurPage;
smallCurPage = AllocatePage( pageSize );
if ( !smallCurPage ) {
return NULL;
}
// make sure the first allocation is aligned
smallCurPageOffset = SMALL_ALIGN( 0 );
}
smallBlock = ((byte *)smallCurPage->data) + smallCurPageOffset;
smallBlock[0] = (byte)(bytes / ALIGN); // write # of bytes/ALIGN
smallBlock[1] = SMALL_ALLOC; // allocation identifier
smallCurPageOffset += bytes + SMALL_HEADER_SIZE; // increase the offset on the current page
return ( smallBlock + SMALL_HEADER_SIZE ); // skip the first two bytes
}
/*
================
idHeap::SmallFree
frees a block of memory allocated by SmallAllocate() call
data = pointer to block of memory
================
*/
void idHeap::SmallFree( void *ptr ) {
((byte *)(ptr))[-1] = INVALID_ALLOC;
byte *d = ( (byte *)ptr ) - SMALL_HEADER_SIZE;
intptr_t *link = (intptr_t *)ptr;
// index into the table with free small memory blocks
dword ix = *d;
// check if the index is correct
if ( ix > (256 / ALIGN) ) {
idLib::common->FatalError( "SmallFree: invalid memory block" );
}
*link = (intptr_t)smallFirstFree[ix]; // write next index
smallFirstFree[ix] = (void *)d; // link
}
//===============================================================
//
// medium heap code
//
// Medium-heap allocated pages not returned to OS until heap destructor
// called (re-used instead on subsequent medium-size malloc requests).
//
//===============================================================
/*
================
idHeap::MediumAllocateFromPage
performs allocation using the medium heap manager from a given page
p = page
sizeNeeded = # of bytes needed
returns pointer to allocated memory
================
*/
void *idHeap::MediumAllocateFromPage( idHeap::page_s *p, dword sizeNeeded ) {
mediumHeapEntry_s *best,*nw = NULL;
byte *ret;
best = (mediumHeapEntry_s *)(p->firstFree); // first block is largest
assert( best );
assert( best->size == p->largestFree );
assert( best->size >= sizeNeeded );
// if we can allocate another block from this page after allocating sizeNeeded bytes
if ( best->size >= (dword)( sizeNeeded + MEDIUM_SMALLEST_SIZE ) ) {
nw = (mediumHeapEntry_s *)((byte *)best + best->size - sizeNeeded);
nw->page = p;
nw->prev = best;
nw->next = best->next;
nw->prevFree = NULL;
nw->nextFree = NULL;
nw->size = sizeNeeded;
nw->freeBlock = 0; // used block
if ( best->next ) {
best->next->prev = nw;
}
best->next = nw;
best->size -= sizeNeeded;
p->largestFree = best->size;
}
else {
if ( best->prevFree ) {
best->prevFree->nextFree = best->nextFree;
}
else {
p->firstFree = (void *)best->nextFree;
}
if ( best->nextFree ) {
best->nextFree->prevFree = best->prevFree;
}
best->prevFree = NULL;
best->nextFree = NULL;
best->freeBlock = 0; // used block
nw = best;
p->largestFree = 0;
}
ret = (byte *)(nw) + ALIGN_SIZE( MEDIUM_HEADER_SIZE );
ret[-1] = MEDIUM_ALLOC; // allocation identifier
return (void *)(ret);
}
/*
================
idHeap::MediumAllocate
allocate memory (256-32768 bytes) from medium heap manager
bytes = number of bytes to allocate
returns pointer to allocated memory
================
*/
void *idHeap::MediumAllocate( dword bytes ) {
idHeap::page_s *p;
void *data;
dword sizeNeeded = ALIGN_SIZE( bytes ) + ALIGN_SIZE( MEDIUM_HEADER_SIZE );
// find first page with enough space
for ( p = mediumFirstFreePage; p; p = p->next ) {
if ( p->largestFree >= sizeNeeded ) {
break;
}
}
if ( !p ) { // need to allocate new page?
p = AllocatePage( pageSize );
if ( !p ) {
return NULL; // malloc failure!
}
p->prev = NULL;
p->next = mediumFirstFreePage;
if (p->next) {
p->next->prev = p;
}
else {
mediumLastFreePage = p;
}
mediumFirstFreePage = p;
p->largestFree = pageSize;
p->firstFree = (void *)p->data;
mediumHeapEntry_s *e;
e = (mediumHeapEntry_s *)(p->firstFree);
e->page = p;
// make sure ((byte *)e + e->size) is aligned
e->size = pageSize & ~(ALIGN - 1);
e->prev = NULL;
e->next = NULL;
e->prevFree = NULL;
e->nextFree = NULL;
e->freeBlock = 1;
}
data = MediumAllocateFromPage( p, sizeNeeded ); // allocate data from page
// if the page can no longer serve memory, move it away from free list
// (so that it won't slow down the later alloc queries)
// this modification speeds up the pageWalk from O(N) to O(sqrt(N))
// a call to free may swap this page back to the free list
if ( p->largestFree < MEDIUM_SMALLEST_SIZE ) {
if ( p == mediumLastFreePage ) {
mediumLastFreePage = p->prev;
}
if ( p == mediumFirstFreePage ) {
mediumFirstFreePage = p->next;
}
if ( p->prev ) {
p->prev->next = p->next;
}
if ( p->next ) {
p->next->prev = p->prev;
}
// link to "completely used" list
p->prev = NULL;
p->next = mediumFirstUsedPage;
if ( p->next ) {
p->next->prev = p;
}
mediumFirstUsedPage = p;
return data;
}
// re-order linked list (so that next malloc query starts from current
// matching block) -- this speeds up both the page walks and block walks
if ( p != mediumFirstFreePage ) {
assert( mediumLastFreePage );
assert( mediumFirstFreePage );
assert( p->prev);
mediumLastFreePage->next = mediumFirstFreePage;
mediumFirstFreePage->prev = mediumLastFreePage;
mediumLastFreePage = p->prev;
p->prev->next = NULL;
p->prev = NULL;
mediumFirstFreePage = p;
}
return data;
}
/*
================
idHeap::MediumFree
frees a block allocated by the medium heap manager
ptr = pointer to data block
================
*/
void idHeap::MediumFree( void *ptr ) {
((byte *)(ptr))[-1] = INVALID_ALLOC;
mediumHeapEntry_s *e = (mediumHeapEntry_s *)((byte *)ptr - ALIGN_SIZE( MEDIUM_HEADER_SIZE ));
idHeap::page_s *p = e->page;
bool isInFreeList;
isInFreeList = p->largestFree >= MEDIUM_SMALLEST_SIZE;
assert( e->size );
assert( e->freeBlock == 0 );
mediumHeapEntry_s *prev = e->prev;
// if the previous block is free we can merge
if ( prev && prev->freeBlock ) {
prev->size += e->size;
prev->next = e->next;
if ( e->next ) {
e->next->prev = prev;
}
e = prev;
}
else {
e->prevFree = NULL; // link to beginning of free list
e->nextFree = (mediumHeapEntry_s *)p->firstFree;
if ( e->nextFree ) {
assert( !(e->nextFree->prevFree) );
e->nextFree->prevFree = e;
}
p->firstFree = e;
p->largestFree = e->size;
e->freeBlock = 1; // mark block as free
}
mediumHeapEntry_s *next = e->next;
// if the next block is free we can merge
if ( next && next->freeBlock ) {
e->size += next->size;
e->next = next->next;
if ( next->next ) {
next->next->prev = e;
}
if ( next->prevFree ) {
next->prevFree->nextFree = next->nextFree;
}
else {
assert( next == p->firstFree );
p->firstFree = next->nextFree;
}
if ( next->nextFree ) {
next->nextFree->prevFree = next->prevFree;
}
}
if ( p->firstFree ) {
p->largestFree = ((mediumHeapEntry_s *)(p->firstFree))->size;
}
else {
p->largestFree = 0;
}
// did e become the largest block of the page ?
if ( e->size > p->largestFree ) {
assert( e != p->firstFree );
p->largestFree = e->size;
if ( e->prevFree ) {
e->prevFree->nextFree = e->nextFree;
}
if ( e->nextFree ) {
e->nextFree->prevFree = e->prevFree;
}
e->nextFree = (mediumHeapEntry_s *)p->firstFree;
e->prevFree = NULL;
if ( e->nextFree ) {
e->nextFree->prevFree = e;
}
p->firstFree = e;
}
// if page wasn't in free list (because it was near-full), move it back there
if ( !isInFreeList ) {
// remove from "completely used" list
if ( p->prev ) {
p->prev->next = p->next;
}
if ( p->next ) {
p->next->prev = p->prev;
}
if ( p == mediumFirstUsedPage ) {
mediumFirstUsedPage = p->next;
}
p->next = NULL;
p->prev = mediumLastFreePage;
if ( mediumLastFreePage ) {
mediumLastFreePage->next = p;
}
mediumLastFreePage = p;
if ( !mediumFirstFreePage ) {
mediumFirstFreePage = p;
}
}
}
//===============================================================
//
// large heap code
//
//===============================================================
/*
================
idHeap::LargeAllocate
allocates a block of memory from the operating system
bytes = number of bytes to allocate
returns pointer to allocated memory
================
*/
void *idHeap::LargeAllocate( dword bytes ) {
idHeap::page_s *p = AllocatePage( bytes + ALIGN_SIZE( LARGE_HEADER_SIZE ) );
assert( p );
if ( !p ) {
return NULL;
}
byte * d = (byte*)(p->data) + ALIGN_SIZE( LARGE_HEADER_SIZE );
intptr_t * dw = (intptr_t*)(d - ALIGN_SIZE( LARGE_HEADER_SIZE ));
dw[0] = (intptr_t)p; // write pointer back to page table
d[-1] = LARGE_ALLOC; // allocation identifier
// link to 'large used page list'
p->prev = NULL;
p->next = largeFirstUsedPage;
if ( p->next ) {
p->next->prev = p;
}
largeFirstUsedPage = p;
return (void *)(d);
}
/*
================
idHeap::LargeFree
frees a block of memory allocated by the 'large memory allocator'
p = pointer to allocated memory
================
*/
void idHeap::LargeFree( void *ptr) {
idHeap::page_s* pg;
((byte *)(ptr))[-1] = INVALID_ALLOC;
// get page pointer
pg = (idHeap::page_s *)(*((intptr_t *)(((byte *)ptr) - ALIGN_SIZE( LARGE_HEADER_SIZE ))));
// unlink from doubly linked list
if ( pg->prev ) {
pg->prev->next = pg->next;
}
if ( pg->next ) {
pg->next->prev = pg->prev;
}
if ( pg == largeFirstUsedPage ) {
largeFirstUsedPage = pg->next;
}
pg->next = pg->prev = NULL;
FreePage(pg);
}
//===============================================================
//
// memory allocation all in one place
//
//===============================================================
#undef new
static idHeap * mem_heap = NULL;
static memoryStats_t mem_total_allocs = { 0, 0x0fffffff, -1, 0 };
static memoryStats_t mem_frame_allocs;
static memoryStats_t mem_frame_frees;
/*
==================
Mem_ClearFrameStats
==================
*/
void Mem_ClearFrameStats( void ) {
mem_frame_allocs.num = mem_frame_frees.num = 0;
mem_frame_allocs.minSize = mem_frame_frees.minSize = 0x0fffffff;
mem_frame_allocs.maxSize = mem_frame_frees.maxSize = -1;
mem_frame_allocs.totalSize = mem_frame_frees.totalSize = 0;
}
/*
==================
Mem_GetFrameStats
==================
*/
void Mem_GetFrameStats( memoryStats_t &allocs, memoryStats_t &frees ) {
allocs = mem_frame_allocs;
frees = mem_frame_frees;
}
/*
==================
Mem_GetStats
==================
*/
void Mem_GetStats( memoryStats_t &stats ) {
stats = mem_total_allocs;
}
/*
==================
Mem_UpdateStats
==================
*/
void Mem_UpdateStats( memoryStats_t &stats, int size ) {
stats.num++;
if ( size < stats.minSize ) {
stats.minSize = size;
}
if ( size > stats.maxSize ) {
stats.maxSize = size;
}
stats.totalSize += size;
}
/*
==================
Mem_UpdateAllocStats
==================
*/
void Mem_UpdateAllocStats( int size ) {
Mem_UpdateStats( mem_frame_allocs, size );
Mem_UpdateStats( mem_total_allocs, size );
}
/*
==================
Mem_UpdateFreeStats
==================
*/
void Mem_UpdateFreeStats( int size ) {
Mem_UpdateStats( mem_frame_frees, size );
mem_total_allocs.num--;
mem_total_allocs.totalSize -= size;
}
#ifndef ID_DEBUG_MEMORY
/*
==================
Mem_Alloc
==================
*/
void *Mem_Alloc( const int size ) {
if ( !size ) {
return NULL;
}
if ( !mem_heap ) {
#ifdef CRASH_ON_STATIC_ALLOCATION
*((int*)0x0) = 1;
#endif
return malloc( size );
}
void *mem = mem_heap->Allocate( size );
Mem_UpdateAllocStats( mem_heap->Msize( mem ) );
return mem;
}
/*
==================
Mem_Free
==================
*/
void Mem_Free( void *ptr ) {
if ( !ptr ) {
return;
}
if ( !mem_heap ) {
#ifdef CRASH_ON_STATIC_ALLOCATION
*((int*)0x0) = 1;
#endif
free( ptr );
return;
}
Mem_UpdateFreeStats( mem_heap->Msize( ptr ) );
mem_heap->Free( ptr );
}
/*
==================
Mem_Alloc16
==================
*/
void *Mem_Alloc16( const int size ) {
if ( !size ) {
return NULL;
}
if ( !mem_heap ) {
#ifdef CRASH_ON_STATIC_ALLOCATION
*((int*)0x0) = 1;
#endif
return malloc( size );
}
void *mem = mem_heap->Allocate16( size );
// make sure the memory is 16 byte aligned
assert( ( ((intptr_t)mem) & 15) == 0 );
return mem;
}
/*
==================
Mem_Free16
==================
*/
void Mem_Free16( void *ptr ) {
if ( !ptr ) {
return;
}
if ( !mem_heap ) {
#ifdef CRASH_ON_STATIC_ALLOCATION
*((int*)0x0) = 1;
#endif
free( ptr );
return;
}
// make sure the memory is 16 byte aligned
assert( ( ((intptr_t)ptr) & 15) == 0 );
mem_heap->Free16( ptr );
}
/*
==================
Mem_ClearedAlloc
==================
*/
void *Mem_ClearedAlloc( const int size ) {
void *mem = Mem_Alloc( size );
SIMDProcessor->Memset( mem, 0, size );
return mem;
}
/*
==================
Mem_ClearedAlloc
==================
*/
void Mem_AllocDefragBlock( void ) {
mem_heap->AllocDefragBlock();
}
/*
==================
Mem_CopyString
==================
*/
char *Mem_CopyString( const char *in ) {
char *out;
out = (char *)Mem_Alloc( strlen(in) + 1 );
strcpy( out, in );
return out;
}
/*
==================
Mem_Dump_f
==================
*/
void Mem_Dump_f( const idCmdArgs &args ) {
}
/*
==================
Mem_DumpCompressed_f
==================
*/
void Mem_DumpCompressed_f( const idCmdArgs &args ) {
}
/*
==================
Mem_Init
==================
*/
void Mem_Init( void ) {
mem_heap = new idHeap;
Mem_ClearFrameStats();
}
/*
==================
Mem_Shutdown
==================
*/
void Mem_Shutdown( void ) {
idHeap *m = mem_heap;
mem_heap = NULL;
delete m;
}
/*
==================
Mem_EnableLeakTest
==================
*/
void Mem_EnableLeakTest( const char *name ) {
}
#else /* !ID_DEBUG_MEMORY */
#undef Mem_Alloc
#undef Mem_ClearedAlloc
#undef Com_ClearedReAlloc
#undef Mem_Free
#undef Mem_CopyString
#undef Mem_Alloc16
#undef Mem_Free16
// size of this struct must be a multiple of 16 bytes
typedef struct debugMemory_s {
const char * fileName;
int lineNumber;
int frameNumber;
int size;
struct debugMemory_s * prev;
struct debugMemory_s * next;
} debugMemory_t;
static debugMemory_t * mem_debugMemory = NULL;
static char mem_leakName[256] = "";
/*
==================
Mem_CleanupFileName
==================
*/
const char *Mem_CleanupFileName( const char *fileName ) {
int i1, i2;
idStr newFileName;
static char newFileNames[4][MAX_STRING_CHARS];
static int index;
newFileName = fileName;
newFileName.BackSlashesToSlashes();
i1 = newFileName.Find( "neo", false );
if ( i1 >= 0 ) {
i1 = newFileName.Find( "/", false, i1 );
newFileName = newFileName.Right( newFileName.Length() - ( i1 + 1 ) );
}
while( 1 ) {
i1 = newFileName.Find( "/../" );
if ( i1 <= 0 ) {
break;
}
i2 = i1 - 1;
while( i2 > 1 && newFileName[i2-1] != '/' ) {
i2--;
}
newFileName = newFileName.Left( i2 - 1 ) + newFileName.Right( newFileName.Length() - ( i1 + 4 ) );
}
index = ( index + 1 ) & 3;
strncpy( newFileNames[index], newFileName.c_str(), sizeof( newFileNames[index] ) );
return newFileNames[index];
}
/*
==================
Mem_Dump
==================
*/
void Mem_Dump( const char *fileName ) {
int i, numBlocks, totalSize;
char dump[32], *ptr;
debugMemory_t *b;
idStr module, funcName;
FILE *f;
f = fopen( fileName, "wb" );
if ( !f ) {
return;
}
totalSize = 0;
for ( numBlocks = 0, b = mem_debugMemory; b; b = b->next, numBlocks++ ) {
ptr = ((char *) b) + sizeof(debugMemory_t);
totalSize += b->size;
for ( i = 0; i < (sizeof(dump)-1) && i < b->size; i++) {
if ( ptr[i] >= 32 && ptr[i] < 127 ) {
dump[i] = ptr[i];
} else {
dump[i] = '_';
}
}
dump[i] = '\0';
if ( ( b->size >> 10 ) != 0 ) {
fprintf( f, "size: %6d KB: %s, line: %d [%s]\r\n", ( b->size >> 10 ), Mem_CleanupFileName(b->fileName), b->lineNumber, dump );
}
else {
fprintf( f, "size: %7d B: %s, line: %d [%s], call stack: %s\r\n", b->size, Mem_CleanupFileName(b->fileName), b->lineNumber, dump );
}
}
fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks );
fprintf( f, "%8d KB memory allocated\r\n", ( totalSize >> 10 ) );
fclose( f );
}
/*
==================
Mem_Dump_f
==================
*/
void Mem_Dump_f( const idCmdArgs &args ) {
const char *fileName;
if ( args.Argc() >= 2 ) {
fileName = args.Argv( 1 );
}
else {
fileName = "memorydump.txt";
}
Mem_Dump( fileName );
}
/*
==================
Mem_DumpCompressed
==================
*/
typedef struct allocInfo_s {
const char * fileName;
int lineNumber;
int size;
int numAllocs;
struct allocInfo_s * next;
} allocInfo_t;
typedef enum {
MEMSORT_SIZE,
MEMSORT_LOCATION,
MEMSORT_NUMALLOCS,
} memorySortType_t;
void Mem_DumpCompressed( const char *fileName, memorySortType_t memSort, int numFrames ) {
int numBlocks, totalSize, r, j;
debugMemory_t *b;
allocInfo_t *a, *nexta, *allocInfo = NULL, *sortedAllocInfo = NULL, *prevSorted, *nextSorted;
idStr module, funcName;
FILE *f;
// build list with memory allocations
totalSize = 0;
numBlocks = 0;
for ( b = mem_debugMemory; b; b = b->next ) {
if ( numFrames && b->frameNumber < idLib::frameNumber - numFrames ) {
continue;
}
numBlocks++;
totalSize += b->size;
// search for an allocation from the same source location
for ( a = allocInfo; a; a = a->next ) {
if ( a->lineNumber != b->lineNumber ) {
continue;
}
if ( j < MAX_CALLSTACK_DEPTH ) {
continue;
}
if ( idStr::Cmp( a->fileName, b->fileName ) != 0 ) {
continue;
}
a->numAllocs++;
a->size += b->size;
break;
}
// if this is an allocation from a new source location
if ( !a ) {
a = (allocInfo_t *) ::malloc( sizeof( allocInfo_t ) );
a->fileName = b->fileName;
a->lineNumber = b->lineNumber;
a->size = b->size;
a->numAllocs = 1;
a->next = allocInfo;
allocInfo = a;
}
}
// sort list
for ( a = allocInfo; a; a = nexta ) {
nexta = a->next;
prevSorted = NULL;
switch( memSort ) {
// sort on size
case MEMSORT_SIZE: {
for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) {
if ( a->size > nextSorted->size ) {
break;
}
prevSorted = nextSorted;
}
break;
}
// sort on file name and line number
case MEMSORT_LOCATION: {
for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) {
r = idStr::Cmp( Mem_CleanupFileName( a->fileName ), Mem_CleanupFileName( nextSorted->fileName ) );
if ( r < 0 || ( r == 0 && a->lineNumber < nextSorted->lineNumber ) ) {
break;
}
prevSorted = nextSorted;
}
break;
}
// sort on the number of allocations
case MEMSORT_NUMALLOCS: {
for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) {
if ( a->numAllocs > nextSorted->numAllocs ) {
break;
}
prevSorted = nextSorted;
}
break;
}
}
if ( !prevSorted ) {
a->next = sortedAllocInfo;
sortedAllocInfo = a;
}
else {
prevSorted->next = a;
a->next = nextSorted;
}
}
f = fopen( fileName, "wb" );
if ( !f ) {
return;
}
// write list to file
for ( a = sortedAllocInfo; a; a = nexta ) {
nexta = a->next;
fprintf( f, "size: %6d KB, allocs: %5d: %s, line: %d\r\n",
(a->size >> 10), a->numAllocs, Mem_CleanupFileName(a->fileName),
a->lineNumber );
::free( a );
}
fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks );
fprintf( f, "%8d KB memory allocated\r\n", ( totalSize >> 10 ) );
fclose( f );
}
/*
==================
Mem_DumpCompressed_f
==================
*/
void Mem_DumpCompressed_f( const idCmdArgs &args ) {
int argNum;
const char *arg, *fileName;
memorySortType_t memSort = MEMSORT_LOCATION;
int numFrames = 0;
// get cmd-line options
argNum = 1;
arg = args.Argv( argNum );
while( arg[0] == '-' ) {
arg = args.Argv( ++argNum );
if ( idStr::Icmp( arg, "s" ) == 0 ) {
memSort = MEMSORT_SIZE;
} else if ( idStr::Icmp( arg, "l" ) == 0 ) {
memSort = MEMSORT_LOCATION;
} else if ( idStr::Icmp( arg, "a" ) == 0 ) {
memSort = MEMSORT_NUMALLOCS;
} else if ( arg[0] == 'f' ) {
numFrames = atoi( arg + 1 );
} else {
idLib::common->Printf( "memoryDumpCompressed [options] [filename]\n"
"options:\n"
" -s sort on size\n"
" -l sort on location\n"
" -a sort on the number of allocations\n"
" -cs1 sort on first function on call stack\n"
" -cs2 sort on second function on call stack\n"
" -cs3 sort on third function on call stack\n"
" -f<X> only report allocations the last X frames\n"
"By default the memory allocations are sorted on location.\n"
"By default a 'memorydump.txt' is written if no file name is specified.\n" );
return;
}
arg = args.Argv( ++argNum );
}
if ( argNum >= args.Argc() ) {
fileName = "memorydump.txt";
} else {
fileName = arg;
}
Mem_DumpCompressed( fileName, memSort, numFrames );
}
/*
==================
Mem_AllocDebugMemory
==================
*/
void *Mem_AllocDebugMemory( const int size, const char *fileName, const int lineNumber, const bool align16 ) {
void *p;
debugMemory_t *m;
if ( !size ) {
return NULL;
}
if ( !mem_heap ) {
#ifdef CRASH_ON_STATIC_ALLOCATION
*((int*)0x0) = 1;
#endif
// NOTE: set a breakpoint here to find memory allocations before mem_heap is initialized
return malloc( size );
}
if ( align16 ) {
p = mem_heap->Allocate16( size + sizeof( debugMemory_t ) );
}
else {
p = mem_heap->Allocate( size + sizeof( debugMemory_t ) );
}
Mem_UpdateAllocStats( size );
m = (debugMemory_t *) p;
m->fileName = fileName;
m->lineNumber = lineNumber;
m->frameNumber = idLib::frameNumber;
m->size = size;
m->next = mem_debugMemory;
m->prev = NULL;
if ( mem_debugMemory ) {
mem_debugMemory->prev = m;
}
mem_debugMemory = m;
return ( ( (byte *) p ) + sizeof( debugMemory_t ) );
}
/*
==================
Mem_FreeDebugMemory
==================
*/
void Mem_FreeDebugMemory( void *p, const char *fileName, const int lineNumber, const bool align16 ) {
debugMemory_t *m;
if ( !p ) {
return;
}
if ( !mem_heap ) {
#ifdef CRASH_ON_STATIC_ALLOCATION
*((int*)0x0) = 1;
#endif
// NOTE: set a breakpoint here to find memory being freed before mem_heap is initialized
free( p );
return;
}
m = (debugMemory_t *) ( ( (byte *) p ) - sizeof( debugMemory_t ) );
if ( m->size < 0 ) {
idLib::common->FatalError( "memory freed twice" );
}
Mem_UpdateFreeStats( m->size );
if ( m->next ) {
m->next->prev = m->prev;
}
if ( m->prev ) {
m->prev->next = m->next;
}
else {
mem_debugMemory = m->next;
}
m->fileName = fileName;
m->lineNumber = lineNumber;
m->frameNumber = idLib::frameNumber;
m->size = -m->size;
if ( align16 ) {
mem_heap->Free16( m );
}
else {
mem_heap->Free( m );
}
}
/*
==================
Mem_Alloc
==================
*/
void *Mem_Alloc( const int size, const char *fileName, const int lineNumber ) {
if ( !size ) {
return NULL;
}
return Mem_AllocDebugMemory( size, fileName, lineNumber, false );
}
/*
==================
Mem_Free
==================
*/
void Mem_Free( void *ptr, const char *fileName, const int lineNumber ) {
if ( !ptr ) {
return;
}
Mem_FreeDebugMemory( ptr, fileName, lineNumber, false );
}
/*
==================
Mem_Alloc16
==================
*/
void *Mem_Alloc16( const int size, const char *fileName, const int lineNumber ) {
if ( !size ) {
return NULL;
}
void *mem = Mem_AllocDebugMemory( size, fileName, lineNumber, true );
// make sure the memory is 16 byte aligned
assert( ( ((int)mem) & 15) == 0 );
return mem;
}
/*
==================
Mem_Free16
==================
*/
void Mem_Free16( void *ptr, const char *fileName, const int lineNumber ) {
if ( !ptr ) {
return;
}
// make sure the memory is 16 byte aligned
assert( ( ((int)ptr) & 15) == 0 );
Mem_FreeDebugMemory( ptr, fileName, lineNumber, true );
}
/*
==================
Mem_ClearedAlloc
==================
*/
void *Mem_ClearedAlloc( const int size, const char *fileName, const int lineNumber ) {
void *mem = Mem_Alloc( size, fileName, lineNumber );
SIMDProcessor->Memset( mem, 0, size );
return mem;
}
/*
==================
Mem_CopyString
==================
*/
char *Mem_CopyString( const char *in, const char *fileName, const int lineNumber ) {
char *out;
out = (char *)Mem_Alloc( strlen(in) + 1, fileName, lineNumber );
strcpy( out, in );
return out;
}
/*
==================
Mem_Init
==================
*/
void Mem_Init( void ) {
mem_heap = new idHeap;
}
/*
==================
Mem_Shutdown
==================
*/
void Mem_Shutdown( void ) {
if ( mem_leakName[0] != '\0' ) {
Mem_DumpCompressed( va( "%s_leak_size.txt", mem_leakName ), MEMSORT_SIZE, 0 );
Mem_DumpCompressed( va( "%s_leak_location.txt", mem_leakName ), MEMSORT_LOCATION, 0 );
}
idHeap *m = mem_heap;
mem_heap = NULL;
delete m;
}
/*
==================
Mem_EnableLeakTest
==================
*/
void Mem_EnableLeakTest( const char *name ) {
idStr::Copynz( mem_leakName, name, sizeof( mem_leakName ) );
}
#endif /* !ID_DEBUG_MEMORY */